CS 341, Fall 2018

Solutions for Midterm, eLearning Section

1. (a) True. Because A is finite, it is regular by the theorem on slide 1-95 of the notes. Corollary 2.32 then ensures that A is regular.
(b) False. For example, let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and B have regular expression $(a \cup b)^{*}$. Then $A \subseteq B, B$ is regular, but A is nonregular.
(c) False. By Homework 6, problem 2(b).
(d) False. $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular and not context-free.
(e) False. The language with regular expression a^{*} is regular but infinite.
(f) False. $a^{*} b^{*}$ generates the string $a b b \notin\left\{a^{n} b^{n} \mid n \geq 0\right\}$. In fact, the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular, so it does not have a regular expression.
(g) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
(h) False. For example, let $A=\{a b c\}$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, so $A \subseteq B$. Because A is finite, it is regular (slide 1-95), so it is also context-free by Corollary 2.32. But B is not context-free by slide 2-96.
(i) True. Because A has an NFA, it is regular by Corollary 1.40. As B is finite, it is regular by slide $1-95$, and we know \bar{B} is regular by HW 2 , problem 3. Thus, $A \cap \bar{B}$ is regular by HW 2, problem 5, so Corollary 2.32 implies $A \cap \bar{B}$ is context-free.
(j) False. A TM can loop on w.
2. (a) This is essentially the same as HW 3, problem 4c. A regular expression is $b^{*} a b^{*} a b^{*} \cup a^{*} b a^{*} b(a \cup b)^{*}$.
(b) After the one step to remove $A \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow b X S a|b S a| S a X b X S|S a b X S| S a X b S|S a b S| \varepsilon \\
A & \rightarrow a S b
\end{aligned}
$$

(c) This is essentially the same as HW 2, problem 2c.

(d) Homework 5, problem 3a.
3. $q_{1} b b \quad \sqcup q_{2} b \quad \sqcup x q_{3} \sqcup \quad \sqcup q_{5} x \quad q_{5} \sqcup x \quad \sqcup q_{2} x \quad \sqcup x q_{2} \sqcup \quad \sqcup x \sqcup q_{\text {accept }}$ It is also correct to write the third configuration $\sqcup x q_{3} \sqcup$ as $\sqcup x q_{3}$ instead.
4. Homework 3, problem 2.
5. DFA

6. (a) $G=(V, \Sigma, R, S)$, with $V=\{S, X\}, \Sigma=\{a, b, c\}$, start variable S and rules

$$
\begin{aligned}
S & \rightarrow c S b \mid X \\
X & \rightarrow c X a \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for A.
(b) PDA

For every c read in the first part of the string, the PDA pushes an x onto the stack. Then the a 's and the b 's read pop the x 's off the stack.
There are infinitely many other correct PDAs for A.
7. The language A is not regular. To prove this, suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b a^{p} \in A$. Note that $|s|=2 p+1 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by $b a^{p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b a^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b a^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b a^{p}=a^{p+k} b a^{p}$ since $j+k+\ell=p$. Note that $x y y z \notin A$ since it is not the same forwards and backwards because $k>0$, which contradicts (i), so A is not a regular language.

