CS 341, Fall 2018 Solutions for Midterm, eLearning Section

- 1. (a) True. Because A is finite, it is regular by the theorem on slide 1-95 of the notes. Corollary 2.32 then ensures that A is regular.
 - (b) False. For example, let $A = \{a^n b^n \mid n \ge 0\}$ and B have regular expression $(a \cup b)^*$. Then $A \subseteq B$, B is regular, but A is nonregular.
 - (c) False. By Homework 6, problem 2(b).
 - (d) False. $A = \{ a^n b^n c^n \mid n \ge 0 \}$ is nonregular and not context-free.
 - (e) False. The language with regular expression a^* is regular but infinite.
 - (f) False. a^*b^* generates the string $abb \notin \{a^nb^n \mid n \ge 0\}$. In fact, the language $\{a^nb^n \mid n \ge 0\}$ is not regular, so it does not have a regular expression.
 - (g) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
 - (h) False. For example, let $A = \{abc\}$ and $B = \{a^n b^n c^n \mid n \ge 0\}$, so $A \subseteq B$. Because A is finite, it is regular (slide 1-95), so it is also context-free by Corollary 2.32. But B is not context-free by slide 2-96.
 - (i) True. Because A has an NFA, it is regular by Corollary 1.40. As B is finite, it is regular by slide 1-95, and we know \overline{B} is regular by HW 2, problem 3. Thus, $A \cap \overline{B}$ is regular by HW 2, problem 5, so Corollary 2.32 implies $A \cap \overline{B}$ is context-free.
 - (j) False. A TM can loop on w.
- 2. (a) This is essentially the same as HW 3, problem 4c. A regular expression is $b^*ab^*ab^* \cup a^*ba^*b(a \cup b)^*$.
 - (b) After the one step to remove $A \to \varepsilon$, the CFG is then

$$\begin{array}{rcl} S_{0} & \rightarrow & S \\ S & \rightarrow & bXSa \mid bSa \mid SaXbXS \mid SabXS \mid SaXbS \mid SabS \mid \varepsilon \\ A & \rightarrow & aSb \end{array}$$

(c) This is essentially the same as HW 2, problem 2c.

- (d) Homework 5, problem 3a.
- 3. $q_1bb \sqcup q_2b \sqcup xq_3 \sqcup \sqcup q_5x q_5 \sqcup x \sqcup q_2x \sqcup xq_2 \sqcup \sqcup x \sqcup q_{\text{accept}}$ It is also correct to write the third configuration $\sqcup xq_3 \sqcup as \sqcup xq_3$ instead.
- 4. Homework 3, problem 2.
- 5. DFA

6. (a) $G = (V, \Sigma, R, S)$, with $V = \{S, X\}$, $\Sigma = \{a, b, c\}$, start variable S and rules

S	\rightarrow	$cSb \mid$	X
X	\rightarrow	cXa	ε

There are infinitely many other correct CFGs for A. (b) PDA

For every c read in the first part of the string, the PDA pushes an x onto the stack. Then the a's and the b's read pop the x's off the stack. There are infinitely many other correct PDAs for A.

7. The language A is not regular. To prove this, suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p b a^p \in A$. Note that $|s| = 2p + 1 \ge p$, so the pumping lemma implies we can write s = xyz with $xy^i z \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by ba^p . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell ba^p$, where $j + k + \ell = p$ since $xyz = s = a^p ba^p$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell ba^p = a^{p+k} ba^p$ since $j + k + \ell = p$. Note that $xyyz \notin A$ since it is not the same forwards and backwards because k > 0, which contradicts (i), so A is not a regular language.