Midterm Exam
CS 341-451: Foundations of Computer Science II - Fall 2018, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the University Policy on Academic Integrity.

Signature and Date

- This exam has 9 pages in total, numbered 1 to 9 . Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to last 2.5 hours. and is to be given on Saturday, 10/20/18.
- This is a closed-book, closed-note exam. Electronic devices (e.g., cellphone, smart watch, calculator) are not allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton; TM stands for Turing machine.
3. For any machines that you draw, you must include all states and transitions.
4. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X , in your proof of X , you may use any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that"

Problem	1	2	3	4	5	6	7	Total
Points								

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is a finite language, then A is context-free.
(b) TRUE FALSE - If $A \subseteq B$ and B is a regular language, then A is a regular language.
(c) TRUE FALSE - The class of context-free languages is closed under complementation.
(d) TRUE FALSE - Every nonregular language is context-free.
(e) TRUE FALSE - If A is a regular language, then A is finite.
(f) TRUE FALSE - The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ has regular expression $a^{*} b^{*}$.
(g) TRUE FALSE - If A is a context-free language that is also non-regular, then A has a CFG in Chomsky normal form.
(h) TRUE FALSE - If $A \subseteq B$ and A is a context-free language, then B is a context-free language.
(i) TRUE FALSE - If A has an NFA and B is a finite language, then $A \cap \bar{B}$ is context-free.
(j) TRUE FALSE - If $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ is a Turing machine and $w \in \Sigma^{*}$ is a string, the TM M either accepts or rejects w.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) Let $\Sigma=\{a, b\}$, and let A be the set of strings that have exactly two a 's or at least two b 's. Give a regular expression for A.
(b) Suppose that we are in the process of converting a CFG G with $\Sigma=\{a, b\}$ into Chomsky normal form. We have already applied some steps in the process, and we currently have the following CFG:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow b X S a|S a X b X S| \varepsilon \\
X & \rightarrow a S b \mid \varepsilon
\end{aligned}
$$

In the next step, we want to remove the ε-rule $X \rightarrow \varepsilon$. Give the CFG after carrying out just this one step.
(c) Let $\Sigma=\{0,1\}$, and define $B=\left\{w \in \Sigma^{*} \mid w\right.$ ends in 010$\}$. Draw a DFA for B. You only need to draw the graph.
(d) Suppose that A_{1} is a language defined by a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and A_{2} is a language defined by a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where the alphabet Σ is the same for both languages and $V_{1} \cap V_{2}=\emptyset$. Let $A_{3}=A_{1} \cup A_{2}$. Give a CFG G_{3} for A_{3} in terms of G_{1} and G_{2}. You do not have to prove the correctness of your CFG G_{3}, but do not give just an example.
3. [10 points] The Turing machine M below has input alphabet $\Sigma=\{b\}$ and tape alphabet $\Gamma=\{b, x, \sqcup\}$.

Give the sequence of configurations that M enters when started on the input string $b b$.

Scratch-work area

4. [10 points]

(a) Show by giving an example that, if M is an NFA that recognizes language C, swapping the accept and non-accept states in M does not necessarily yield a new NFA that recognizes \bar{C}. Explain your answer.
(b) Is the class of languages recognized by NFAs closed under complements? Explain your answer.
5. [10 points] Convert the following NFA into an equivalent DFA.

Answer:

Scratch-work area
6. [15 points] Consider the language

$$
A=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0 \text { and } i=j+k\right\} .
$$

(a) Give a context-free grammar G that generates the language A. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for the language A. You only need to draw the picture.

Scratch-work area

7. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there is a number p (pumping length) where, if $s \in L$ with $|s| \geq p$, then s can be split into three pieces $s=x y z$ such that
(i) $x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is odd $\}$, where $w^{\mathcal{R}}$ denotes the reverse of w and $|w|$ denotes the length of w. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language

