CS 341, Fall 2018, Face-to-Face Section Solutions for Midterm 1

1. (a) False. Let $A=\emptyset$ and $B=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Then $A \subseteq B, A$ is regular because it's finite, and B is nonregular.
(b) False. The language a^{*} is regular but infinite.
(c) False. $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but not regular.
(d) True. Homework 2, problem 5.
(e) False. $0^{*} 1^{*} 0^{*}$ generates the string $001000 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
(f) True. Theorem 1.54 implies A is regular. Then by Corollary $2.32, A$ is contextfree, so Theorem 2.20 ensures that A has a PDA.
(g) True, by Lemma 2.27 and Theorem 2.9.
(h) False. The transition function of an NFA is $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$.
(i) False. If A is nonregular, then A cannot have an NFA by Corollary 1.40.
(j) False. Let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, A$ is nonregular, and B is regular.
2. (a) $b^{*} a b^{*} \cup b^{*} a a^{*} b b^{*}$. Another regular expression is $b^{*}\left(a \cup a a^{*} b\right) b^{*}$. There are infinitely many correct regular expressions for the language.
(b) $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S_{0}\right)$ with $S_{0} \notin V$, where

- $V^{\prime}=V \cup\left\{S_{0}\right\}$,
- S_{0} is the (new) starting variable,
- Σ is the same alphabet of terminals as in G, and
- $R^{\prime}=R \cup\left\{S_{0} \rightarrow S S_{0} \mid \varepsilon\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where
- $Q_{3}=Q_{1} \times Q_{2}$;
- Σ is the same alphabet as M_{1} and M_{2} have;
- the transition function δ_{3} satisfies $\delta_{3}((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in$ Q_{3} and $\ell \in \Sigma$;
- the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and
- $F_{3}=\left(Q_{1} \times F_{2}\right) \cap\left(F_{1} \times Q_{2}\right)$, which also can be written as $F_{1} \times F_{2}$.
(d) After the one step of removing $A \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 A S|1 A S| A 1 S|1 S| 01 A|01| \varepsilon \\
A & \rightarrow 1 S 0
\end{aligned}
$$

3. A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, W, X, Y, Z\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow W X \mid Y Z \\
W & \rightarrow c W a \mid \varepsilon \\
X & \rightarrow b X \mid \varepsilon \\
Y & \rightarrow c Y \mid \varepsilon \\
Z & \rightarrow a Z b \mid \varepsilon
\end{aligned}
$$

Starting from variable W, the derived string will be in $A_{1}=\left\{c^{n} a^{n} \mid n \geq 0\right\}$. Starting from variable X, the derived string will be in $A_{2}=L\left(b^{*}\right)$. So if $S \Rightarrow W X$ is the first step taken in a derivation, then the resulting string will be in the language $B_{1}=A_{1} \circ A_{2}=\left\{c^{n} a^{n} b^{k} \mid n \geq 0, k \geq 0\right\}$. A similar argument will show that if $S \Rightarrow Y Z$ is the first step taken in a derivation, then the resulting string will be in the language $B_{2}=\left\{c^{i} a^{n} b^{n} \mid i \geq 0, n \geq 0\right\}$, and note that $L=B_{1} \cup B_{2}$. There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

The PDA has a nondeterministic branch at q_{1}.

- If the string is $c^{i} a^{j} b^{k}$ with $i=j$, then the PDA can accept the string by taking the branch from q_{1} to q_{2}.
- If the string is $c^{i} a^{j} b^{k}$ with $j=k$, then the PDA can accept the string by taking the branch from q_{1} to q_{5}.
Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

Note that

- The path $q_{2} \rightarrow q_{4} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow W X$.
- The path $q_{2} \rightarrow q_{5} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow Y Z$.
- The path $q_{2} \rightarrow q_{6} \rightarrow q_{7} \rightarrow q_{2}$ corresponds to the rule $W \rightarrow c W a$.
- The path $q_{2} \rightarrow q_{8} \rightarrow q_{2}$ corresponds to the rule $X \rightarrow b X$.
- The path $q_{2} \rightarrow q_{9} \rightarrow q_{2}$ corresponds to the rule $Y \rightarrow c Y$.
- The path $q_{2} \rightarrow q_{10} \rightarrow q_{11} \rightarrow q_{2}$ corresponds to the rule $Z \rightarrow a Z b$.

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=c^{p} a^{p}$. Note that $s \in A$ because the numbers of c 's and a 's are equal, and $|s|=2 p>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all c 's, the third property implies that x and y consist only of c 's. So z will be the rest of the c 's, followed by a^{p}. The second property states that $|y|>0$, so y has at least one c. More precisely, we can then say that

$$
\begin{aligned}
& x=c^{j} \text { for some } j \geq 0 \\
& y=c^{k} \text { for some } k \geq 1 \\
& z=c^{m} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $c^{p} a^{p}=s=x y z=c^{j} c^{k} c^{m} a^{p}=c^{j+k+m} a^{p}$, we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =c^{j} c^{k} c^{k} c^{m} a^{p} \\
& =c^{p+k} a^{p} \notin A
\end{aligned}
$$

since $p+k>p$ because $j+k+m=p$ and $k \geq 1$, so the number of c 's in the pumped string $x y^{2} z$ doesn't match the number of a 's, and the number of a 's doesn't match the number of b 's (none). Because the pumped string $x y^{2} z \notin A$, we have a contradiction. Therefore, A is a nonregular language.
Note that if you instead chose the string $s=c^{p} a^{p} b^{p}$, you would not get a contradiction. This is because pumping up or down leads to the number of c 's changing, but the number of a 's and b 's remain the same and equal. Thus, the pumped string is still in the language, so there is no contradiction.

