CS 341, Fall 2018 Solutions for Midterm 2

- 1. (a) True, by Theorem 4.5.
 - (b) False, by Theorem 3.13.
 - (c) False, by Corollary 3.15.
 - (d) False. For example, consider the language with regular expression $(0 \cup 1)^*$. The language regular by Kleene's Theorem, so it is also context-free (Corollary 2.32). This implies it is further decidable (Theorem 4.9). But $(0 \cup 1)^*$ generates an infinite language.
 - (e) False, by Theorem 4.11.
 - (f) False, by Corollary 4.23.
 - (g) False. We can decide the problem that an NFA and regular expression are equivalent by reducing the problem to EQ_{DFA}, which Theorem 4.5 shows is decidable. Here is a decider for the problem:
 M = "On input ⟨N, R⟩, where N is an NFA and R is a regular expression:
 0. Check if ⟨N, R⟩ is a proper encoding of NFA N and regular expression R; if not, reject.
 1. Convert N into equivalent DFA D₁ using algorithm in Theorem 1.39.
 2. Convert R into equivalent DFA D₂ using algorithms in Lemma 1.55 and Theorem 1.39.
 3. Run TM S for EQ_{DFA} (Theorem 4.5) on input ⟨D₁, D₂⟩. If S accepts, then accept; else, reject."
 - (h) False, e.g., if $A = \{00, 11\}$ and $B = \{00, 11, 111\}$, then $A \cap \overline{B} = \emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (i) False. TM M may loop on input w.
 - (j) False, e.g., the set \mathcal{N} of positive integers is infinite and countable.
- 2. (a) No, because f(x) = f(y) = 1.
 - (b) No, because nothing in A maps to $3 \in B$.
 - (c) No, because f is not one-to-one nor onto.
 - (d) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. $q_1 100 \# 0 \quad x q_3 00 \# 0 \quad x 0 q_3 0 \# 0 \quad x 00 q_3 \# 0 \quad x 00 \# q_5 0 \quad x 00 \# 0 q_{\text{reject}}$
- 4. This is HW 8, problem 4. We need to show there is a Turing machine that recognizes \overline{E}_{TM} , the complement of E_{TM} . Let s_1, s_2, s_3, \ldots be a list of all strings in Σ^* , e.g., in string order. For a given Turing machine M, we want to determine

if any of the strings s_1, s_2, s_3, \ldots is accepted by M. If M accepts at least one string s_i , then $L(M) \neq \emptyset$, so $\langle M \rangle \in \overline{E_{\text{TM}}}$; if M accepts none of the strings, then $L(M) = \emptyset$, so $\langle M \rangle \notin \overline{E_{\text{TM}}}$. However, we cannot just run M sequentially on the strings s_1, s_2, s_3, \ldots . For example, suppose M accepts s_2 but loops on s_1 . Because M accepts s_2 , we have that $\langle M \rangle \in \overline{E_{\text{TM}}}$. But if we run M sequentially on s_1, s_2, s_3, \ldots , we never get past the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\text{TM}}}$:

- R = "On input $\langle M \rangle$, where M is a Turing machine:
 - 1. Repeat the following for $i = 1, 2, 3, \ldots$
 - **2.** Run *M* for *i* steps on each input s_1, s_2, \ldots, s_i .
 - **3.** If any computation accepts, *accept*.
- 5. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ , and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable (by a diagonalization argument, on slide 4-39). We will show that there is a correspondence between \mathcal{L} and \mathcal{B} , so they have the same size. Let s_1, s_2, s_3, \ldots be an enumeration of the strings in Σ^* , e.g., the enumeration can list the strings in string order. Define mapping $\chi : \mathcal{L} \to \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the *n*th bit of $\chi(A)$ is 1 if and only if the *n*th string $s_n \in A$. We now show χ is a correspondence.
 - To show that χ is one-to-one, suppose that $A_1, A_2 \in \mathcal{L}$ with $A_1 \neq A_2$. Then there is some string s_i such that s_i is in one of the languages but not the other. Then $\chi(A_1)$ and $\chi(A_2)$ differ in the *i*th bit, so χ is one-to-one.
 - To show that χ is onto, consider any infinite binary sequence $b = b_1 b_2 b_3 \ldots \in \mathcal{B}$. Consider the language A that includes all strings s_i for which $b_i = 1$ and does not include any string b_j for which $b_j = 0$. Then $\chi(A) = b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.

6. This is a slight modification of HW 8, problem 3. The language of the decision problem is

 $A = \{ \langle R \rangle | R \text{ is a regular expression describing a language over } \Sigma$ containing at least one string w that has 101 as a substring (i.e., $w \in L(R)$ and w = x101y for some $x \in \Sigma^*$ and $y \in \Sigma^*$) }.

Define the language $C = \{ w \in \Sigma^* \mid w \text{ has } 101 \text{ as a substring } \}$. Note that C is a regular language with regular expression $(0 \cup 1)^* 101(0 \cup 1)^*$ and is recognized by the following DFA D_C :

Now consider any regular expression R with alphabet Σ . If $L(R) \cap C \neq \emptyset$, then R generates a string having 101 as a substring, so $\langle R \rangle \in A$. Also, if $L(R) \cap C = \emptyset$, then R does not generate any string having 101 as a substring, so $\langle R \rangle \notin A$. By Kleene's Theorem, because L(R) is described by regular expression R, L(R) must be a regular language. Because C and L(R) are regular languages, $C \cap L(R)$ is regular as the class of regular languages is closed under intersection, as was shown in Homework 2, problem 5. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\text{DFA}} = \{ \langle B \rangle \mid B \text{ is a DFA with } L(B) = \emptyset \}$ is decidable, so there is a Turing machine H that decides E_{DFA} . We apply TM H to $\langle D_{C \cap L(R)} \rangle$ to determine if $C \cap L(R) = \emptyset$. Putting this all together gives us the following Turing machine T to decide A:

- T = "On input $\langle R \rangle$, where R is a regular expression:
 - 1. Convert R into a DFA D_R using the algorithm in the proof of Kleene's Theorem.
 - **2.** Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_C and D_R , where D_C is given above.
 - **3.** Run TM *H* that decides E_{DFA} on input $\langle D_{C \cap L(R)} \rangle$.
 - 4. If H accepts, reject. If H rejects, accept."
- 7. This is Theorem 5.4. Recall that $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM with } L(M) = \emptyset \}$, which we know is undecidable by Theorem 5.2. We can reduce E_{TM} to EQ_{TM} as follows. Suppose that EQ_{TM} is decidable by a TM R. Then we could decide E_{TM} using the following TM S with R as a subroutine:
 - S = "On input ⟨M⟩, where M is a TM:
 1. Run R on input ⟨M, M_∅⟩, where M_∅ is a TM such that L(M_∅) = ∅.
 2. If R accepts, accept; if R rejects, reject.

The TM S just checks if the inputted TM M is equivalent to the empty TM M_{\emptyset} , so S decides E_{TM} . But E_{TM} is undecidable, so that must mean the decider R for EQ_{TM} cannot exist, so EQ_{TM} is undecidable.

A mistake that some students make is the following. Define the following TM R_0

to try to decide EQ_{TM} :

- $R_0 =$ "On input $\langle M, N \rangle$, where M and N are TMs:
 - **1.** For a string w, run M and N on w.
 - **2.** If M and N both accept or both don't,

then M and N are equivalent, so *accept*; otherwise, *reject*.

There are several problems with this approach. First, in stage 1 what is the string w on which to test the TMs M and N? For M and N to be equivalent, R would have to test every possible string $w \in \Sigma^*$, and make sure that M and N both accept or both don't accept. Hence, on a YES instance (i.e., when M and N are equivalent), the TM R_0 would be stuck in an infinite loop since there are infinitely many strings $w \in \Sigma^*$ to test, and M and N would agree on all of them when M and N are equivalent. In other words, R_0 loops on $\langle M, N \rangle \in EQ_{\text{TM}}$, so R_0 doesn't even recognize EQ_{TM} .

Another problem is that in stage 1 of R_0 , it may not be safe to run M and N on w since one or both might loop, in which case R_0 can't be a decider since it doesn't always halt. Moreover, there is no way to determine if M or N accept w since the acceptance problem for TMs (i.e., $A_{\rm TM}$) is undecidable. You might think that this then proves that $EQ_{\rm TM}$ is undecidable, but this only shows that one particular way (i.e., TM R_0) does not decide $EQ_{\rm TM}$, but there might be another TM that does decide $EQ_{\rm TM}$. To prove that $EQ_{\rm TM}$ is undecidable, you need to show that every TM will fail to decide $EQ_{\rm TM}$, and this is accomplished via a reduction, as in the solution. If there were a decider R for $EQ_{\rm TM}$, then we could use R to construct a decider S for $E_{\rm TM}$. But since $E_{\rm TM}$ is undecidable (Theorem 5.2), it must be the case that $EQ_{\rm TM}$ does not have a decider, i.e., $EQ_{\rm TM}$ is undecidable.