CS 341, Fall 2018

Solutions for Midterm 2

1. (a) True, by Theorem 4.5 .
(b) False, by Theorem 3.13.
(c) False, by Corollary 3.15.
(d) False. For example, consider the language with regular expression $(0 \cup 1)^{*}$. The language regular by Kleene's Theorem, so it is also context-free (Corollary 2.32). This implies it is further decidable (Theorem 4.9). But $(0 \cup 1)^{*}$ generates an infinite language.
(e) False, by Theorem 4.11.
(f) False, by Corollary 4.23.
(g) False. We can decide the problem that an NFA and regular expression are equivalent by reducing the problem to $E Q_{\mathrm{DFA}}$, which Theorem 4.5 shows is decidable. Here is a decider for the problem:
$M=$ "On input $\langle N, R\rangle$, where N is an NFA and R is a regular expression:
0 . Check if $\langle N, R\rangle$ is a proper encoding of NFA N and regular expression R; if not, reject.
2. Convert N into equivalent DFA D_{1} using algorithm in Theorem 1.39.
3. Convert R into equivalent DFA D_{2} using algorithms in Lemma 1.55 and Theorem 1.39.
4. Run TM S for $E Q_{\text {DFA }}$ (Theorem 4.5) on input $\left\langle D_{1}, D_{2}\right\rangle$. If S accepts, then accept; else, reject."
(h) False, e.g., if $A=\{00,11\}$ and $B=\{00,11,111\}$, then $A \cap \bar{B}=\emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(i) False. TM M may loop on input w.
(j) False, e.g., the set \mathcal{N} of positive integers is infinite and countable.
5. (a) No, because $f(x)=f(y)=1$.
(b) No, because nothing in A maps to $3 \in B$.
(c) No, because f is not one-to-one nor onto.
(d) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
6. $q_{1} 100 \# 0 \quad x q_{3} 00 \# 0 \quad x 0 q_{3} 0 \# 0 \quad x 00 q_{3} \# 0 \quad x 00 \# q_{5} 0 \quad x 00 \# 0 q_{\text {reject }}$
7. This is HW 8, problem 4. We need to show there is a Turing machine that recognizes $\overline{E_{\mathrm{TM}}}$, the complement of E_{TM}. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a list of all strings in Σ^{*}, e.g., in string order. For a given Turing machine M, we want to determine
if any of the strings $s_{1}, s_{2}, s_{3}, \ldots$ is accepted by M. If M accepts at least one string s_{i}, then $L(M) \neq \emptyset$, so $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$; if M accepts none of the strings, then $L(M)=\emptyset$, so $\langle M\rangle \notin \overline{E_{\mathrm{TM}}}$. However, we cannot just run M sequentially on the strings $s_{1}, s_{2}, s_{3}, \ldots$. For example, suppose M accepts s_{2} but loops on s_{1}. Because M accepts s_{2}, we have that $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$. But if we run M sequentially on $s_{1}, s_{2}, s_{3}, \ldots$, we never get past the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\mathrm{TM}}}$:

$$
\begin{aligned}
& R=\text { "On input }\langle M\rangle \text {, where } M \text { is a Turing machine: } \\
& \text { 1. Repeat the following for } i=1,2,3, \ldots . \\
& \text { 2. } \quad \text { Run } M \text { for } i \text { steps on each input } s_{1}, s_{2}, \ldots, s_{i} \text {. } \\
& \text { 3. If any computation accepts, accept. }
\end{aligned}
$$

5. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ, and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable (by a diagonalization argument, on slide 4-39). We will show that there is a correspondence between \mathcal{L} and \mathcal{B}, so they have the same size. Let $s_{1}, s_{2}, s_{3}, \ldots$ be an enumeration of the strings in Σ^{*}, e.g., the enumeration can list the strings in string order. Define mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the nth bit of $\chi(A)$ is 1 if and only if the nth string $s_{n} \in A$. We now show χ is a correspondence.

- To show that χ is one-to-one, suppose that $A_{1}, A_{2} \in \mathcal{L}$ with $A_{1} \neq A_{2}$. Then there is some string s_{i} such that s_{i} is in one of the languages but not the other. Then $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ in the i th bit, so χ is one-to-one.
- To show that χ is onto, consider any infinite binary sequence $b=b_{1} b_{2} b_{3} \ldots \in$ \mathcal{B}. Consider the language A that includes all strings s_{i} for which $b_{i}=1$ and does not include any string b_{j} for which $b_{j}=0$. Then $\chi(A)=b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.
6. This is a slight modification of HW 8, problem 3. The language of the decision problem is

$$
\begin{aligned}
A=\{\langle R\rangle \mid & R \text { is a regular expression describing a language over } \Sigma \\
& \text { containing at least one string } w \text { that has } 101 \text { as a substring } \\
& \text { (i.e., } \left.\left.w \in L(R) \text { and } w=x 101 y \text { for some } x \in \Sigma^{*} \text { and } y \in \Sigma^{*}\right)\right\} .
\end{aligned}
$$

Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ has 101 as a substring $\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 101(0 \cup 1)^{*}$ and is recognized by the following DFA D_{C} :

Now consider any regular expression R with alphabet Σ. If $L(R) \cap C \neq \emptyset$, then R generates a string having 101 as a substring, so $\langle R\rangle \in A$. Also, if $L(R) \cap C=\emptyset$, then R does not generate any string having 101 as a substring, so $\langle R\rangle \notin A$. By Kleene's Theorem, because $L(R)$ is described by regular expression $R, L(R)$ must be a regular language. Because C and $L(R)$ are regular languages, $C \cap L(R)$ is regular as the class of regular languages is closed under intersection, as was shown in Homework 2, problem 5. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\mathrm{DFA}}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides $E_{\text {DFA }}$. We apply TM H to $\left\langle D_{C \cap L(R)}\right\rangle$ to determine if $C \cap L(R)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :

$$
T=\text { "On input }\langle R\rangle \text {, where } R \text { is a regular expression: }
$$

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_{C} and D_{R}, where D_{C} is given above.
3. Run TM H that decides E_{DFA} on input $\left\langle D_{C \cap L(R)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. This is Theorem 5.4. Recall that $E_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM with $L(M)=\emptyset\}$, which we know is undecidable by Theorem 5.2. We can reduce E_{TM} to $E Q_{\mathrm{TM}}$ as follows. Suppose that $E Q_{\mathrm{TM}}$ is decidable by a TM R. Then we could decide E_{TM} using the following TM S with R as a subroutine:

$$
\begin{aligned}
& S=\text { "On input }\langle M\rangle \text {, where } M \text { is a TM: } \\
& \text { 1. Run } R \text { on input }\left\langle M, M_{\emptyset}\right\rangle, \\
& \text { where } M_{\emptyset} \text { is a TM such that } L\left(M_{\emptyset}\right)=\emptyset .
\end{aligned}
$$

2. If R accepts, accept; if R rejects, reject.

The TM S just checks if the inputted TM M is equivalent to the empty TM M_{\emptyset}, so S decides E_{TM}. But E_{TM} is undecidable, so that must mean the decider R for $E Q_{\mathrm{TM}}$ cannot exist, so $E Q_{\mathrm{TM}}$ is undecidable.
A mistake that some students make is the following. Define the following TM R_{0}
to try to decide $E Q_{\mathrm{TM}}$:

$$
R_{0}=\text { "On input }\langle M, N\rangle \text {, where } M \text { and } N \text { are TMs: }
$$

1. For a string w, run M and N on w.
2. If M and N both accept or both don't, then M and N are equivalent, so accept; otherwise, reject.

There are several problems with this approach. First, in stage 1 what is the string w on which to test the TMs M and N ? For M and N to be equivalent, R would have to test every possible string $w \in \Sigma^{*}$, and make sure that M and N both accept or both don't accept. Hence, on a YES instance (i.e., when M and N are equivalent), the TM R_{0} would be stuck in an infinite loop since there are infinitely many strings $w \in \Sigma^{*}$ to test, and M and N would agree on all of them when M and N are equivalent. In other words, R_{0} loops on $\langle M, N\rangle \in E Q_{\mathrm{TM}}$, so R_{0} doesn't even recognize $E Q_{\mathrm{TM}}$.

Another problem is that in stage 1 of R_{0}, it may not be safe to run M and N on w since one or both might loop, in which case R_{0} can't be a decider since it doesn't always halt. Moreover, there is no way to determine if M or N accept w since the acceptance problem for TMs (i.e., A_{TM}) is undecidable. You might think that this then proves that $E Q_{\mathrm{TM}}$ is undecidable, but this only shows that one particular way (i.e., TM R_{0}) does not decide $E Q_{\mathrm{TM}}$, but there might be another TM that does decide $E Q_{\mathrm{TM}}$. To prove that $E Q_{\mathrm{TM}}$ is undecidable, you need to show that every TM will fail to decide $E Q_{\mathrm{TM}}$, and this is accomplished via a reduction, as in the solution. If there were a decider R for $E Q_{\mathrm{TM}}$, then we could use R to construct a decider S for E_{TM}. But since E_{TM} is undecidable (Theorem 5.2), it must be the case that $E Q_{\mathrm{TM}}$ does not have a decider, i.e., $E Q_{\mathrm{TM}}$ is undecidable.

