
CS 341, Fall 2018

Solutions for Midterm 2

1. (a) True, by Theorem 4.5.

(b) False, by Theorem 3.13.

(c) False, by Corollary 3.15.

(d) False. For example, consider the language with regular expression (0 ∪ 1)∗.
The language regular by Kleene’s Theorem, so it is also context-free (Corol-
lary 2.32). This implies it is further decidable (Theorem 4.9). But (0 ∪ 1)∗

generates an infinite language.

(e) False, by Theorem 4.11.

(f) False, by Corollary 4.23.

(g) False. We can decide the problem that an NFA and regular expression are
equivalent by reducing the problem to EQDFA, which Theorem 4.5 shows is
decidable. Here is a decider for the problem:
M = “On input 〈N,R〉, where N is an NFA and R is a regular expression:
0. Check if 〈N,R〉 is a proper encoding of NFA N and regular expression R;
if not, reject.
1. Convert N into equivalent DFA D1 using algorithm in Theorem 1.39.
2. Convert R into equivalent DFA D2 using algorithms in Lemma 1.55 and
Theorem 1.39.
3. Run TM S for EQDFA (Theorem 4.5) on input 〈D1, D2〉. If S accepts,
then accept ; else, reject.”

(h) False, e.g., if A = {00, 11} and B = {00, 11, 111}, then A∩B = ∅ but A 6= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩ B) = ∅.

(i) False. TM M may loop on input w.

(j) False, e.g., the set N of positive integers is infinite and countable.

2. (a) No, because f(x) = f(y) = 1.

(b) No, because nothing in A maps to 3 ∈ B.

(c) No, because f is not one-to-one nor onto.

(d) A language L1 that is Turing-recognizable has a Turing machine M1 that may
loop forever on a string w 6∈ L1. A language L2 that is Turing-decidable has
a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1100#0 xq300#0 x0q30#0 x00q3#0 x00#q50 x00#0qreject

4. This is HW 8, problem 4. We need to show there is a Turing machine that
recognizes ETM, the complement of ETM. Let s1, s2, s3, . . . be a list of all strings
in Σ∗, e.g., in string order. For a given Turing machine M , we want to determine

1



if any of the strings s1, s2, s3, . . . is accepted by M . If M accepts at least one
string si, then L(M) 6= ∅, so 〈M〉 ∈ ETM; if M accepts none of the strings,
then L(M) = ∅, so 〈M〉 6∈ ETM. However, we cannot just run M sequentially
on the strings s1, s2, s3, . . .. For example, suppose M accepts s2 but loops on s1.
Because M accepts s2, we have that 〈M〉 ∈ ETM. But if we run M sequentially
on s1, s2, s3, . . ., we never get past the first string. The following Turing machine
avoids this problem and recognizes ETM:

R = “On input 〈M〉, where M is a Turing machine:

1. Repeat the following for i = 1, 2, 3, . . ..

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

5. (From slides 4-39 and 4-40). Let L be the collection of languages over an alphabet
Σ, and let B be the set of infinite binary strings, which we know is uncountable
(by a diagonalization argument, on slide 4-39). We will show that there is a
correspondence between L and B, so they have the same size. Let s1, s2, s3, . . .

be an enumeration of the strings in Σ∗, e.g., the enumeration can list the strings
in string order. Define mapping χ : L → B such that for a language A ∈ L, the
nth bit of χ(A) is 1 if and only if the nth string sn ∈ A. We now show χ is a
correspondence.

� To show that χ is one-to-one, suppose that A1, A2 ∈ L with A1 6= A2. Then
there is some string si such that si is in one of the languages but not the
other. Then χ(A1) and χ(A2) differ in the ith bit, so χ is one-to-one.

� To show that χ is onto, consider any infinite binary sequence b = b1b2b3 . . . ∈
B. Consider the language A that includes all strings si for which bi = 1 and
does not include any string bj for which bj = 0. Then χ(A) = b, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, L and B have the
same size, so L is uncountable because B is uncountable.

6. This is a slight modification of HW 8, problem 3. The language of the decision
problem is

A = { 〈R〉 |R is a regular expression describing a language over Σ

containing at least one string w that has 101 as a substring

(i.e., w ∈ L(R) and w = x101y for some x ∈ Σ∗ and y ∈ Σ∗) }.

Define the language C = {w ∈ Σ∗ | w has 101 as a substring }. Note that C is a
regular language with regular expression (0 ∪ 1)∗101(0 ∪ 1)∗ and is recognized by
the following DFA DC :

2



1 2 3 4

0

1

1

0

0

1

0, 1

Now consider any regular expression R with alphabet Σ. If L(R)∩C 6= ∅, then R

generates a string having 101 as a substring, so 〈R〉 ∈ A. Also, if L(R) ∩ C = ∅,
then R does not generate any string having 101 as a substring, so 〈R〉 6∈ A. By
Kleene’s Theorem, because L(R) is described by regular expression R, L(R) must
be a regular language. Because C and L(R) are regular languages, C ∩ L(R) is
regular as the class of regular languages is closed under intersection, as was shown
in Homework 2, problem 5. Thus, C ∩L(R) has some DFA DC∩L(R). Theorem 4.4
shows that EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is decidable, so there is a
Turing machine H that decides EDFA. We apply TM H to 〈DC∩L(R)〉 to determine
if C ∩ L(R) = ∅. Putting this all together gives us the following Turing machine
T to decide A:

T = “On input 〈R〉, where R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Construct a DFA DC∩L(R) for language C ∩ L(R)

from the DFAs DC and DR, where DC is given above.

3. Run TM H that decides EDFA on input 〈DC∩L(R)〉.

4. If H accepts, reject. If H rejects, accept.”

7. This is Theorem 5.4. Recall that ETM = { 〈M〉 |M is a TM with L(M) = ∅ },
which we know is undecidable by Theorem 5.2. We can reduce ETM to EQTM as
follows. Suppose that EQTM is decidable by a TM R. Then we could decide ETM

using the following TM S with R as a subroutine:

S = “On input 〈M〉, where M is a TM:

1. Run R on input 〈M,M∅〉,

where M∅ is a TM such that L(M∅) = ∅.

2. If R accepts, accept ; if R rejects, reject.

The TM S just checks if the inputted TM M is equivalent to the empty TM M∅,
so S decides ETM. But ETM is undecidable, so that must mean the decider R for
EQTM cannot exist, so EQTM is undecidable.

A mistake that some students make is the following. Define the following TM R0

3



to try to decide EQTM:

R0 = “On input 〈M,N〉, where M and N are TMs:

1. For a string w, run M and N on w.

2. If M and N both accept or both don’t,

then M and N are equivalent, so accept ; otherwise, reject.

There are several problems with this approach. First, in stage 1 what is the string
w on which to test the TMs M and N? For M and N to be equivalent, R would
have to test every possible string w ∈ Σ∗, and make sure that M and N both
accept or both don’t accept. Hence, on a YES instance (i.e., when M and N are
equivalent), the TM R0 would be stuck in an infinite loop since there are infinitely
many strings w ∈ Σ∗ to test, and M and N would agree on all of them when M

and N are equivalent. In other words, R0 loops on 〈M,N〉 ∈ EQTM, so R0 doesn’t
even recognize EQTM.

Another problem is that in stage 1 of R0, it may not be safe to run M and N on w

since one or both might loop, in which case R0 can’t be a decider since it doesn’t
always halt. Moreover, there is no way to determine if M or N accept w since the
acceptance problem for TMs (i.e., ATM) is undecidable. You might think that this
then proves that EQTM is undecidable, but this only shows that one particular
way (i.e., TM R0) does not decide EQTM, but there might be another TM that
does decide EQTM. To prove that EQTM is undecidable, you need to show that
every TM will fail to decide EQTM, and this is accomplished via a reduction, as in
the solution. If there were a decider R for EQTM, then we could use R to construct
a decider S for ETM. But since ETM is undecidable (Theorem 5.2), it must be the
case that EQTM does not have a decider, i.e., EQTM is undecidable.

4


