CS 341, Spring 2018 Solutions for Midterm, eLearning Section

- 1. (a) False. Let $A = \emptyset$ and $B = \{a^n b^n \mid n \ge 0\}$. Then $A \subseteq B$, A is regular because it's finite, but B is nonregular.
 - (b) False. The language a^* is regular but infinite.
 - (c) False. $A = \{a^n b^n \mid n \ge 0\}$ is context-free but not regular.
 - (d) True. Homework 2, problem 5.
 - (e) False. 0^*1^* generate the string $001 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
 - (f) False. If A has an NFA, then Corollary 1.40 implies that A is regular.
 - (g) True. Corollary 2.32 implies that A is a CFL, so it has a CFG. Then Theorem 2.20 ensures that A has a PDA.
 - (h) True, by Lemma 2.27 and Theorem 2.9.
 - (i) False. The transition function of an NFA is $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$.
 - (j) False. Let $A = \{ a^n b^n \mid n \ge 0 \}$ and $B = (a \cup b)^*$. Then $A \subseteq B$, A is nonregular, and B is regular.
- 2. (a) This is HW 3, problem 4f. $(\varepsilon \cup b)(ab)^*aa(ba)^*(\varepsilon \cup b) \cup (\varepsilon \cup a)(ba)^*bb(ab)^*(\varepsilon \cup a)$ is a regular expression for language A. There are infinitely many other correct regular expressions for A.
 - (b) After one step, the CFG is then

$$\begin{array}{rcl} S_0 & \rightarrow & S \\ S & \rightarrow & A1SA \mid 1SA \mid A1S \mid 1S \mid A0 \mid 0 \mid \varepsilon \\ A & \rightarrow & 0S0 \end{array}$$

(c) This is basically Homework 2, problem 2(g). A DFA for C is

There are infinitely many other correct DFAs for C.

(d) This is Homework 5, problem 3b. A CFG for $A_1 \circ A_2$ is $G_3 = (V_3, \Sigma, R_3, S_3)$ with $V_3 = V_1 \cup V_2 \cup \{S_3\}$, where $S_3 \notin V_1 \cup V_2$, S_3 is the starting variable of G_3 , and $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_1S_2\}$.

3. $q_1 0 \# 0 \quad x q_2 \# 0 \quad x \# q_4 0 \quad x q_6 \# x \quad q_7 x \# x \quad x q_1 \# x \quad x \# q_8 x \quad x \# x x \quad x$

5. (a) CFG $G = (V, \Sigma, R, S)$, with $V = \{S, X\}$ and start variable $S, \Sigma = \{a, b, c\}$, and rules R:

$$S \to aSc \mid X$$
$$X \to bX \mid \varepsilon$$

There are other correct CFGs.

(b) PDA

State q_2 pushes an *a* for each *a* read. State q_3 reads all of the *b*'s in the middle, but doesn't alter the stack. State q_4 pops an *a* for each *c* read. The transition from q_4 to q_5 makes sure the stack is empty. There are other correct PDAs.

6. This is HW 6, problem 2b. We will use a proof by contradiction, so we first assume the opposite of what we want to show; i.e., suppose the following is true:

R1. The class of context-free languages is closed under complementation.

Let $A = \{a^n b^k c^n \mid n, k \ge 0\}$ and $B = \{a^n b^n c^k \mid n, k \ge 0\}$. In problem 5, we gave a CFG for A, so A is context-free. A CFG for B has rules

$$S \to XY$$
$$X \to aXb \mid \varepsilon$$
$$Y \to cY \mid \varepsilon$$

so *B* is also context-free. Then R1 implies \overline{A} and \overline{B} are context-free. We know the class of context-free languages is closed under union, as shown on slide 2-101, so we then must have that $\overline{A} \cup \overline{B}$ is context-free. Then again apply R1 to conclude that $\overline{A} \cup \overline{B}$ is context-free. Now DeMorgan's law states that $A \cap B = \overline{A} \cup \overline{B}$. But $A \cap B = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free, as shown on slide 2-96. This is a contradiction, so R1 must not be true.

7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p bba^p \in A$. Note that $|s| = 2p + 2 \ge p$, so the pumping lemma implies we can write s = xyz with $xy^i z \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by bba^p . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell bba^p$, where $j + k + \ell = p$ since $xyz = s = a^p bba^p$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell bba^p = a^{p+k} bba^p$ since $j+k+\ell=p$. Note that $xyyz \notin A$ since it is not the same forwards and backwards because k > 0, which contradicts (i), so A is not a regular language.