CS 341, Spring 2018

Solutions for Midterm, eLearning Section

1. (a) False. Let $A=\emptyset$ and $B=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Then $A \subseteq B, A$ is regular because it's finite, but B is nonregular.
(b) False. The language a^{*} is regular but infinite.
(c) False. $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but not regular.
(d) True. Homework 2, problem 5.
(e) False. $0^{*} 1^{*}$ generate the string $001 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
(f) False. If A has an NFA, then Corollary 1.40 implies that A is regular.
(g) True. Corollary 2.32 implies that A is a CFL, so it has a CFG. Then Theorem 2.20 ensures that A has a PDA.
(h) True, by Lemma 2.27 and Theorem 2.9.
(i) False. The transition function of an NFA is $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$.
(j) False. Let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, A$ is nonregular, and B is regular.
2. (a) This is HW 3, problem 4f. $(\varepsilon \cup b)(a b)^{*} a a(b a)^{*}(\varepsilon \cup b) \cup(\varepsilon \cup a)(b a)^{*} b b(a b)^{*}(\varepsilon \cup a)$ is a regular expression for language A. There are infinitely many other correct regular expressions for A.
(b) After one step, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 S A|1 S A| A 1 S|1 S| A 0|0| \varepsilon \\
A & \rightarrow 0 S 0
\end{aligned}
$$

(c) This is basically Homework 2, problem 2(g). A DFA for C is

There are infinitely many other correct DFAs for C.
(d) This is Homework 5, problem 3b. A CFG for $A_{1} \circ A_{2}$ is $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$, where $S_{3} \notin V_{1} \cup V_{2}, S_{3}$ is the starting variable of G_{3}, and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1} S_{2}\right\}$.
3. $q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$
$x \# x \sqcup q_{\text {accept }}$
4. DFA

5. (a) CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X\}$ and start variable $S, \Sigma=\{a, b, c\}$, and rules R :

$$
\begin{aligned}
S & \rightarrow a S c \mid X \\
X & \rightarrow b X \mid \varepsilon
\end{aligned}
$$

There are other correct CFGs.
(b) PDA

State q_{2} pushes an a for each a read. State q_{3} reads all of the b 's in the middle, but doesn't alter the stack. State q_{4} pops an a for each c read. The transition from q_{4} to q_{5} makes sure the stack is empty.
There are other correct PDAs.
6. This is HW 6, problem 2b. We will use a proof by contradiction, so we first assume the opposite of what we want to show; i.e., suppose the following is true:

R1. The class of context-free languages is closed under complementation.
Let $A=\left\{a^{n} b^{k} c^{n} \mid n, k \geq 0\right\}$ and $B=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$. In problem 5 , we gave a CFG for A, so A is context-free. A CFG for B has rules

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a X b \mid \varepsilon \\
& Y \rightarrow c Y \mid \varepsilon
\end{aligned}
$$

so B is also context-free. Then R1 implies \bar{A} and \bar{B} are context-free. We know the class of context-free languages is closed under union, as shown on slide 2-101, so we then must have that $\bar{A} \cup \bar{B}$ is context-free. Then again apply R1 to conclude that $\overline{\bar{A}} \cup \bar{B}$ is contextfree. Now DeMorgan's law states that $A \cap B=\overline{\bar{A} \cup \bar{B}}$. But $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free, as shown on slide 2-96. This is a contradiction, so R1 must not be true.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b b a^{p} \in A$. Note that $|s|=2 p+2 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by $b b a^{p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0$, $y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b b a^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b b a^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string xyyz $=a^{j} a^{k} a^{k} a^{\ell} b b a^{p}=a^{p+k} b b a^{p}$ since $j+k+\ell=p$. Note that $x y y z \notin A$ since it is not the same forwards and backwards because $k>0$, which contradicts (i), so A is not a regular language.

