1.

CS 341, Fall 2019, Hybrid Section
Solutions for Midterm 1

(a) False. For example, A = {0"1"0" | n > 0} is a subset of B = L((0U1)*), but A
is non-context-free and B is context-free.

(b) False. The language {a™" | n < 30} = {eg,ab,a®V?,ab?,...,a*b*} is finite.
Thus, slide 1-95 implies the language is regular.

(c) True. Because A has a regular expression, A is a regular language by Theo-

rem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG.
Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.

True. See slide 2-111.

True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies
A is context-free, which is a contradiction.

(h) False. The language with regular expression 1* is regular by Kleene’s Theorem
(Theorem 1.54), but this language is infinite.

(i) True. By HW 2, problem 3, we know that A is regular. Because A and B are
regular, then A U B is regular by Theorem 1.25. Theorem 1.49 then implies
(AU B)* is regular.

(j) False. See HW 6, problem 2(a).

(a) (¢U1)(01)*00(10)*(eU1) U (¢uU0)(10)*11(01)*(eU0). There are infinitely many
other correct regular expressions for this language.

(b) (aa U b)a*bb*. Another regular expression is (aaa® U ba*)bb*. There are infinitely
many correct regular expressions for this language.

(c) As on slide 1-66 of the notes, if A; is defined by NFA N, then an NFA N for A}
is as below:

N
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(d) (Homework 5, problem 3b.) Assume that S35 ¢ V;UV;. Then a CFG for Ao A, is
Gg = (V},,Z,Rg,Sg) with VE), = %U‘/QU{S;;} and Rg = R1UR2U{53 — 5152}.
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3. A DFA for C is below:

4. (a) G = (V,X,R,S) with set of variables V' = {S, X}, where S is the start variable;
set of terminals ¥ = {a, b, c}; and rules

S — cSa|X
X — bXale

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:

@5,5—>$ @5,5%5 @6,8—)8 ®€,$—>5

C,E—T b e —x a, T — €

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular
language. Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = aPbaPbaPb. Note that s € A because s = www with w = aPb. Also, we have that
|s| = 3p+3 > p, so the Pumping Lemma will hold. Thus, there exist strings z, y, and
z such that s = xyz and

(a) zy'z € A for each i > 0,
(b) [yl >0,
(c) |zyl < p.



Because the first p symbols of s are all a’s, the third property implies that x and y
consist only of a’s. So z will be the rest of the first set of a’s (possibly none), followed
by baPbaPb. The second property states that |y| > 0, so y has at least one a. More
precisely, we can then say that

r = o for some j > 0,

a® for some k > 1,

z = a™ba’ba’b for some m > 0.

Because
aPbaPbaPb = s = xyz = a’ a*a™baPba’b = @’ baPbaPb,

we must have that
j+k+m=p and k>1.

The first property implies that the pumped string xzy%z € A, but

zy’z = d’a*a*a™balba’b

aPEbaPba?h ¢ A.

To see why aP**baPbaPb ¢ A, note that when we split the original string s = a?baPbaPb
into equal thirds, each third was exactly the same, i.e., a?b. But if we split the pumped
string a?T*baPbaPb into equal thirds, the splitting locations shift to the left because
kE > 0, so the first third has only a’s. But there are b’s in the at least one of the
other thirds, so we see that the pumped string a?**ba?baPb cannot be written as www
for some w € ¥, i.e., a?"*baPbaPb ¢ A, which contradicts the first property of the
pumping lemma. Therefore, A is a nonregular language.

Note that if you instead chose the string s = aPa’a? = af, you would not get a
contradiction. This is because you could then choose x, y, z with y = a3, and for any

1 > 0, the pumped string is
3p+3(i—1) 3(p+i—-1) _ ap—l—i—lap—l—i—lap—l—i—i cA
)

xy'z=a =a

so the first property of the pumping lemma holds, and there is no contradiction.



