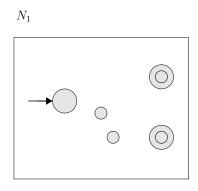
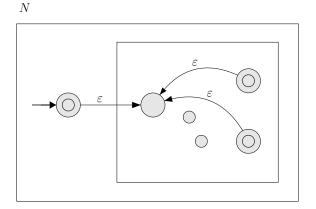
CS 341, Fall 2019, Hybrid Section Solutions for Midterm 1

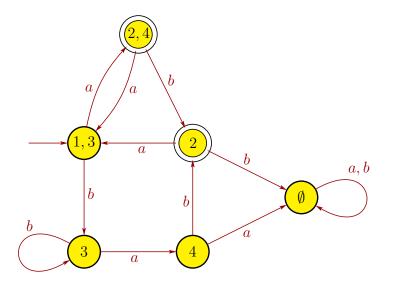
- 1. (a) False. For example, $A = \{0^n 1^n 0^n \mid n \ge 0\}$ is a subset of $B = L((0 \cup 1)^*)$, but A is non-context-free and B is context-free.
 - (b) False. The language $\{a^nb^n \mid n \leq 30\} = \{\varepsilon, ab, a^2b^2, a^3b^3, \dots, a^{30}b^{30}\}$ is finite. Thus, slide 1-95 implies the language is regular.
 - (c) True. Because A has a regular expression, A is a regular language by Theorem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.
 - (d) True. See slide 2-111.
 - (e) True. HW 4, problem 5(a).
 - (f) True. HW 4, problem 5(c).
 - (g) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
 - (h) False. The language with regular expression 1^{*} is regular by Kleene's Theorem (Theorem 1.54), but this language is infinite.
 - (i) True. By HW 2, problem 3, we know that A is regular. Because A and B are regular, then A ∪ B is regular by Theorem 1.25. Theorem 1.49 then implies (A ∪ B)* is regular.
 - (j) False. See HW 6, problem 2(a).
- 2. (a) $(\varepsilon \cup 1)(01)^*00(10)^*(\varepsilon \cup 1) \cup (\varepsilon \cup 0)(10)^*11(01)^*(\varepsilon \cup 0)$. There are infinitely many other correct regular expressions for this language.
 - (b) $(aa \cup b)a^*bb^*$. Another regular expression is $(aaa^* \cup ba^*)bb^*$. There are infinitely many correct regular expressions for this language.
 - (c) As on slide 1-66 of the notes, if A_1 is defined by NFA N_1 , then an NFA N for A_1^* is as below:





(d) (Homework 5, problem 3b.) Assume that $S_3 \notin V_1 \cup V_2$. Then a CFG for $A_1 \circ A_2$ is $G_3 = (V_3, \Sigma, R_3, S_3)$ with $V_3 = V_1 \cup V_2 \cup \{S_3\}$ and $R_3 = R_1 \cup R_2 \cup \{S_3 \rightarrow S_1S_2\}$.

3. A DFA for C is below:

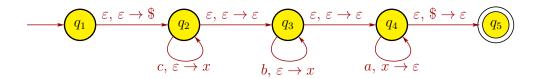


4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$\begin{array}{rcl} S & \to & cSa \mid X \\ X & \to & bXa \mid \varepsilon \end{array}$$

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:



- 5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = a^p b a^p b a^p b$. Note that $s \in A$ because s = www with $w = a^p b$. Also, we have that |s| = 3p + 3 > p, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz and
 - (a) $xy^i z \in A$ for each $i \ge 0$,
 - (b) |y| > 0,
 - (c) $|xy| \le p$.

Because the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the first set of a's (possibly none), followed by ba^pba^pb . The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$x = a^{j} \text{ for some } j \ge 0,$$

$$y = a^{k} \text{ for some } k \ge 1,$$

$$z = a^{m} b a^{p} b a^{p} b \text{ for some } m \ge 0.$$

Because

$$a^p b a^p b a^p b = s = xyz = a^j a^k a^m b a^p b a^p b = a^{j+k+m} b a^p b a^p b,$$

we must have that

j + k + m = p and $k \ge 1$.

The first property implies that the pumped string $xy^2z \in A$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m}ba^{p}ba^{p}b$$
$$= a^{p+k}ba^{p}ba^{p}b \notin A.$$

To see why $a^{p+k}ba^pba^pb \notin A$, note that when we split the original string $s = a^pba^pba^pb$ into equal thirds, each third was exactly the same, i.e., a^pb . But if we split the pumped string $a^{p+k}ba^pba^pb$ into equal thirds, the splitting locations shift to the left because k > 0, so the first third has only a's. But there are b's in the at least one of the other thirds, so we see that the pumped string $a^{p+k}ba^pba^pb$ cannot be written as wwwfor some $w \in \Sigma^*$, i.e., $a^{p+k}ba^pba^pb \notin A$, which contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.

Note that if you instead chose the string $s = a^p a^p a^p = a^{3p}$, you would not get a contradiction. This is because you could then choose x, y, z with $y = a^3$, and for any $i \ge 0$, the pumped string is

$$xy^{i}z = a^{3p+3(i-1)} = a^{3(p+i-1)} = a^{p+i-1}a^{p+i-1}a^{p+i-i} \in A,$$

so the first property of the pumping lemma holds, and there is no contradiction.