
CS 341, Fall 2019, Hybrid Section

Solutions for Midterm 1

1. (a) False. For example, A = {0n1n0n | n ≥ 0} is a subset of B = L((0 ∪ 1)∗), but A
is non-context-free and B is context-free.

(b) False. The language { anbn | n ≤ 30} = {ε, ab, a2b2, a3b3, . . . , a30b30} is finite.
Thus, slide 1-95 implies the language is regular.

(c) True. Because A has a regular expression, A is a regular language by Theo-
rem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG.
Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.

(d) True. See slide 2-111.

(e) True. HW 4, problem 5(a).

(f) True. HW 4, problem 5(c).

(g) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies
A is context-free, which is a contradiction.

(h) False. The language with regular expression 1∗ is regular by Kleene’s Theorem
(Theorem 1.54), but this language is infinite.

(i) True. By HW 2, problem 3, we know that A is regular. Because A and B are
regular, then A ∪ B is regular by Theorem 1.25. Theorem 1.49 then implies
(A ∪B)∗ is regular.

(j) False. See HW 6, problem 2(a).

2. (a) (ε∪ 1)(01)∗00(10)∗(ε∪ 1) ∪ (ε∪ 0)(10)∗11(01)∗(ε∪ 0). There are infinitely many
other correct regular expressions for this language.

(b) (aa ∪ b)a∗bb∗. Another regular expression is (aaa∗ ∪ ba∗)bb∗. There are infinitely
many correct regular expressions for this language.

(c) As on slide 1-66 of the notes, if A1 is defined by NFA N1, then an NFA N for A∗

1

is as below:

N1

N

ε

εε

(d) (Homework 5, problem 3b.) Assume that S3 6∈ V1∪V2. Then a CFG for A1 ◦A2 is
G3 = (V3,Σ, R3, S3) with V3 = V1 ∪ V2 ∪ {S3} and R3 = R1 ∪R2 ∪ {S3 → S1S2 }.
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3. A DFA for C is below:

1, 3

2, 4

2

3 4

∅

a

b
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b a

b

a, b

4. (a) G = (V,Σ, R, S) with set of variables V = {S,X}, where S is the start variable;
set of terminals Σ = {a, b, c}; and rules

S → cSa | X

X → bXa | ε

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:

q1 q2 q3 q4 q5
ε, ε → $

c, ε → x

ε, ε → ε

b, ε → x

ε, ε → ε

a, x → ε

ε, $ → ε

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular
language. Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = apbapbapb. Note that s ∈ A because s = www with w = apb. Also, we have that
|s| = 3p+ 3 > p, so the Pumping Lemma will hold. Thus, there exist strings x, y, and
z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.
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Because the first p symbols of s are all a’s, the third property implies that x and y

consist only of a’s. So z will be the rest of the first set of a’s (possibly none), followed
by bapbapb. The second property states that |y| > 0, so y has at least one a. More
precisely, we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambapbapb for some m ≥ 0.

Because
apbapbapb = s = xyz = ajakambapbapb = aj+k+mbapbapb,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = ajakakambapbapb

= ap+kbapbapb 6∈ A.

To see why ap+kbapbapb 6∈ A, note that when we split the original string s = apbapbapb

into equal thirds, each third was exactly the same, i.e., apb. But if we split the pumped
string ap+kbapbapb into equal thirds, the splitting locations shift to the left because
k > 0, so the first third has only a’s. But there are b’s in the at least one of the
other thirds, so we see that the pumped string ap+kbapbapb cannot be written as www
for some w ∈ Σ∗, i.e., ap+kbapbapb 6∈ A, which contradicts the first property of the
pumping lemma. Therefore, A is a nonregular language.

Note that if you instead chose the string s = apapap = a3p, you would not get a
contradiction. This is because you could then choose x, y, z with y = a3, and for any
i ≥ 0, the pumped string is

xyiz = a3p+3(i−1) = a3(p+i−1) = ap+i−1ap+i−1ap+i−i ∈ A,

so the first property of the pumping lemma holds, and there is no contradiction.
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