Midterm Exam 1 CS 341: Foundations of Computer Science II — Fall 2019, hybrid section Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the University Policy on Academic Integrity.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, print your name next to this number.
- This exam will be 1 hour and 20 minutes in length.
- This is a closed-book, closed-note exam. Electronic devices (e.g., cellphone, smart watch, calculator) are not allowed.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the exam sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; PDA stands for push-down automaton; CFG stands for context-free grammar.
 - 3. For any state machines that you draw, you must include all states and transitions.
 - 4. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X, you may use in your proof of X any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{**} = A^*$, we know that"

Problem	1	2	3	4	5	Total
Points						

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 If B is a context-free language and $A \subseteq B$, then A is context-free.
(b)	TRUE	FALSE	 The language $\{a^n b^n \mid n \leq 30\}$ is non-regular.
(c)	TRUE	FALSE	 If a language A has a regular expression, then A has a CFG in Chomsky normal form.
(d)	TRUE	FALSE	 The class of context-free languages is closed under union.
(e)	TRUE	FALSE	 If a finite number of strings is added to a regular lan- guage A , then the resulting language is regular.
(f)	TRUE	FALSE	 If a finite number of strings is added to a nonregular language A , then the resulting language is nonregular.
(g)	TRUE	FALSE	 If A is a non-context-free language, then A is also non-regular.
(h)	TRUE	FALSE	 If A is a regular language, then A is finite.
(i)	TRUE	FALSE	 If A and B are regular languages, then $(\overline{A} \cup B)^*$ is regular.
(j)	TRUE	FALSE	 The class of context-free languages is closed under in- tersection.

- 2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
 - (a) Let $\Sigma = \{0, 1\}$, and let A be the language of strings $w \in \Sigma^*$ containing exactly one double symbol. (A string has a *double symbol* if it contains 00 or 11 as a substring. The string 10010 has exactly one double symbol, but 100010 has two double symbols.) Give a regular expression for A.

Answer: _____

(b) Give a regular expression for the language recognized by the NFA below.

(c) Suppose that language A_1 is recognized by NFA N_1 below. Note that the transitions are not drawn in N_1 . Draw a picture of an NFA for A_1^* .

(d) Suppose that A_1 is a language defined by a CFG $G_1 = (V_1, \Sigma, R_1, S_1)$, and A_2 is a language defined by a CFG $G_2 = (V_2, \Sigma, R_2, S_2)$, where the alphabet Σ is the same for both languages and $V_1 \cap V_2 = \emptyset$. Let $A_3 = A_1 \circ A_2$. Give a CFG G_3 for A_3 in terms of G_1 and G_2 . You do not have to prove the correctness of your CFG G_3 , but do not give just an example.

3. **[15 points]** Let N be the following NFA with $\Sigma = \{a, b\}$, and let C = L(N).

Give a DFA for C.

Scratch-work area

4. **[30 points]** Consider the alphabet $\Sigma = \{a, b, c\}$ and the language

$$L = \{ c^{i}b^{j}a^{k} \mid i, j, k \ge 0 \text{ and } i + j = k \}.$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G = (V, \Sigma, R, S)$.

(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. **[15 points]** Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then s can be split into three pieces s = xyz such that (i) $xy^i z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|xy| \leq p$.

Let $A = \{www | w \in \Sigma^*\}$ for $\Sigma = \{a, b\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language