
CS 341, Fall 2019

Solutions for Midterm 2

1. (a) False, e.g., ATM is not Turing-recognizable.

(b) False, e.g., if A = {00, 11} and B = {00, 11, 111}, then A∩B = ∅, but A 6= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩ B) = ∅.

(c) True, by Theorem 4.5.

(d) False, by Homework 9, problem 1.

(e) False, by Theorems 3.13 and 3.16.

(f) False. A TM M may loop on input w.

(g) True, by Theorem 4.9.

(h) True, by slide 4-38.

(i) False, by Theorem 4.8.

(j) False, by Theorem 4.11.

2. (a) Yes, because f(x) 6= f(y) whenever x 6= y.

(b) No, because nothing in D maps to 1 ∈ R.

(c) No, because f is not onto.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w 6∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q11100#0 xq3100#0 x1q300#0 x10q30#0 x100q3#0 x100#q50 x100#0qr

4. This is a slight modification of Theorem 4.17. For a proof by contradiction, suppose
that A is countable. The set A is clearly infinite, so the assumption that A is
countable means that we can define a correspondence f : N → A, where N =
{1, 2, 3, . . .} is the set of natural numbers, and let an = f(n). In other words, we
can enumerate the elements of A as a list a1, a2, a3, . . ., where

n f(n) = an
1 2.d11d12d13 . . .
2 2.d21d22d23 . . .
3 2.d31d32d33 . . .
...

. . .

For the nth number an in the list, its ith digit after the decimal point is ani. Now
we construct a number y ∈ A as y = 2.b1b2b3 . . ., where for each n = 1, 2, 3, . . ., the
nth digit in y after the decimal point is bn = 3 if dnn = 1, and bn = 1 if dnn 6= 1.
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The number y belongs to the set A, but for each n = 1, 2, 3, . . ., the number y

but does not equal the nth number in the list because they differ in the nth digit,
i.e., bn 6= dnn. Therefore, we get a contradiction because the list was supposed to
contain all elements of A, but the list does not include y ∈ A. We thus conclude
that A is uncountable.

5. This is HW 7, problem 2b. For any two Turing-recognizable languages L1 and L2,
let M1 and M2, respectively, be TMs that recognize them. We construct a TM M ′

that recognizes the union L1 ∪ L2:

M ′ = “On input string w:

1. Run M1 and M2 alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.

To see why M ′ recognizes L1 ∪ L2, first consider w ∈ L1 ∪ L2. Then w is in L1

or in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept
w. Similarly, if w ∈ L2, then M2 accepts w, so M ′ will eventually accept w. On
the other hand, if w 6∈ L1 ∪ L2, then w 6∈ L1 and w 6∈ L2. Thus, neither M1 nor
M2 accepts w, so M ′ will also not accept w. Hence, M ′ recognizes L1 ∪ L2. Note
that if neither M1 nor M2 accepts w and one of them does so by looping, then M ′

will loop, but this is fine because we only needed M ′ to recognize and not decide
L1 ∪ L2.

6. This is a slight modification of HW 8, problem 3. Let Σ = {0, 1}, and the language
of the decision problem is

A = { 〈N〉 | N is an NFA (with alphabet Σ) that accepts

at least one string w having 011 as a substring,

(i.e., ∃ string w = x011y with x, y ∈ Σ∗, and N accepts w) }.

Define the language C = {w ∈ Σ∗ | w has substring 011 }. Note that C is a
regular language with regular expression (0 ∪ 1)∗011(0 ∪ 1)∗ and is recognized by
the following DFA DC :

1 2 3 4

1

0

0

1

0

1

0, 1

Now consider any NFA N with alphabet Σ. If L(N) ∩ C 6= ∅, then N accepts a
string containing substring 011, so 〈N〉 ∈ A. Conversely, if L(N) ∩ C = ∅, then
N does not accept any string containing substring 011, so 〈N〉 6∈ A. By Corollary
1.40, because L(N) is recognized by the NFA N , the language L(N) must be a
regular language. Because C and L(N) are regular languages, we see that C∩L(N)
is regular as the class of regular languages is closed under intersection, as we saw
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in Chapter 1 (slide 1-34). Thus, C ∩ L(N) has some DFA DC∩L(N). Theorem 4.4
shows that EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is decidable, so there is a
Turing machine H that decides EDFA. We apply TM H to 〈DC∩L(N)〉 to determine
if C ∩ L(N) = ∅. Putting this all together gives us the following Turing machine
T to decide A:

T = “On input 〈N〉, where N is an NFA:

0. If 〈N〉 is not a proper encoding of an NFA, then reject.

1. Convert N into a DFA DN using the algorithm in the

proof of Theorem 1.39.

2. Construct a DFA DC∩L(N) for language C ∩ L(N) from

the DFAs DC and DN using the algorithm for DFA intersection.

3. Run TM H that decides EDFA on input 〈DC∩L(N)〉.

4. If H accepts, reject. If H rejects, accept.”

7. This is Theorem 5.1, whose proof is given on slide 5-8. Specifically, suppose that
HALTTM is decidable, and let R be a TM that decides HALTTM. Thus, for any
〈M,w〉, which is an (encoded) pair of a TM M and string w, if 〈M,w〉 ∈ HALTTM

is the input to R, then R halts and accepts; if 〈M,w〉 6∈ HALTTM is the input
to R, then R halts and rejects. To decide HALTTM, the TM R cannot run M

on w because M may loop on w, so R must use some other approach to decide
HALTTM. Now we build a TM S that decides ATM using R as a subroutine.

S = “On input 〈M,w〉, where M is a TM and w a string:

1. Run TM R on input 〈M,w〉.

2. If R rejects, then reject.

3. If R accepts, then run M on input w.

4. If M accepts, then accept. If M rejects, reject.”

Note that if M accepts w, then S accepts 〈M,w〉. If M does rejects w, then S

rejects 〈M,w〉. If M loops on w, then S rejects 〈M,w〉 in stage 2. Thus, S decides
ATM, which is impossible because ATM is undecidable by Theorem 4.11. Therefore,
HALTTM is also undecidable.
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