CS 341, Fall 2019

Solutions for Midterm 2

1. (a) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(b) False, e.g., if $A=\{00,11\}$ and $B=\{00,11,111\}$, then $A \cap \bar{B}=\emptyset$, but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(c) True, by Theorem 4.5.
(d) False, by Homework 9, problem 1.
(e) False, by Theorems 3.13 and 3.16.
(f) False. A TM M may loop on input w.
(g) True, by Theorem 4.9.
(h) True, by slide 4-38.
(i) False, by Theorem 4.8.
(j) False, by Theorem 4.11.
2. (a) Yes, because $f(x) \neq f(y)$ whenever $x \neq y$.
(b) No, because nothing in D maps to $1 \in R$.
(c) No, because f is not onto.
(d) A language L_{1} that is Turing-recognizable is recognized by a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turingdecidable is recognized by a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} 1100 \# 0 \quad x q_{3} 100 \# 0 \quad x 1 q_{3} 00 \# 0 \quad x 10 q_{3} 0 \# 0 \quad x 100 q_{3} \# 0 \quad x 100 \# q_{5} 0 \quad x 100 \# 0 q_{r}$
4. This is a slight modification of Theorem 4.17. For a proof by contradiction, suppose that A is countable. The set A is clearly infinite, so the assumption that A is countable means that we can define a correspondence $f: \mathcal{N} \rightarrow A$, where $\mathcal{N}=$ $\{1,2,3, \ldots\}$ is the set of natural numbers, and let $a_{n}=f(n)$. In other words, we can enumerate the elements of A as a list $a_{1}, a_{2}, a_{3}, \ldots$, where

n	$f(n)=a_{n}$
1	$2 . d_{11} d_{12} d_{13} \cdots$
2	$2 . d_{21} d_{22} d_{23} \ldots$
3	$2 . d_{31} d_{32} d_{33} \ldots$
\vdots	\ddots

For the nth number a_{n} in the list, its i th digit after the decimal point is $a_{n i}$. Now we construct a number $y \in A$ as $y=2 . b_{1} b_{2} b_{3} \ldots$, where for each $n=1,2,3, \ldots$, the nth digit in y after the decimal point is $b_{n}=3$ if $d_{n n}=1$, and $b_{n}=1$ if $d_{n n} \neq 1$.

The number y belongs to the set A, but for each $n=1,2,3, \ldots$, the number y but does not equal the nth number in the list because they differ in the nth digit, i.e., $b_{n} \neq d_{n n}$. Therefore, we get a contradiction because the list was supposed to contain all elements of A, but the list does not include $y \in A$. We thus conclude that A is uncountable.
5. This is HW 7, problem 2b. For any two Turing-recognizable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively, be TMs that recognize them. We construct a TM M^{\prime} that recognizes the union $L_{1} \cup L_{2}$:

$$
M^{\prime}=\text { "On input string } w \text { : }
$$

1. Run M_{1} and M_{2} alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.
To see why M^{\prime} recognizes $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \in L_{2}$, then M_{2} accepts w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, neither M_{1} nor M_{2} accepts w, so M^{\prime} will also not accept w. Hence, M^{\prime} recognizes $L_{1} \cup L_{2}$. Note that if neither M_{1} nor M_{2} accepts w and one of them does so by looping, then M^{\prime} will loop, but this is fine because we only needed M^{\prime} to recognize and not decide $L_{1} \cup L_{2}$.
6. This is a slight modification of HW 8 , problem 3. Let $\Sigma=\{0,1\}$, and the language of the decision problem is

$$
\begin{aligned}
A=\{\langle N\rangle \mid & N \text { is an NFA (with alphabet } \Sigma) \text { that accepts } \\
& \text { at least one string } w \text { having } 011 \text { as a substring, } \\
& \text { (i.e., } \left.\left.\exists \text { string } w=x 011 y \text { with } x, y \in \Sigma^{*} \text {, and } N \text { accepts } w\right)\right\} .
\end{aligned}
$$

Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ has substring 011$\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 011(0 \cup 1)^{*}$ and is recognized by the following DFA D_{C} :

Now consider any NFA N with alphabet Σ. If $L(N) \cap C \neq \emptyset$, then N accepts a string containing substring 011 , so $\langle N\rangle \in A$. Conversely, if $L(N) \cap C=\emptyset$, then N does not accept any string containing substring 011 , so $\langle N\rangle \notin A$. By Corollary 1.40, because $L(N)$ is recognized by the NFA N, the language $L(N)$ must be a regular language. Because C and $L(N)$ are regular languages, we see that $C \cap L(N)$ is regular as the class of regular languages is closed under intersection, as we saw
in Chapter 1 (slide 1-34). Thus, $C \cap L(N)$ has some DFA $D_{C \cap L(N)}$. Theorem 4.4 shows that $E_{\text {DFA }}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides $E_{\text {DFA }}$. We apply TM H to $\left\langle D_{C \cap L(N)}\right\rangle$ to determine if $C \cap L(N)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :
$T=$ "On input $\langle N\rangle$, where N is an NFA:
0. If $\langle N\rangle$ is not a proper encoding of an NFA, then reject.

1. Convert N into a DFA D_{N} using the algorithm in the proof of Theorem 1.39.
2. Construct a DFA $D_{C \cap L(N)}$ for language $C \cap L(N)$ from the DFAs D_{C} and D_{N} using the algorithm for DFA intersection.
3. Run TM H that decides $E_{\text {DFA }}$ on input $\left\langle D_{C \cap L(N)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. This is Theorem 5.1, whose proof is given on slide 5-8. Specifically, suppose that $H A L T_{\mathrm{TM}}$ is decidable, and let R be a TM that decides $H A L T_{\mathrm{TM}}$. Thus, for any $\langle M, w\rangle$, which is an (encoded) pair of a TM M and string w, if $\langle M, w\rangle \in H A L T_{\mathrm{TM}}$ is the input to R, then R halts and accepts; if $\langle M, w\rangle \notin H A L T_{\mathrm{TM}}$ is the input to R, then R halts and rejects. To decide $H A L T_{\mathrm{TM}}$, the TM R cannot run M on w because M may loop on w, so R must use some other approach to decide $H A L T_{\mathrm{TM}}$. Now we build a TM S that decides $A_{\text {TM }}$ using R as a subroutine.

$$
\begin{aligned}
& S=\text { "On input }\langle M, w\rangle \text {, where } M \text { is a TM and } w \text { a string: } \\
& \text { 1. Run TM } R \text { on input }\langle M, w\rangle \text {. } \\
& \text { 2. If } R \text { rejects, then reject. } \\
& \text { 3. If } R \text { accepts, then run } M \text { on input } w \text {. } \\
& \text { 4. If } M \text { accepts, then accept. If } M \text { rejects, reject." }
\end{aligned}
$$

Note that if M accepts w, then S accepts $\langle M, w\rangle$. If M does rejects w, then S rejects $\langle M, w\rangle$. If M loops on w, then S rejects $\langle M, w\rangle$ in stage 2 . Thus, S decides $A_{\text {TM }}$, which is impossible because $A_{\text {TM }}$ is undecidable by Theorem 4.11. Therefore, $H A L T_{\mathrm{TM}}$ is also undecidable.

