CS 341-452, Spring 2019 Solutions for Midterm, eLearning Section

1. (a) True. By Theorem 2.9. The fact that A is infinite is irrelevant.
(b) True. Because B is finite, we have that $A \cap B$ is also finite, so it is regular by slide 1-95.
(c) False. A TM can loop on w.
(d) False. For example, let $A=\{a b c\}$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, so $A \subseteq B$. Because A is finite, it is regular (slide 1-95), so it is also context-free by Corollary 2.32. But B is not context-free by slide 2-96.
(e) True. By Homework 5, problem 3(b).
(f) False. $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular and not context-free.
(g) False. For example, let $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is context-free (see slide 2-5) and infinite.
(h) True. Because A is finite, it is regular by the theorem on slide 1-95 of the notes. Corollary 2.32 then ensures that A is regular, so \bar{A} is also regular (Homework 2, problem 3). Corollary 2.32 implies \bar{A} is context-free.
(i) False. For example, let $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, and let $B=\Sigma^{*}$ for $\Sigma=\{a, b, c\}$. Thus, we have that $A \subseteq B$. Because B has a regular expression (e.g., $\left.(a \cup b \cup c)^{*}\right)$, B is regular by Kleene's theorem. But A is not context-free (slide 2-96).
(j) False. $a^{*} b^{*} a^{*}$ generates the string abbaaa $\notin\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$. In fact, the language $\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$ is not regular, so it does not have a regular expression.
2. (a) A regular expression is $a^{*} b a^{*} b a^{*} b(a \cup b)^{*} \cup b^{*} a b^{*} a b^{*}$. There are infinitely many other correct regular expressions.
(b) The rules that violate Chomsky normal form are

- $S \rightarrow b a$ because a rule cannot go to 2 terminals;
- $X \rightarrow Y S$ because the starting variable S cannot be on the right side of a rule;
- $X \rightarrow \varepsilon$ because it is an ε-rule;
- $Y \rightarrow X$ because it is a unit rule;
- $Y \rightarrow a X$ because the right side has a mix of terminals and variables.
(c)
(d) As given on slide 1-63, $A_{1} \circ A_{2}$ has the following NFA N :

(e) Homework 5, problem 3a. We are given a CFG $G_{1}=\left(V_{1}, S, R_{1}, S_{1}\right)$ for language A_{1}, and a CFG $G_{2}=\left(V_{2}, S, R_{2}, S_{2}\right)$ for language A_{2}. We can then define a CFG $G_{3}=\left(V_{3}, S, R_{3}, S_{3}\right)$ for $A_{1} \cup A_{2}$ with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$, where $S_{3} \notin V_{1} \cup V_{2}$, and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1}, S_{3} \rightarrow S_{2}\right\}$.

3. $q_{1} 10 \# 1100 \quad x q_{3} 0 \# 1100 \quad x 0 q_{3} \# 1100 \quad x 0 \# q_{5} 1100 \quad x 0 q_{6} \# x 100 \quad x q_{7} 0 \# x 100 \quad q_{7} x 0 \# x 100$ $x q_{1} 0 \# x 100 \quad x x q_{2} \# x 100 \quad x x \# q_{4} x 100 \quad x x \# x q_{4} 100 \quad x x \# x 1 q_{\text {reject }} 00$
4. DFA

5. (a) $G=(V, \Sigma, R, S)$, with $V=\{S, X\}, \Sigma=\{a, b, c\}$, start variable S and rules

$$
\begin{aligned}
S & \rightarrow b b S a a a \mid X \\
X & \rightarrow c X \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for A.
(b) PDA

The loop from $q_{2} \rightarrow q_{3} \rightarrow q_{4} \rightarrow q_{2}$ reads a b on the first two transitions, but reads ε on the third transition; all three transitions push an a. This has the effect of pushing $3 a$'s for every $2 b$'s that are read. The loop on q_{5} reads c 's, but doesn't alter the stack because we don't have to match the c 's with anything. Next, the loop on q_{6} just reads an a to match every a on the stack. Finally, the transition from q_{6} to q_{7} makes sure there aren't any leftover a 's in the stack.
Another PDA for the language is as follows:

For the second PDA, the loop on q_{2} pushes an a on the stack for each b read. The loop on q_{3} reads c 's, but doesn't alter the stack because we don't have to match the c 's with anything. Finally, the loop $q_{4} \rightarrow q_{5} \rightarrow q_{6} \rightarrow q_{4}$ reads an a on each of the three transition, but only pops an a on each of the first two transitions. Because an a was pushed onto the stack for every b read, the loop $q_{4} \rightarrow q_{5} \rightarrow q_{6} \rightarrow q_{4}$ ensures that three a 's are read for every two b 's, as required. Finally, the transition from q_{4} to q_{7} makes sure there aren't any leftover a 's in the stack.
There are infinitely many other correct PDAs for A.
6. This is Homework 2, problem 4. We prove this by contradiction. Suppose that \bar{M} is not a minimal DFA for \bar{A}. Then there exists another DFA D for \bar{A} such that D has strictly fewer states than \bar{M}. Now create another DFA D^{\prime} by swapping the accepting and non-accepting states of D. Then D^{\prime} recognizes the complement of \bar{A}. But the complement of \bar{A} is just A, so D^{\prime} recognizes A. Note that D^{\prime} has the same number of states as D, and \bar{M} has the same number of states as M. Thus, because we assumed that D has strictly fewer states than \bar{M}, then D^{\prime} has strictly fewer states than M. But since D^{\prime} recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \bar{M} is a minimal DFA for \bar{A}.
7. The language $A=\left\{b^{2 n} c^{k} a^{3 n} \mid n \geq 0, k \geq 0\right\}$ is not regular. To prove this, suppose that A is a regular language. Let p be the pumping length, and consider the string $s=b^{2 p} a^{3 p} \in A$. Note that $|s|=5 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only b's (together up to p in total) and z has the rest of the b 's at the beginning, followed by $a^{3 p}$. Hence, we can write

$$
\begin{aligned}
& x=b^{j}, \text { for some } j \geq 0 \\
& y=b^{\ell}, \text { for some } \ell \geq 0 \\
& z=b^{m} b^{p} a^{3 p}, \text { for some } m \geq 0 .
\end{aligned}
$$

Because $x y z=b^{j} b^{\ell} b^{m} b^{p} a^{3 p}=s=b^{2 p} a^{3 p}$, we have that $j+\ell+m+p=2 p$, or equivalently, $j+\ell+m=p$. Also, $|y|>0$ implies $\ell>0$. Now consider the string $x y y z=b^{j} b^{\ell} b^{\ell} b^{m} b^{p} a^{3 p}=b^{2 p+\ell} a^{3 p}$ because $j+\ell+m=p$. Note that $x y y z \notin A$ because the numbers of b 's and a 's don't have the right relationship because $\ell>0$, which contradicts (i). Hence, A is not a regular language.

