CS 341-452, Spring 2019
Solutions for Midterm, eLearning Section

(a) True. By Theorem 2.9. The fact that A is infinite is irrelevant.

(b) True. Because B is finite, we have that AN B is also finite, so it is regular by
slide 1-95.

(c¢) False. A TM can loop on w.

(d) False. For example, let A = {abc} and B = {a"b"c" | n > 0}, so A C B. Because
A is finite, it is regular (slide 1-95), so it is also context-free by Corollary 2.32.
But B is not context-free by slide 2-96.

(e) True. By Homework 5, problem 3(b).
(f) False. A= {a"b"c" | n >0} is nonregular and not context-free.

(g) False. For example, let A = {0"1" | n > 0} is context-free (see slide 2-5) and
infinite.

(h) True. Because A is finite, it is regular by the theorem on slide 1-95 of the notes.
Corollary 2.32 then ensures that A is regular, so A is also regular (Homework 2,
problem 3). Corollary 2.32 implies A is context-free.

(i) False. For example, let A = {a™b"c" | n > 0}, and let B = ¥* for ¥ = {a, b, c}.
Thus, we have that A C B. Because B has a regular expression (e.g., (aUbUc)*),
B is regular by Kleene’s theorem. But A is not context-free (slide 2-96).

(j) False. a*b*a* generates the string abbaaa ¢ {a"b"a™ | n > 0}. In fact, the
language { a™b™a™ | n > 0} is not regular, so it does not have a regular expression.

(a) A regular expression is a*ba*ba*b(a U b)* U b*ab*ab*. There are infinitely many
other correct regular expressions.

(b) The rules that violate Chomsky normal form are

e S — ba because a rule cannot go to 2 terminals;

e X — YS because the starting variable S cannot be on the right side of a
rule;

X — € because it is an e-rule;

e Y — X because it is a unit rule;

Y — aX because the right side has a mix of terminals and variables.

(c)
(d) As given on slide 1-63, A; o Ay has the following NFA N:



(e) Homework 5, problem 3a. We are given a CFG G = (V4, .S, Ry, S1) for language
Ay, and a CFG Gy = (13, S, Ry, Ss) for language A;. We can then define a CFG
G3 = (V3,S, Rs, S3) for AU Ay with V3 = ViUV, U{S3}, where S3 € V; UV,, and
Rg = Rl U R2 U {Sg — 51,53 — Sg}
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4. DFA

5. (a) G=(V,X,R,S), with V = {S, X}, ¥ = {a, b, c}, start variable S and rules

S — bbSaaa | X
X — X e

There are infinitely many other correct CFGs for A.
(b) PDA
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The loop from gs — g3 — g4 — o reads a b on the first two transitions, but reads
¢ on the third transition; all three transitions push an a. This has the effect of
pushing 3 a’s for every 2 b’s that are read. The loop on ¢5 reads ¢’s, but doesn’t
alter the stack because we don’t have to match the ¢’s with anything. Next, the
loop on ¢g just reads an a to match every a on the stack. Finally, the transition
from g¢ to gz makes sure there aren’t any leftover a’s in the stack.
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Another PDA for the language is as follows:
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For the second PDA, the loop on ¢ pushes an a on the stack for each b read.
The loop on g3 reads c¢’s, but doesn’t alter the stack because we don’t have to
match the ¢’s with anything. Finally, the loop ¢4 — ¢5 — ¢ — q4 reads an
a on each of the three transition, but only pops an a on each of the first two
transitions. Because an a was pushed onto the stack for every b read, the loop
s — @5 — g¢ — q4 ensures that three a’s are read for every two b’s, as required.
Finally, the transition from g4 to g7 makes sure there aren’t any leftover a’s in the
stack.
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There are infinitely many other correct PDAs for A.

6. This is Homework 2, problem 4. We prove this by contradiction. Suppose that M is
not a minimal DFA for A. Then there exists another DFA D for A such that D has
strictly fewer states than M. Now create another DFA D’ by swapping the accepting
and non-accepting states of D. Then D’ recognizes the complement of A. But the
complement of A is just A, so D’ recognizes A. Note that D’ has the same number of
states as D, and M has the same number of states as M. Thus, because we assumed
that D has strictly fewer states than M, then D’ has strictly fewer states than M. But
since D' recognizes A, this contradicts our assumption that A is a minimal DFA for
A. Therefore, M is a minimal DFA for A.



7. The language A = {v*"c*a® | n > 0,k > 0} is not regular. To prove this, suppose
that A is a regular language. Let p be the pumping length, and consider the string
s = b*a® € A. Note that |s| = 5p > p, so the pumping lemma implies we can write
s = xyz with zy’z € A for all i > 0, |y| > 0, and |zy| < p. Now, |zy| < p implies that
x and y have only b’s (together up to p in total) and z has the rest of the b’s at the
beginning, followed by a®. Hence, we can write

x =1, for some j > 0,
y = bt, for some ¢ > 0,

2z = b"Pa®, for some m > 0.

Because zyz = bb'b"Pa® = s = b*a®, we have that j +/ +m +p = 2p, or
equivalently, j + ¢ + m = p. Also, |y| > 0 implies ¢ > 0. Now consider the string
ryyz = BV bPa®? = b*+aP because j + £ +m = p. Note that zyyz ¢ A because
the numbers of b’s and a’s don’t have the right relationship because ¢ > 0, which
contradicts (i). Hence, A is not a regular language.



