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Solutions for Midterm, eLearning Section

1. (a) True. By Theorem 2.9. The fact that A is infinite is irrelevant.

(b) True. Because B is finite, we have that A ∩ B is also finite, so it is regular by
slide 1-95.

(c) False. A TM can loop on w.

(d) False. For example, let A = {abc} and B = {anbncn | n ≥ 0}, so A ⊆ B. Because
A is finite, it is regular (slide 1-95), so it is also context-free by Corollary 2.32.
But B is not context-free by slide 2-96.

(e) True. By Homework 5, problem 3(b).

(f) False. A = { anbncn | n ≥ 0 } is nonregular and not context-free.

(g) False. For example, let A = { 0n1n | n ≥ 0 } is context-free (see slide 2-5) and
infinite.

(h) True. Because A is finite, it is regular by the theorem on slide 1-95 of the notes.
Corollary 2.32 then ensures that A is regular, so A is also regular (Homework 2,
problem 3). Corollary 2.32 implies A is context-free.

(i) False. For example, let A = {anbncn | n ≥ 0}, and let B = Σ∗ for Σ = {a, b, c}.
Thus, we have that A ⊆ B. Because B has a regular expression (e.g., (a∪ b∪ c)∗),
B is regular by Kleene’s theorem. But A is not context-free (slide 2-96).

(j) False. a∗b∗a∗ generates the string abbaaa 6∈ { anbnan | n ≥ 0 }. In fact, the
language { anbnan | n ≥ 0 } is not regular, so it does not have a regular expression.

2. (a) A regular expression is a∗ba∗ba∗b(a ∪ b)∗ ∪ b∗ab∗ab∗. There are infinitely many
other correct regular expressions.

(b) The rules that violate Chomsky normal form are

• S → ba because a rule cannot go to 2 terminals;

• X → Y S because the starting variable S cannot be on the right side of a
rule;

• X → ε because it is an ε-rule;

• Y → X because it is a unit rule;

• Y → aX because the right side has a mix of terminals and variables.

(c)

(d) As given on slide 1-63, A1 ◦ A2 has the following NFA N :
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(e) Homework 5, problem 3a. We are given a CFG G1 = (V1, S, R1, S1) for language
A1, and a CFG G2 = (V2, S, R2, S2) for language A2. We can then define a CFG
G3 = (V3, S, R3, S3) for A1∪A2 with V3 = V1∪V2∪{S3}, where S3 6∈ V1∪V2, and
R3 = R1 ∪ R2 ∪ {S3 → S1, S3 → S2}.

3. q110#1100 xq30#1100 x0q3#1100 x0#q51100 x0q6#x100 xq70#x100 q7x0#x100
xq10#x100 xxq2#x100 xx#q4x100 xx#xq4100 xx#x1qreject00
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5. (a) G = (V,Σ, R, S), with V = {S,X}, Σ = {a, b, c}, start variable S and rules

S → bbSaaa | X

X → cX | ε

There are infinitely many other correct CFGs for A.

(b) PDA
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q1 q2

q3 q4

q5 q6 q7
ε, ε → $ ε, ε → ε

b, ε → a

b, ε → a

ε, ε → a

c, ε → ε

ε, ε → ε

a, a → ε

ε, $ → ε

The loop from q2 → q3 → q4 → q2 reads a b on the first two transitions, but reads
ε on the third transition; all three transitions push an a. This has the effect of
pushing 3 a’s for every 2 b’s that are read. The loop on q5 reads c’s, but doesn’t
alter the stack because we don’t have to match the c’s with anything. Next, the
loop on q6 just reads an a to match every a on the stack. Finally, the transition
from q6 to q7 makes sure there aren’t any leftover a’s in the stack.

Another PDA for the language is as follows:

q1 q2 q3 q4

q5 q6

q7
ε, ε → $ ε, ε → ε

b, ε → a c, ε → ε

ε, ε → ε

a, ε → a

a, ε → a

a, ε → ε

ε, $ → ε

For the second PDA, the loop on q2 pushes an a on the stack for each b read.
The loop on q3 reads c’s, but doesn’t alter the stack because we don’t have to
match the c’s with anything. Finally, the loop q4 → q5 → q6 → q4 reads an
a on each of the three transition, but only pops an a on each of the first two
transitions. Because an a was pushed onto the stack for every b read, the loop
q4 → q5 → q6 → q4 ensures that three a’s are read for every two b’s, as required.
Finally, the transition from q4 to q7 makes sure there aren’t any leftover a’s in the
stack.

There are infinitely many other correct PDAs for A.

6. This is Homework 2, problem 4. We prove this by contradiction. Suppose that M is
not a minimal DFA for A. Then there exists another DFA D for A such that D has
strictly fewer states than M . Now create another DFA D′ by swapping the accepting
and non-accepting states of D. Then D′ recognizes the complement of A. But the
complement of A is just A, so D′ recognizes A. Note that D′ has the same number of
states as D, and M has the same number of states as M . Thus, because we assumed
that D has strictly fewer states than M , then D′ has strictly fewer states than M . But
since D′ recognizes A, this contradicts our assumption that M is a minimal DFA for
A. Therefore, M is a minimal DFA for A.
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7. The language A = { b2ncka3n | n ≥ 0, k ≥ 0 } is not regular. To prove this, suppose
that A is a regular language. Let p be the pumping length, and consider the string
s = b2pa3p ∈ A. Note that |s| = 5p ≥ p, so the pumping lemma implies we can write
s = xyz with xyiz ∈ A for all i ≥ 0, |y| > 0, and |xy| ≤ p. Now, |xy| ≤ p implies that
x and y have only b’s (together up to p in total) and z has the rest of the b’s at the
beginning, followed by a3p. Hence, we can write

x = bj , for some j ≥ 0,

y = bℓ, for some ℓ ≥ 0,

z = bmbpa3p, for some m ≥ 0.

Because xyz = bjbℓbmbpa3p = s = b2pa3p, we have that j + ℓ + m + p = 2p, or
equivalently, j + ℓ + m = p. Also, |y| > 0 implies ℓ > 0. Now consider the string
xyyz = bjbℓbℓbmbpa3p = b2p+ℓa3p because j + ℓ +m = p. Note that xyyz 6∈ A because
the numbers of b’s and a’s don’t have the right relationship because ℓ > 0, which
contradicts (i). Hence, A is not a regular language.
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