CS 341, Fall 2020, Hybrid Section

Solutions for Midterm 1

1. (a) False. If A is nonregular, then A cannot have an NFA by Corollary 1.40.
(b) False. Let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, A$ is nonregular, and B is regular.
(c) False. Let $A=\emptyset$ and $B=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Then $A \subseteq B, A$ is regular because it's finite, and B is nonregular.
(d) False. The language a^{*} is regular but infinite.
(e) False. $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but not regular.
(f) False. Homework 6, problem 2b.
(g) False. $0^{*} 1^{*} 0^{*}$ generates the string $001000 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
(h) True. Theorem 1.54 implies A is regular. Then by Corollary $2.32, A$ is contextfree, so Theorem 2.20 ensures that A has a PDA.
(i) True, by Lemma 2.27 and Theorem 2.9.
(j) False. The transition function of an NFA is $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$.
2. (a) $b^{*} a b^{*} \cup b^{*} b a^{*} b b^{*}$. Another regular expression is $b^{*}\left(a \cup b a^{*} b\right) b^{*}$. There are infinitely many correct regular expressions for the language.
(b) $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $S_{3} \notin V_{1} \cup V_{2}$, where

- $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$,
- S_{3} is the (new) starting variable,
- Σ is the same alphabet of terminals as in G_{1} and G_{2}, and
- $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1} S_{2}\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where
- $Q_{3}=Q_{1} \times Q_{2}$;
- Σ is the same alphabet as M_{1} and M_{2} have;
- the transition function δ_{3} satisfies $\delta_{3}((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in$ Q_{3} and $\ell \in \Sigma$;
- the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and
- $F_{3}=\left(Q_{1} \times F_{2}\right) \cap\left(F_{1} \times Q_{2}\right)$, which also can be written as $F_{1} \times F_{2}$.
(d) After the one step of removing $A \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow 0 A 1 A S|01 A S| 0 A 1 S|01 S| 0 A 1|01| \varepsilon \\
A & \rightarrow 10 A 1 \mid 101
\end{aligned}
$$

3. (a) A DFA for A is below:

A 5-tuple description of the DFA above is $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- The transition function $\delta: Q \times \Sigma \rightarrow Q$ is defined as

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{4}
q_{3}	q_{3}	q_{4}
q_{4}	q_{2}	q_{1}

- q_{1} is the start state
- $F=\left\{q_{3}, q_{4}\right\}$

There are infinitely many other correct DFAs for A.
(b) A regular expression for A is $(a \cup b)^{*} a(a \cup b)$. There are infinitely many other correct regular expressions for A.
4. $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, Y\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow c S b \mid Y \\
Y & \rightarrow c Y a \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for D.
5. Language D is nonregular. We prove this by contradiction. Suppose that D is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=c^{p} b^{p}$. Note that $s \in D$ because the number of c 's equals the sum of the number of a 's and the number of b 's, and $|s|=2 p>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in D$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all c 's, the third property implies that x and y consist only of c 's. So z will be the rest of the c 's, followed by b^{p}. The second property states that $|y|>0$, so y has at least one c. More precisely, we can then say that

$$
\begin{aligned}
x & =c^{j} \text { for some } j \geq 0 \\
y & =c^{k} \text { for some } k \geq 1 \\
z & =c^{m} b^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $c^{p} b^{p}=s=x y z=c^{j} c^{k} c^{m} a^{p}=c^{j+k+m} b^{p}$, we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that $x y^{2} z \in D$, but

$$
\begin{aligned}
x y^{2} z & =c^{j} c^{k} c^{k} c^{m} b^{p} \\
& =c^{p+k} b^{p} \notin D
\end{aligned}
$$

since $p+k>p$ because $j+k+m=p$ and $k \geq 1$, so the number of c 's in the pumped string $x y^{2} z$ doesn't match the the number of a 's and b 's. Because the pumped string $x y^{2} z \notin D$, we have a contradiction. Therefore, D is a nonregular language.

