CS 341, Fall 2020, Hybrid Section Solutions for Midterm 1

- 1. (a) False. If A is nonregular, then A cannot have an NFA by Corollary 1.40.
 - (b) False. Let $A = \{ a^n b^n \mid n \ge 0 \}$ and $B = (a \cup b)^*$. Then $A \subseteq B$, A is nonregular, and B is regular.
 - (c) False. Let $A = \emptyset$ and $B = \{a^n b^n \mid n \ge 0\}$. Then $A \subseteq B$, A is regular because it's finite, and B is nonregular.
 - (d) False. The language a^* is regular but infinite.
 - (e) False. $A = \{ a^n b^n \mid n \ge 0 \}$ is context-free but not regular.
 - (f) False. Homework 6, problem 2b.
 - (g) False. $0^*1^*0^*$ generates the string $001000 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
 - (h) True. Theorem 1.54 implies A is regular. Then by Corollary 2.32, A is context-free, so Theorem 2.20 ensures that A has a PDA.
 - (i) True, by Lemma 2.27 and Theorem 2.9.
 - (j) False. The transition function of an NFA is $\delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$.
- 2. (a) $b^*ab^* \cup b^*ba^*bb^*$. Another regular expression is $b^*(a \cup ba^*b)b^*$. There are infinitely many correct regular expressions for the language.
 - (b) $G_3 = (V_3, \Sigma, R_3, S_3)$ with $S_3 \notin V_1 \cup V_2$, where
 - $V_3 = V_1 \cup V_2 \cup \{S_3\},$
 - S_3 is the (new) starting variable,
 - Σ is the same alphabet of terminals as in G_1 and G_2 , and
 - $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_1 S_2\}.$
 - (c) $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$, where
 - $Q_3 = Q_1 \times Q_2;$
 - Σ is the same alphabet as M_1 and M_2 have;
 - the transition function δ_3 satisfies $\delta_3((q,r), \ell) = (\delta_1(q,\ell), \delta_2(r,\ell))$ for $(q,r) \in Q_3$ and $\ell \in \Sigma$;
 - the starting state $q_3 = (q_1, q_2)$; and
 - $F_3 = (Q_1 \times F_2) \cap (F_1 \times Q_2)$, which also can be written as $F_1 \times F_2$.
 - (d) After the one step of removing $A \to \varepsilon$, the CFG is then

$$\begin{array}{rcl} S_0 & \rightarrow & S \\ S & \rightarrow & 0A1AS \mid 01AS \mid 0A1S \mid 01S \mid 0A1 \mid 01 \mid \varepsilon \\ A & \rightarrow & 10A1 \mid 101 \end{array}$$

3. (a) A DFA for A is below:

A 5-tuple description of the DFA above is $M = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{a, b\}$
- The transition function $\delta: Q \times \Sigma \to Q$ is defined as

	a	b
q_1	q_2	q_1
q_2	q_3	q_4
q_3	q_3	q_4
q_4	q_2	q_1

- q_1 is the start state
- $F = \{q_3, q_4\}$

There are infinitely many other correct DFAs for A.

- (b) A regular expression for A is $(a \cup b)^* a(a \cup b)$. There are infinitely many other correct regular expressions for A.
- 4. $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, Y\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$\begin{array}{rcl} S & \rightarrow & cSb \mid Y \\ Y & \rightarrow & cYa \mid \varepsilon \end{array}$$

There are infinitely many other correct CFGs for D.

5. Language D is nonregular. We prove this by contradiction. Suppose that D is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = c^p b^p$. Note that $s \in D$ because the number of c's equals the sum of the number of a's and the number of b's, and |s| = 2p > p, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that s = xyz and

- (a) $xy^i z \in D$ for each $i \ge 0$,
- (b) |y| > 0,
- (c) $|xy| \le p$.

Since the first p symbols of s are all c's, the third property implies that x and y consist only of c's. So z will be the rest of the c's, followed by b^p . The second property states that |y| > 0, so y has at least one c. More precisely, we can then say that

$$x = c^{j} \text{ for some } j \ge 0,$$

$$y = c^{k} \text{ for some } k \ge 1,$$

$$z = c^{m} b^{p} \text{ for some } m > 0$$

Since $c^p b^p = s = xyz = c^j c^k c^m a^p = c^{j+k+m} b^p$, we must have that

$$j + k + m = p$$
 and $k \ge 1$.

The first property implies that $xy^2z \in D$, but

$$xy^{2}z = c^{j}c^{k}c^{k}c^{m}b^{p}$$
$$= c^{p+k}b^{p} \notin D$$

since p + k > p because j + k + m = p and $k \ge 1$, so the number of c's in the pumped string xy^2z doesn't match the the number of a's and b's. Because the pumped string $xy^2z \notin D$, we have a contradiction. Therefore, D is a nonregular language.