Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2020, hybrid section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the University Policy on Academic Integrity.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, print your name next to this number.
- This exam will be 1 hour and 20 minutes in length.
- This is a closed-book, closed-note exam. Electronic devices (e.g., cellphone, smart watch, calculator) are not allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the exam sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; PDA stands for push-down automaton; CFG stands for context-free grammar.
3. For any state machines that you draw, you must include all states and transitions.
4. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X, you may use in your proof of X any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that"

Problem	1	2	3	4	5	Total
Points						

1. [10 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If a language A is nonregular, then A has an NFA.
(b) TRUE FALSE - If $A \subseteq B$ and B is a regular language, then A must be regular.
(c) TRUE FALSE - If $A \subseteq B$ and A is a regular language, then B must be regular.
(d) TRUE FALSE - If a language A is regular, then A must be finite.
(e) TRUE FALSE - If A is a context-free language, then A must also be regular.
(f) TRUE FALSE - If A is a context-free language, then \bar{A} must also be context-free.
(g) TRUE FALSE - A regular expression for $A=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$ is $0^{*} 1^{*} 0^{*}$.
(h) TRUE FALSE - If a language A has a regular expression, then A must have a PDA.
(i) TRUE FALSE - If a language A has a PDA, then A must have a context-free grammar in Chomsky normal form.
(j) TRUE FALSE - For an NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$, its transition function has the form $\delta: Q \times \Sigma_{\varepsilon} \rightarrow Q$.
2. [40 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) Give a regular expression for the language recognized by the NFA below.

(b) Suppose a language A_{1} is generated by a context-free grammar $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and a language A_{2} is generated by a context-free grammar $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where for $i=1,2$, we have that V_{i} is the set of variables in G_{i}, R_{i} is the set of rules in G_{i}, and S_{i} is the start variable of G_{i}. The two grammars shard the same set of terminals Σ, and $V_{1} \cap V_{2}=\emptyset$. Give a context-free grammar G_{3} for $A_{1} \circ A_{2}$ in terms of G_{1} and G_{2}. You do not have to prove the correctness of your CFG G_{3}, but do not just give an example.
(c) Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA with language A_{1}, and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be a DFA with language A_{2}. Consider the language $A=A_{1} \cap A_{2}$. Give a DFA M_{3} for A in terms of M_{1} and M_{2}. Your DFA M_{3} must be completely general. Do not prove the correctness of your DFA M_{3}, but do not just give an example.
(d) Suppose that we are in the process of converting a CFG G with $\Sigma=\{0,1\}$ into Chomsky normal form. We have already applied some steps in the process, and we currently have the following CFG:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow 0 A 1 A S|0 A 1| \varepsilon \\
A & \rightarrow 10 A 1 \mid \varepsilon
\end{aligned}
$$

In the next step, we want to remove the ε-rule $A \rightarrow \varepsilon$. Give the CFG after carrying out just this one step.
3. [20 points] For $\Sigma=\{a, b\}$, consider the language

$$
C=\left\{w \in \Sigma^{*}| | w \mid \geq 2, \text { second-to-last symbol of } w \text { is } a\right\} .
$$

If string $w=w_{1} w_{2} \cdots w_{n}$ with $n \geq 2$ and each $w_{i} \in \Sigma$, then the second-to-last symbol of w is w_{n-1}.
(a) Give a 5 -tuple description for a DFA for C. Be sure to explicit define each part of the 5 -tuple for your DFA for C.
(b) Give a regular expression for C.
4. [15 points] Consider the language

$$
D=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0, \text { and } i=j+k\right\}
$$

Give a context-free grammar G for D. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then s can be split into three pieces $s=x y z$ such that (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $D=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $\left.i=j+k\right\}$. Is D a regular or nonregular language? If D is regular, give a regular expression for D. If D is not regular, prove that it is a nonregular language.

Circle one:
Regular Language
Nonregular Language

