
CS 341, Fall 2020
Solutions for Midterm 2, Hybrid

1. (a) True, by Corollary 3.18.

(b) False. Theorem 4.11 shows that ATM is undecidable, so no TM can decide
ATM.

(c) True. Languages A and B are equal if and only if A∩B = ∅ and A∩B = ∅;
see slide 4.13. Equivalently, Languages A and B are unequal if and only if
A ∩B 6= ∅ or A ∩B 6= ∅.

(d) False. The set N = {1, 2, 3, . . .} is infinite and countable.

(e) False. Every context-free language is decidable by Theorem 4.9, and every
decidable language is Turing-recognizable because the definition of Turing-
recognizable is less restrictive than the definition of decidable (also see slide
4.55). Thus, every context-free language is Turing-recognizable. and every
decidable language is Turing-recognizable

(f) False, by slide 4-38.

(g) True. For example, the language ATM is recognized by the universal TM,
which is deterministic, so is also recognized by a nondeterministic TM by
Corollary 3.18. But by Theorem 4.11, ATM is undecidable, so there does
not exist any TM (deterministic or nondeterministic) that decides ATM. , by
Theorem 3.16.

(h) True, by slide 3-27.

(i) False. ATM is not Turing-recognizable by Corollary 4.23.

(j) True. For example, let A be the set of positive integers, which is countable,
and let B = <, which is uncountable. Also, we have that A ⊂ B.

2. (a) Yes, because x 6= y with x, y ∈ D implies that f(x) 6= f(y).

(b) No, because nothing in D maps to d ∈ R.

(c) No, because f is not onto.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w 6∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1baba#aab xq3aba#aab xaq3ba#aab xabq3a#aab xabaq3#aab xaba#q5aab
xaba#aqrejectab

4. (From slides 4-39 and 4-40). Let L be the collection of languages over an alphabet
Σ, and let B be the set of infinite binary strings, which we know is uncountable
(by a diagonalization argument, on slide 4-39). We will show that there is a
correspondence between L and B, so they have the same size. Let s1, s2, s3, . . .

1



be an enumeration of the strings in Σ∗, e.g., the enumeration can list the strings
in string order. Define mapping χ : L → B such that for a language A ∈ L, the
nth bit of χ(A) is 1 if and only if the nth string sn ∈ A. We now show χ is a
correspondence.

� To show that χ is one-to-one, suppose that A1, A2 ∈ L with A1 6= A2. Then
there is some string si such that si is in one of the languages but not the
other. Then χ(A1) and χ(A2) differ in the ith bit, so χ is one-to-one.

� To show that χ is onto, consider any infinite binary sequence b = b1b2b3 . . . ∈
B. Consider the language A that includes all strings si for which bi = 1 and
does not include any string bj for which bj = 0. Then χ(A) = b, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, L and B have the
same size, so L is uncountable because B is uncountable.

5. (This is HW 7, problem 2b.) For any two Turing-recognizable languages L1 and
L2, let M1 and M2, respectively, be TMs that recognize them. We construct a TM
M ′ that recognizes the union L1 ∪ L2:

M ′ = “On input string w:

1. Run M1 and M2 alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.

To see why M ′ recognizes L1 ∪ L2, first consider w ∈ L1 ∪ L2. Then w is in L1

or in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept
w. Similarly, if w ∈ L2, then M2 accepts w, so M ′ will eventually accept w. On
the other hand, if w 6∈ L1 ∪ L2, then w 6∈ L1 and w 6∈ L2. Thus, neither M1 nor
M2 accepts w, so M ′ will also not accept w. Hence, M ′ recognizes L1 ∪ L2. Note
that if neither M1 nor M2 accepts w and one of them does so by looping, then M ′

will loop, but this is fine because we only needed M ′ to recognize and not decide
L1 ∪ L2.

6. Define the language as

A = { 〈R〉 | R is a regular expression with alphabet Σ = {0, 1}
that generates at least one string that ends in 10 }.

Consider the language C having regular expression (0∪1)∗10, so C is the language
of strings over Σ that end in 10. By Kleene’s Theorem (Theorem 1.54), the lan-
guage C is regular, so it has a DFA M . The proof of Theorem 4.4 defines a Turing
machine T that decides the language EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ }.

2



Then the following Turing machine S decides A:

S = “On input 〈R〉, where R is a regular expression (with alphabet Σ = {0, 1}):
1. Convert R into an equivalent DFA D

using the algorithm in the proof of Kleene’s Theorem.

2. Construct a DFA K for the language L(D) ∩ L(M) using the

algorithm for building a DFA for the intersection of

two regular languages (HW 2, problem 5).

3. Run TM T for EDFA on input 〈K〉.
4. If T accepts, reject. If T rejects, accept.”

3


