
CS 341, Spring 2020

Solutions for Midterm 2

1. (a) True, by Theorem 3.13.

(b) True, by slide 4-25.

(c) False, e.g., if A = {00, 11, 111} and B = {00, 11}, then A∩B = ∅ but A 6= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩ B) = ∅.

(d) False. The set N = {1, 2, 3, . . .} is infinite and countable.

(e) True, because every context-free language is decidable by Theorem 4.9, and
every decidable language is Turing-recognizable because the definition of
Turing-recognizable is less restrictive than the definition of decidable.

(f) True, by slide 4-38.

(g) False, by Theorem 3.16.

(h) False. A TM M may loop on input w.

(i) False. ATM is not Turing-recognizable by Corollary 4.23.

(j) False. The set A = ℜ is uncountable, but the set B = {1, 2, 3} is countable
and B ⊆ A.

2. (a) No, because f(a) = f(c) = 1.

(b) No, because nothing in D maps to 2 or to 4, which are both in R.

(c) No, because f is not one-to-one and onto.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w 6∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1aabb#ba xq2abb#ba xaq2bb#ba xabq2b#ba xabbq2#ba xabb#q4ba xabb#bqra

4. This is HW 9, problem 1. Each element in B is an infinite sequence (b1, b2, b3, . . .),
where each bi ∈ {0, 1}. We prove that B is uncountable by contradiction using
a diagonalization argument. Suppose B is countable. Then we can define a cor-
respondence f between N = {1, 2, 3, . . .} and B. Specifically, for n ∈ N , let
f(n) = (bn1, bn2, bn3, . . .), where bni is the ith bit in the nth sequence, i.e.,

n f(n)
1 (b11, b12, b13, b14, b15, . . .)
2 (b21, b22, b23, b24, b25, . . .)
3 (b31, b32, b33, b34, b35, . . .)
4 (b41, b42, b43, b44, b45, . . .)
...

...
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Now define an infinite binary sequence c = (c1, c2, c3, c4, c5, . . .) ∈ B, where
ci = 1 − bii for each i ∈ N . In other words, the ith bit in c is the opposite of the
ith bit in the ith sequence. For example, if

n f(n)
1 (0, 1, 1, 0, 0, . . .)
2 (1, 0, 1, 0, 1, . . .)
3 (1, 1, 1, 1, 1, . . .)
4 (1, 0, 0, 1, 0, . . .)
...

...

then we would define c = (1, 1, 0, 0, . . .). Thus, for each n = 1, 2, 3, . . ., note that
c ∈ B differs from the nth sequence in the nth bit, so c does not equal f(n) for any
n ∈ N , which is a contradiction because the enumeration was supposed to contain
every infinite binary sequence. Hence, B is uncountable.

5. This is HW 8, problem 4. We need to show there is a Turing machine that
recognizes ETM, the complement of ETM. Let s1, s2, s3, . . . be a list of all strings
in Σ∗, e.g., in string order. For a given Turing machine M , we want to determine
if any of the strings s1, s2, s3, . . . is accepted by M ; i.e., if 〈M〉 ∈ ETM. If M
accepts at least one string si, then L(M) 6= ∅, so 〈M〉 ∈ ETM; if M accepts none
of the strings, then L(M) = ∅, so 〈M〉 6∈ ETM. However, we cannot just run M

sequentially on the strings s1, s2, s3, . . .. For example, suppose M accepts s2 but
loops on s1. Because M accepts s2, we have that 〈M〉 ∈ ETM. But if we run
M sequentially on s1, s2, s3, . . ., we never get past the first string. The following
Turing machine avoids this problem and recognizes ETM:

R = “On input 〈M〉, where M is a Turing machine:

1. Repeat the following for i = 1, 2, 3, . . ..

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

6. Define the language as

ENFA = { 〈N〉 | N is an NFA with L(N) = ∅ }.

Recall that the proof of Theorem 4.4 defines a Turing machine R that decides the
language EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ }. Then the following Turing
machine S decides ENFA:

S = “On input 〈N〉, where N is an NFA:

1. Convert N into an equivalent DFA D

using the algorithm in the proof of Kleene’s Theorem.

2. Run TM R for EDFA on input 〈D〉.

3. If R accepts, accept. If R rejects, reject.”
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