CS 341, Spring 2020 Solutions for Midterm 2

- 1. (a) True, by Theorem 3.13.
 - (b) True, by slide 4-25.
 - (c) False, e.g., if $A = \{00, 11, 111\}$ and $B = \{00, 11\}$, then $\overline{A} \cap B = \emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (d) False. The set $\mathcal{N} = \{1, 2, 3, \ldots\}$ is infinite and countable.
 - (e) True, because every context-free language is decidable by Theorem 4.9, and every decidable language is Turing-recognizable because the definition of Turing-recognizable is less restrictive than the definition of decidable.
 - (f) True, by slide 4-38.
 - (g) False, by Theorem 3.16.
 - (h) False. A TM M may loop on input w.
 - (i) False. $\overline{A_{\text{TM}}}$ is not Turing-recognizable by Corollary 4.23.
 - (j) False. The set $A = \Re$ is uncountable, but the set $B = \{1, 2, 3\}$ is countable and $B \subseteq A$.
- 2. (a) No, because f(a) = f(c) = 1.
 - (b) No, because nothing in D maps to 2 or to 4, which are both in R.
 - (c) No, because f is not one-to-one and onto.
 - (d) A language L_1 that is Turing-recognizable is recognized by a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable is recognized by a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. $q_1aabb\#ba xq_2abb\#ba xaq_2bb\#ba xabq_2b\#ba xabbq_2\#ba xabb\#q_4ba xabb\#bq_ra$
- 4. This is HW 9, problem 1. Each element in \mathcal{B} is an infinite sequence (b_1, b_2, b_3, \ldots) , where each $b_i \in \{0, 1\}$. We prove that \mathcal{B} is uncountable by contradiction using a diagonalization argument. Suppose \mathcal{B} is countable. Then we can define a correspondence f between $\mathcal{N} = \{1, 2, 3, \ldots\}$ and \mathcal{B} . Specifically, for $n \in \mathcal{N}$, let $f(n) = (b_{n1}, b_{n2}, b_{n3}, \ldots)$, where b_{ni} is the *i*th bit in the *n*th sequence, i.e.,

$$\begin{array}{c|cccc} n & f(n) \\ \hline 1 & (b_{11}, b_{12}, b_{13}, b_{14}, b_{15}, \ldots) \\ 2 & (b_{21}, b_{22}, b_{23}, b_{24}, b_{25}, \ldots) \\ 3 & (b_{31}, b_{32}, b_{33}, b_{34}, b_{35}, \ldots) \\ 4 & (b_{41}, b_{42}, b_{43}, b_{44}, b_{45}, \ldots) \\ \vdots & \vdots \end{array}$$

Now define an infinite binary sequence $c = (c_1, c_2, c_3, c_4, c_5, \ldots) \in \mathcal{B}$, where $c_i = 1 - b_{ii}$ for each $i \in \mathcal{N}$. In other words, the *i*th bit in *c* is the opposite of the *i*th bit in the *i*th sequence. For example, if

$$\begin{array}{c|c|c} n & f(n) \\ \hline 1 & (0,1,1,0,0,\ldots) \\ 2 & (1,0,1,0,1,\ldots) \\ 3 & (1,1,1,1,1,\ldots) \\ 4 & (1,0,0,1,0,\ldots) \\ \vdots & \vdots \end{array}$$

then we would define c = (1, 1, 0, 0, ...). Thus, for each n = 1, 2, 3, ..., note that $c \in \mathcal{B}$ differs from the *n*th sequence in the *n*th bit, so *c* does not equal f(n) for any $n \in \mathcal{N}$, which is a contradiction because the enumeration was supposed to contain every infinite binary sequence. Hence, \mathcal{B} is uncountable.

- 5. This is HW 8, problem 4. We need to show there is a Turing machine that recognizes \overline{E}_{TM} , the complement of E_{TM} . Let s_1, s_2, s_3, \ldots be a list of all strings in Σ^* , e.g., in string order. For a given Turing machine M, we want to determine if any of the strings s_1, s_2, s_3, \ldots is accepted by M; i.e., if $\langle M \rangle \in \overline{E}_{\text{TM}}$. If Maccepts at least one string s_i , then $L(M) \neq \emptyset$, so $\langle M \rangle \in \overline{E}_{\text{TM}}$; if M accepts none of the strings, then $L(M) = \emptyset$, so $\langle M \rangle \notin \overline{E}_{\text{TM}}$. However, we cannot just run Msequentially on the strings s_1, s_2, s_3, \ldots . For example, suppose M accepts s_2 but loops on s_1 . Because M accepts s_2 , we have that $\langle M \rangle \in \overline{E}_{\text{TM}}$. But if we run M sequentially on s_1, s_2, s_3, \ldots , we never get past the first string. The following Turing machine avoids this problem and recognizes \overline{E}_{TM} :
 - R = "On input $\langle M \rangle$, where M is a Turing machine:
 - 1. Repeat the following for $i = 1, 2, 3, \ldots$
 - **2.** Run *M* for *i* steps on each input s_1, s_2, \ldots, s_i .
 - **3.** If any computation accepts, *accept*.
- 6. Define the language as

$$E_{\text{NFA}} = \{ \langle N \rangle \mid N \text{ is an NFA with } L(N) = \emptyset \}.$$

Recall that the proof of Theorem 4.4 defines a Turing machine R that decides the language $E_{\text{DFA}} = \{ \langle B \rangle \mid B \text{ is a DFA with } L(B) = \emptyset \}$. Then the following Turing machine S decides E_{NFA} :

- S = "On input $\langle N \rangle$, where N is an NFA:
 - 1. Convert N into an equivalent DFA D using the algorithm in the proof of Kleene's Theorem.
 - **2.** Run TM R for E_{DFA} on input $\langle D \rangle$.
 - **3.** If *R* accepts, *accept*. If *R* rejects, *reject*."