CS 341, Spring 2020
Solutions for Midterm 2

1. (a) True, by Theorem 3.13.
(b) True, by slide 4-25.
(c) False, e.g.,if A= {00,11,111} and B = {00, 11}, then ANB = () but A # B.
For A and B to be equal, we instead need (AN B) U (AN B) = 0.
(d) False. The set N/ = {1,2,3,...} is infinite and countable.

(e) True, because every context-free language is decidable by Theorem 4.9, and
every decidable language is Turing-recognizable because the definition of
Turing-recognizable is less restrictive than the definition of decidable.

(f) True, by slide 4-38.

(g) False, by Theorem 3.16.

(h) False. A TM M may loop on input w.

(i) False. Apy is not Turing-recognizable by Corollary 4.23.
)

(j) False. The set A = R is uncountable, but the set B = {1,2,3} is countable

and B C A.

a) No, because f(a) = f(c) = 1.
b

)
)

(¢) No, because f is not one-to-one and onto.
)

(
(b) No, because nothing in D maps to 2 or to 4, which are both in R.
(d) A language L that is Turing-recognizable is recognized by a Turing machine

M that may loop forever on a string w ¢ L;. A language Lo that is Turing-
decidable is recognized by a Turing machine M, that always halts.

(e) An algorithm is a Turing machine that always halts.
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4. This is HW 9, problem 1. Each element in B is an infinite sequence (by, bs, b3, .. .),
where each b; € {0,1}. We prove that B is uncountable by contradiction using
a diagonalization argument. Suppose B is countable. Then we can define a cor-
respondence [ between N = {1,2,3,...} and B. Specifically, for n € N, let
f(n) = (bp1, bpa, bps, -..), where by; is the ith bit in the nth sequence, i.e.,
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Now define an infinite binary sequence ¢ = (c1, ¢, ¢3, ¢4, C5, ...) € B, where
c; = 1 — by for each ¢« € N. In other words, the 7th bit in ¢ is the opposite of the
1th bit in the ith sequence. For example, if

n f(n)

11(0,1,1,0,0,..)
21(1,0,1,0,1,...)
30(1,1,1,1,1,...)
41(1,0,0,1,0,...)

then we would define ¢ = (1,1,0,0,...). Thus, for each n = 1,2,3,..., note that
¢ € B differs from the nth sequence in the nth bit, so ¢ does not equal f(n) for any
n € N, which is a contradiction because the enumeration was supposed to contain
every infinite binary sequence. Hence, B is uncountable.

. This is HW 8, problem 4. We need to show there is a Turing machine that
recognizes Ery, the complement of Ery. Let sy, 89, 53,... be a list of all strings
in »*, e.g., in string order. For a given Turing machine M, we want to determine
if any of the strings sy, sy, s3, ... is accepted by M; i.e., if (M) € Epy. If M
accepts at least one string s;, then L(M) # 0, so (M) € Ery; if M accepts none
of the strings, then L(M) = (), so (M) ¢ Ery. However, we cannot just run M
sequentially on the strings si, $o, s3,.... For example, suppose M accepts s, but
loops on s;. Because M accepts sy, we have that (M) € Ery. But if we run
M sequentially on si, So, S3, ..., we never get past the first string. The following
Turing machine avoids this problem and recognizes Ery:

R = “On input (M), where M is a Turing machine:
1. Repeat the following for i =1,2,3,.. ..
2. Run M for i steps on each input sq, s, ..., S;.
3. If any computation accepts, accept.

. Define the language as
Enxpa = {(N)| N is an NFA with L(N) =0 }.

Recall that the proof of Theorem 4.4 defines a Turing machine R that decides the
language Eppa = { (B)| B is a DFA with L(B) = }. Then the following Turing
machine S decides Enpa:

S = “Oninput (N), where N is an NFA:
1. Convert N into an equivalent DFA D

using the algorithm in the proof of Kleene’s Theorem.
2. Run TM R for Epga on input (D).
3. If R accepts, accept. If R rejects, reject.”



