CS 341-451, Fall 2021, eLearning (online) Section Solutions for Midterm 1

- 1. (a) True. If A has an NFA, then it is regular, and all regular languages are context-free.
 - (b) False. Suppose that A is a nonregular language defined over an alphabet Σ . Let $B = \overline{A}$ be the complement of A, so $B = \Sigma^* A$. We must have that B is also nonregular because if B were regular, then \overline{B} would also be regular, but $\overline{B} = A$, which we assumed is nonregular. Now note that $A \cup B = A \cup \overline{A} = \Sigma^*$, which is regular.
 - (c) False. Let $A = \{ a^n b^n c^n \mid n \ge \}$ and $B = \{ c^n b^n a^n \mid n \ge \}$, which are both noncontext-free. Note that $A \cap B = \{ \varepsilon \}$, which is finite, so the intersection is regular, which implies that it is also context-free.
 - (d) False. The language a^* is regular but infinite.
 - (e) True. Suppose that language A is Turing-decidable, and we want to prove that its complement \overline{A} is also Turing-decidable. Because A is Turing-decidable, there is a TM M that decides A. Specifically, M accepts each string $w \in A$, and M rejects each string $w \notin A$, so M never loops. Now define another TM M' to be the same as M but with the accept and reject states swapped. Now M' accepts each string $w \notin A$, and M' rejects each string $w \in A$, and M' never loops. Thus, M' decides \overline{A} , so \overline{A} is decidable.
 - (f) False. HW 6, problem 2(a).
 - (g) False. The language A is non-context-free, which can be proven using the same basic proof on slides 2-96 and 2-97, so A cannot have a CFG.
 - (h) True. To verify this, we need to show that every Turing-decidable language is also Turing-recognizable. Suppose that A is Turing-decidable. Then there is a TM M that decides A, so M also recognizes A. Thus, A is also Turing-recognizable.
 - (i) False. The language $A = \{a^n b^n c^n \mid n \ge 0\}$ is nonregular. But A is also noncontext-free (slides 2-96 and 2-97), so A cannot have a context-free grammar.
 - (j) True. By Kleene's theorem, the class of languages having regular expressions is the class of regular languages, which is closed under concatenation by Theorem 1.26.
- (a) b*(ba*b ∪ a)ab*. Other regular expressions for the language include b*ba*bab* ∪ b*aab* and b*(ba*b∪a)ab*∪Ø. There are infinitely many correct regular expressions for the language.
 - (b) $G_3 = (V_3, \Sigma, R_3, S_3)$ with $S_3 \notin V_1 \cup V_2$, where
 - $V_3 = V_1 \cup V_2 \cup \{S_3\},$
 - S_3 is the (new) starting variable,
 - Σ is the same alphabet of terminals as in G_1 and G_2 , and
 - $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_2 S_1\}.$

- (c) After the one step of removing $A \to \varepsilon$, the CFG is then
 - $\begin{array}{rcl} S_{0} & \rightarrow & S \mid \varepsilon \\ S & \rightarrow & ASA0A \mid AA0A \\ A & \rightarrow & 0SA \mid 0A \mid 0SA1S01A \mid 0A1S01A \mid 0SA101A \mid 0A101A \mid \varepsilon \end{array}$
- (d) $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$, where
 - $Q_3 = Q_1 \times Q_2;$
 - Σ is the same alphabet as M_1 and M_2 have;
 - the transition function δ_3 satisfies $\delta_3((q, r), \ell) = (\delta_1(q, \ell), \delta_2(r, \ell))$ for $(q, r) \in Q_3$ and $\ell \in \Sigma$;
 - the starting state $q_3 = (q_1, q_2)$; and
 - $F_3 = (Q_1 \times F_2) \cup (F_1 \times Q_2)$

3. (a) A DFA for
$$C = \{ w \in \Sigma^* \mid w = sbab \text{ for some } s \in \Sigma^* \}, \Sigma = \{a, b\}$$
, is below:

A 5-tuple description of the DFA above is $M = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{a, b\}$
- The transition function $\delta: Q \times \Sigma \to Q$ is defined as

	a	b
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_1	q_4
q_4	q_3	q_2

- q_1 is the start state
- $F = \{q_4\}$

There are infinitely many other correct DFAs for C.

- (b) A regular expression for C is $(a \cup b)^*bab$. There are infinitely many other correct regular expressions for C.
- 4. A CFG for $D = \{ c^i b^j c^k \mid i, j, k \ge 0, i = j + k \}$ is $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{b, c\}$; and rules

$$\begin{array}{rcl} S & \to & cSc \mid X \\ X & \to & cXb \mid \varepsilon \end{array}$$

There are infinitely many other correct CFGs for D. For example, we could define R to instead be

$$\begin{array}{rcl} S & \rightarrow & cSc \mid X \mid \varepsilon \\ X & \rightarrow & cXb \mid cb \mid \varepsilon \end{array}$$

5. Language $E = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}} \text{ and } w \text{ has even length } \}$ with $\Sigma = \{0, 1\}$ is nonregular. We prove this by contradiction. Suppose that E is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string

$$s = a^p b b a^p$$
.

Note that $s \in E$ because $s^{\mathcal{R}} = s$ and its length |s| = 2p + 2 = 2(p+1) is even. Also, the length of s is |s| = 2p + 2 > p, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that s = xyz and

- (i) $xy^i z \in E$ for each $i \ge 0$,
- (ii) |y| > 0,
- (iii) $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the a's at the beginning, followed by bba^p . The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$x = a^{j} \text{ for some } j \ge 0,$$

$$y = a^{k} \text{ for some } k \ge 1,$$

$$z = a^{m} b b a^{p} \text{ for some } m \ge 0.$$

Since $a^p b b a^p = s = xyz = a^j a^k a^m b b a^p = a^{j+k+m} b b a^p$, we must have that

$$j + k + m = p$$
, where $k \ge 1$

by (ii). The first property implies that $xy^2z \in E$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m}bba^{p}$$
$$= a^{p+k}bba^{p} \notin E$$

because $(a^{p+k}bba^p)^{\mathcal{R}} = a^pbba^{p+k}$ is not the same as $a^{p+k}bba^p$ since $k \ge 1$. Because the pumped string $xy^2z \notin E$, we have a contradiction. Therefore, E is a nonregular language.

A string that will not work for getting a contradiction is $s = 0^p \in E$, which has $|s| \ge p$, so the pumping lemma will apply. Then we could let $x = z = \varepsilon$ and $y = 0^p$, and every pumped string $xy^i z = 0^{ip} \in E$, so there is no contradiction. There are many other strings that won't work.

- 6. (This is HW 7, problem 2b.) We have to prove that the class of Turing-recognizable languages is closed under union. To do this, suppose that L_1 and L_2 are Turing-recognizable languages, and we need to show that their union $A_1 \cup A_2$ is also Turing-recognizable. Let M_1 and M_2 be TMs that recognize L_1 and L_2 , respectively. We construct a TM M' that recognizes the union $L_1 \cup L_2$:
 - M' = "On input string w:
 - 1. Run M_1 and M_2 alternately on w, one step at a time. If either accepts, *accept*. If both halt and reject, *reject*.

To see why M' recognizes $L_1 \cup L_2$, first consider $w \in L_1 \cup L_2$. Then w is in L_1 or in L_2 (or both). If $w \in L_1$, then M_1 accepts w, so M' will eventually accept w. Similarly, if $w \in L_2$, then M_2 accepts w, so M' will eventually accept w. On the other hand, if $w \notin L_1 \cup L_2$, then $w \notin L_1$ and $w \notin L_2$. Thus, neither M_1 nor M_2 accepts w, so M'will also not accept w. Hence, M' recognizes $L_1 \cup L_2$. Note that if neither M_1 nor M_2 accepts w and one of them does so by looping, then M' will loop, but this is fine because we only needed M' to recognize and not decide $L_1 \cup L_2$.

- 7. $q_1bbab#abb$ $xq_3bab#abb$ $xbq_3ab#abb$ $xbaq_3b#abb$ $xbabq_3#abb$ $xbab#q_5abb$ $xbab#aq_{reject}bb$
- 8. Multiple answers
 - (a) For the given relations, the following are true:
 - F is a subset of D
 - N = R
 - P is a subset of T
 - N is a subset of G

The rest are not true.

(b) The given PDA recognizes the language $A = \{ w \in \{0,1\}^* \mid w = w^{\mathcal{R}}, |w| \text{ is odd } \};$ see HW 6, problem 1b. Two of the given CFGs will generate A: rules

$$S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1$$

and rules

$$S \rightarrow 0S0 | X | Y$$
$$X \rightarrow 1X1 | S$$
$$Y \rightarrow 0 | 1$$

None of the other CFGs are correct.

(c) The class of CFLs is closed under union, concatenation, and Kleene star, but not under intersection and complements.

- (d) The class of finite languages is closed under union, intersection, and concatenation. To see why the class is not closed under complementation, the finite language $A = \{\varepsilon, a, b\}$ with alphabet $\Sigma = \{a, b\}$ has complement $\overline{A} = \{w \in \Sigma^* \mid |w| \ge 2\}$, which is infinite. Similarly, to see why the class is not closed under Kleene star, the same finite A has $A^* = \Sigma^*$, which is infinite.
- (e) Language A is context-free, so there is a PDA, Turing machine, k-tape Turing machine and nondeterministic Turing machine that will recognize A.