CS 341-451, Fall 2021, eLearning (online) Section Solutions for Midterm 1

1. (a) True. If A has an NFA, then it is regular, and all regular languages are contextfree.
(b) False. Suppose that A is a nonregular language defined over an alphabet Σ. Let $B=\bar{A}$ be the complement of A, so $B=\Sigma^{*}-A$. We must have that B is also nonregular because if B were regular, then \bar{B} would also be regular, but $\bar{B}=A$, which we assumed is nonregular. Now note that $A \cup B=A \cup \bar{A}=\Sigma^{*}$, which is regular.
(c) False. Let $A=\left\{a^{n} b^{n} c^{n} \mid n \geq\right\}$ and $B=\left\{c^{n} b^{n} a^{n} \mid n \geq\right\}$, which are both non-context-free. Note that $A \cap B=\{\varepsilon\}$, which is finite, so the intersection is regular, which implies that it is also context-free.
(d) False. The language a^{*} is regular but infinite.
(e) True. Suppose that language A is Turing-decidable, and we want to prove that its complement \bar{A} is also Turing-decidable. Because A is Turing-decidable, there is a TM M that decides A. Specifically, M accepts each string $w \in A$, and M rejects each string $w \notin A$, so M never loops. Now define another TM M^{\prime} to be the same as M but with the accept and reject states swapped. Now M^{\prime} accepts each string $w \notin A$, and M^{\prime} rejects each string $w \in A$, and M^{\prime} never loops. Thus, M^{\prime} decides \bar{A}, so \bar{A} is decidable.
(f) False. HW 6, problem 2(a).
(g) False. The language A is non-context-free, which can be proven using the same basic proof on slides 2-96 and 2-97, so A cannot have a CFG.
(h) True. To verify this, we need to show that every Turing-decidable language is also Turing-recognizable. Suppose that A is Turing-decidable. Then there is a TM M that decides A, so M also recognizes A. Thus, A is also Turing-recognizable.
(i) False. The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular. But A is also non-context-free (slides 2-96 and 2-97), so A cannot have a context-free grammar.
(j) True. By Kleene's theorem, the class of languages having regular expressions is the class of regular languages, which is closed under concatenation by Theorem 1.26.
2. (a) $b^{*}\left(b a^{*} b \cup a\right) a b^{*}$. Other regular expressions for the language include $b^{*} b a^{*} b a b^{*} \cup$ $b^{*} a a b^{*}$ and $b^{*}\left(b a^{*} b \cup a\right) a b^{*} \cup \emptyset$. There are infinitely many correct regular expressions for the language.
(b) $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $S_{3} \notin V_{1} \cup V_{2}$, where

- $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$,
- S_{3} is the (new) starting variable,
- Σ is the same alphabet of terminals as in G_{1} and G_{2}, and
- $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{2} S_{1}\right\}$.
(c) After the one step of removing $A \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \mid \varepsilon \\
S & \rightarrow A S A 0 A \mid A A 0 A \\
A & \rightarrow 0 S A|0 A| 0 S A 1 S 01 A|0 A 1 S 01 A| 0 S A 101 A|0 A 101 A| \varepsilon
\end{aligned}
$$

(d) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where

- $Q_{3}=Q_{1} \times Q_{2}$;
- Σ is the same alphabet as M_{1} and M_{2} have;
- the transition function δ_{3} satisfies $\delta_{3}((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in$ Q_{3} and $\ell \in \Sigma$;
- the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and
- $F_{3}=\left(Q_{1} \times F_{2}\right) \cup\left(F_{1} \times Q_{2}\right)$

3. (a) A DFA for $C=\left\{w \in \Sigma^{*} \mid w=s b a b\right.$ for some $\left.s \in \Sigma^{*}\right\}, \Sigma=\{a, b\}$, is below:

A 5-tuple description of the DFA above is $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- The transition function $\delta: Q \times \Sigma \rightarrow Q$ is defined as

	a	b
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{1}	q_{4}
q_{4}	q_{3}	q_{2}

- q_{1} is the start state
- $F=\left\{q_{4}\right\}$

There are infinitely many other correct DFAs for C.
(b) A regular expression for C is $(a \cup b)^{*} b a b$. There are infinitely many other correct regular expressions for C.
4. A CFG for $D=\left\{c^{i} b^{j} c^{k} \mid i, j, k \geq 0, i=j+k\right\}$ is $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow c S c \mid X \\
X & \rightarrow c X b \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for D. For example, we could define R to instead be

$$
\begin{aligned}
S & \rightarrow c S c|X| \varepsilon \\
X & \rightarrow c X b|c b| \varepsilon
\end{aligned}
$$

5. Language $E=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right.$ and w has even length $\}$ with $\Sigma=\{0,1\}$ is nonregular. We prove this by contradiction. Suppose that E is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string

$$
s=a^{p} b b a^{p} .
$$

Note that $s \in E$ because $s^{\mathcal{R}}=s$ and its length $|s|=2 p+2=2(p+1)$ is even. Also, the length of s is $|s|=2 p+2>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(i) $x y^{i} z \in E$ for each $i \geq 0$,
(ii) $|y|>0$,
(iii) $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third property implies that x and y consist only of a 's. So z will be the rest of the a 's at the beginning, followed by $b b a^{p}$. The second property states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b b a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{p} b b a^{p}=s=x y z=a^{j} a^{k} a^{m} b b a^{p}=a^{j+k+m} b b a^{p}$, we must have that

$$
j+k+m=p, \text { where } k \geq 1
$$

by (ii). The first property implies that $x y^{2} z \in E$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b b a^{p} \\
& =a^{p+k} b b a^{p} \notin E
\end{aligned}
$$

because $\left(a^{p+k} b b a^{p}\right)^{\mathcal{R}}=a^{p} b b a^{p+k}$ is not the same as $a^{p+k} b b a^{p}$ since $k \geq 1$. Because the pumped string $x y^{2} z \notin E$, we have a contradiction. Therefore, E is a nonregular language.
A string that will not work for getting a contradiction is $s=0^{p} \in E$, which has $|s| \geq p$, so the pumping lemma will apply. Then we could let $x=z=\varepsilon$ and $y=0^{p}$, and every pumped string $x y^{i} z=0^{i p} \in E$, so there is no contradiction. There are many other strings that won't work.
6. (This is HW 7, problem 2b.) We have to prove that the class of Turing-recognizable languages is closed under union. To do this, suppose that L_{1} and L_{2} are Turingrecognizable languages, and we need to show that their union $A_{1} \cup A_{2}$ is also Turingrecognizable. Let M_{1} and M_{2} be TMs that recognize L_{1} and L_{2}, respectively. We construct a TM M^{\prime} that recognizes the union $L_{1} \cup L_{2}$:

$$
M^{\prime}=\text { "On input string } w \text { : }
$$

1. Run M_{1} and M_{2} alternately on w, one step at a time. If either accepts, accept. If both halt and reject, reject.

To see why M^{\prime} recognizes $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \in L_{2}$, then M_{2} accepts w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, neither M_{1} nor M_{2} accepts w, so M^{\prime} will also not accept w. Hence, M^{\prime} recognizes $L_{1} \cup L_{2}$. Note that if neither M_{1} nor M_{2} accepts w and one of them does so by looping, then M^{\prime} will loop, but this is fine because we only needed M^{\prime} to recognize and not decide $L_{1} \cup L_{2}$.
7. $q_{1} b b a b \# a b b \quad x q_{3} b a b \# a b b \quad x b q_{3} a b \# a b b \quad x b a q_{3} b \# a b b \quad x b a b q_{3} \# a b b \quad x b a b \# q_{5} a b b$ $x b a b \# a q_{\text {reject }} b b$
8. Multiple answers
(a) For the given relations, the following are true:

- F is a subset of D
- $\mathrm{N}=\mathrm{R}$
- P is a subset of T
- N is a subset of G

The rest are not true.
(b) The given PDA recognizes the language $A=\left\{w \in\{0,1\}^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is odd $\}$; see HW 6, problem 1b. Two of the given CFGs will generate A : rules

$$
S \rightarrow 0 S 0|1 S 1| 0 \mid 1
$$

and rules

$$
\begin{aligned}
S & \rightarrow 0 S 0|X| Y \\
X & \rightarrow 1 X 1 \mid S \\
Y & \rightarrow 0 \mid 1
\end{aligned}
$$

None of the other CFGs are correct.
(c) The class of CFLs is closed under union, concatenation, and Kleene star, but not under intersection and complements.
(d) The class of finite languages is closed under union, intersection, and concatenation. To see why the class is not closed under complementation, the finite language $A=\{\varepsilon, a, b\}$ with alphabet $\Sigma=\{a, b\}$ has complement $\bar{A}=\left\{w \in \Sigma^{*}| | w \mid \geq 2\right\}$, which is infinite. Similarly, to see why the class is not closed under Kleene star, the same finite A has $A^{*}=\Sigma^{*}$, which is infinite.
(e) Language A is context-free, so there is a PDA, Turing machine, k-tape Turing machine and nondeterministic Turing machine that will recognize A.

