
CS 341-451, Fall 2021, eLearning (online) Section
Solutions for Midterm 1

1. (a) True. If A has an NFA, then it is regular, and all regular languages are context-
free.

(b) False. Suppose that A is a nonregular language defined over an alphabet Σ. Let
B = A be the complement of A, so B = Σ∗ − A. We must have that B is also
nonregular because if B were regular, then B would also be regular, but B = A,
which we assumed is nonregular. Now note that A ∪ B = A ∪ A = Σ∗, which is
regular.

(c) False. Let A = { anbncn | n ≥} and B = { cnbnan | n ≥}, which are both non-
context-free. Note that A∩B = {ε}, which is finite, so the intersection is regular,
which implies that it is also context-free.

(d) False. The language a∗ is regular but infinite.

(e) True. Suppose that language A is Turing-decidable, and we want to prove that
its complement A is also Turing-decidable. Because A is Turing-decidable, there
is a TM M that decides A. Specifically, M accepts each string w ∈ A, and M

rejects each string w 6∈ A, so M never loops. Now define another TM M ′ to be
the same as M but with the accept and reject states swapped. Now M ′ accepts
each string w 6∈ A, and M ′ rejects each string w ∈ A, and M ′ never loops. Thus,
M ′ decides A, so A is decidable.

(f) False. HW 6, problem 2(a).

(g) False. The language A is non-context-free, which can be proven using the same
basic proof on slides 2-96 and 2-97, so A cannot have a CFG.

(h) True. To verify this, we need to show that every Turing-decidable language is also
Turing-recognizable. Suppose that A is Turing-decidable. Then there is a TM M

that decides A, so M also recognizes A. Thus, A is also Turing-recognizable.

(i) False. The language A = { anbncn | n ≥ 0 } is nonregular. But A is also non-
context-free (slides 2-96 and 2-97), so A cannot have a context-free grammar.

(j) True. By Kleene’s theorem, the class of languages having regular expressions is the
class of regular languages, which is closed under concatenation by Theorem 1.26.

2. (a) b∗(ba∗b ∪ a)ab∗. Other regular expressions for the language include b∗ba∗bab∗ ∪
b∗aab∗ and b∗(ba∗b∪a)ab∗∪ ∅. There are infinitely many correct regular expressions
for the language.

(b) G3 = (V3,Σ, R3, S3) with S3 6∈ V1 ∪ V2, where

� V3 = V1 ∪ V2 ∪ {S3},

� S3 is the (new) starting variable,

� Σ is the same alphabet of terminals as in G1 and G2, and

� R3 = R1 ∪R2 ∪ {S3 → S2S1}.

1

(c) After the one step of removing A → ε, the CFG is then

S0 → S | ε

S → ASA0A | AA0A

A → 0SA | 0A | 0SA1S01A | 0A1S01A | 0SA101A | 0A101A | ε

(d) M3 = (Q3,Σ, δ3, q3, F3), where

� Q3 = Q1 ×Q2;

� Σ is the same alphabet as M1 and M2 have;

� the transition function δ3 satisfies δ3((q, r), ℓ) = (δ1(q, ℓ), δ2(r, ℓ)) for (q, r) ∈
Q3 and ℓ ∈ Σ;

� the starting state q3 = (q1, q2); and

� F3 = (Q1 × F2) ∪ (F1 ×Q2)

3. (a) A DFA for C = {w ∈ Σ∗ | w = sbab for some s ∈ Σ∗ }, Σ = {a, b}, is below:

q1 q2 q3 q4

a

b a

b

a

b

a

b

A 5-tuple description of the DFA above is M = (Q,Σ, δ, q1, F), where

� Q = {q1, q2, q3, q4}

� Σ = {a, b}

� The transition function δ : Q× Σ → Q is defined as

a b

q1 q1 q2
q2 q3 q2
q3 q1 q4
q4 q3 q2

� q1 is the start state

� F = {q4}

There are infinitely many other correct DFAs for C.

(b) A regular expression for C is (a ∪ b)∗bab. There are infinitely many other correct
regular expressions for C.

4. A CFG for D = { cibjck | i, j, k ≥ 0, i = j+k } is G = (V,Σ, R, S) with set of variables
V = {S,X}, where S is the start variable; set of terminals Σ = {b, c}; and rules

S → cSc | X

X → cXb | ε

2

There are infinitely many other correct CFGs for D. For example, we could define R

to instead be

S → cSc | X | ε

X → cXb | cb | ε

5. Language E = {w ∈ Σ∗ | w = wR and w has even length } with Σ = {0, 1} is nonreg-
ular. We prove this by contradiction. Suppose that E is a regular language. Let p be
the “pumping length” of the Pumping Lemma. Consider the string

s = apbbap.

Note that s ∈ E because sR = s and its length |s| = 2p + 2 = 2(p + 1) is even. Also,
the length of s is |s| = 2p + 2 > p, so the Pumping Lemma will hold. Thus, there
exists strings x, y, and z such that s = xyz and

(i) xyiz ∈ E for each i ≥ 0,

(ii) |y| > 0,

(iii) |xy| ≤ p.

Since the first p symbols of s are all a’s, the third property implies that x and y consist
only of a’s. So z will be the rest of the a’s at the beginning, followed by bbap. The
second property states that |y| > 0, so y has at least one a. More precisely, we can
then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambbap for some m ≥ 0.

Since apbbap = s = xyz = ajakambbap = aj+k+mbbap, we must have that

j + k +m = p, where k ≥ 1

by (ii). The first property implies that xy2z ∈ E, but

xy2z = ajakakambbap

= ap+kbbap 6∈ E

because (ap+kbbap)R = apbbap+k is not the same as ap+kbbap since k ≥ 1. Because
the pumped string xy2z 6∈ E, we have a contradiction. Therefore, E is a nonregular
language.

A string that will not work for getting a contradiction is s = 0p ∈ E, which has |s| ≥ p,
so the pumping lemma will apply. Then we could let x = z = ε and y = 0p, and every
pumped string xyiz = 0ip ∈ E, so there is no contradiction. There are many other
strings that won’t work.

3

6. (This is HW 7, problem 2b.) We have to prove that the class of Turing-recognizable
languages is closed under union. To do this, suppose that L1 and L2 are Turing-
recognizable languages, and we need to show that their union A1 ∪ A2 is also Turing-
recognizable. Let M1 and M2 be TMs that recognize L1 and L2, respectively. We
construct a TM M ′ that recognizes the union L1 ∪ L2:

M ′ = “On input string w:

1. Run M1 and M2 alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.

To see why M ′ recognizes L1∪L2, first consider w ∈ L1∪L2. Then w is in L1 or in L2

(or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept w. Similarly,
if w ∈ L2, then M2 accepts w, so M ′ will eventually accept w. On the other hand, if
w 6∈ L1 ∪ L2, then w 6∈ L1 and w 6∈ L2. Thus, neither M1 nor M2 accepts w, so M ′

will also not accept w. Hence, M ′ recognizes L1 ∪ L2. Note that if neither M1 nor
M2 accepts w and one of them does so by looping, then M ′ will loop, but this is fine
because we only needed M ′ to recognize and not decide L1 ∪ L2.

7. q1bbab#abb xq3bab#abb xbq3ab#abb xbaq3b#abb xbabq3#abb xbab#q5abb

xbab#aqrejectbb

8. Multiple answers

(a) For the given relations, the following are true:

� F is a subset of D

� N = R

� P is a subset of T

� N is a subset of G

The rest are not true.

(b) The given PDA recognizes the language A = {w ∈ {0, 1}∗ | w = wR, |w| is odd };
see HW 6, problem 1b. Two of the given CFGs will generate A: rules

S → 0S0 | 1S1 | 0 | 1

and rules

S → 0S0 |X | Y

X → 1X1 |S

Y → 0 | 1

None of the other CFGs are correct.

(c) The class of CFLs is closed under union, concatenation, and Kleene star, but not
under intersection and complements.

4

(d) The class of finite languages is closed under union, intersection, and concatenation.
To see why the class is not closed under complementation, the finite language
A = {ε, a, b} with alphabet Σ = {a, b} has complement A = {w ∈ Σ∗ | |w| ≥ 2},
which is infinite. Similarly, to see why the class is not closed under Kleene star,
the same finite A has A∗ = Σ∗, which is infinite.

(e) Language A is context-free, so there is a PDA, Turing machine, k-tape Turing
machine and nondeterministic Turing machine that will recognize A.

5

