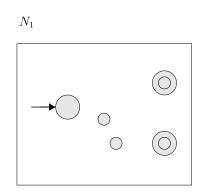
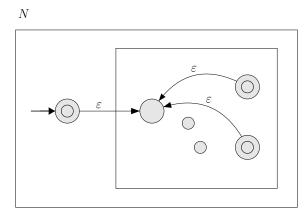
CS 341, Fall 2021, Hybrid Section Solutions for Midterm 1

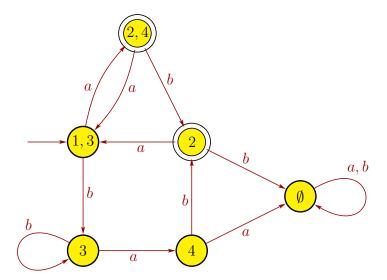
- 1. (a) False. Homework 6, problem 2(c).
 - (b) True. HW 4, problem 5(a).
 - (c) True. HW 4, problem 5(c).
 - (d) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
 - (e) False. The language with regular expression 1* is regular by Kleene's Theorem (Theorem 1.54), but this language is infinite.
 - (f) True. By HW 2, problem 3, we know that \overline{A} is regular. Because \overline{A} and B are regular, then $\overline{A} \cup B$ is regular by Theorem 1.25. Theorem 1.49 then implies $(\overline{A} \cup B)^*$ is regular.
 - (g) False. See HW 6, problem 2(a).
 - (h) False. For example, $A = \{0^n 1^n 0^n \mid n \ge 0\}$ is a subset of $B = L((0 \cup 1)^*)$, but A is non-context-free and B is context-free.
 - (i) False. The language $\{a^nb^n \mid n \leq 30\} = \{\varepsilon, ab, a^2b^2, a^3b^3, \dots, a^{30}b^{30}\}$ is finite. Thus, slide 1-95 implies the language is regular.
 - (j) True. Because A has a regular expression, A is a regular language by Theorem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.
- 2. (a) $0*1(10*1 \cup 0)*$ There are infinitely many other correct regular expressions for this language.
 - (b) $(aa \cup b)a^*ba^*$. Another regular expression is $(aaa^* \cup ba^*)ba^*$. There are infinitely many correct regular expressions for this language.
 - (c) As on slide 1-66 of the notes, if A_1 is defined by NFA N_1 , then an NFA N for A_1^* is as below:





(d) (Homework 5, problem 3b.) Assume that $S_3 \notin V_1 \cup V_2$. Then a CFG for $A_1 \circ A_2$ is $G_3 = (V_3, \Sigma, R_3, S_3)$ with $V_3 = V_1 \cup V_2 \cup \{S_3\}$ and $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_1 S_2\}$.

3. A DFA for C is below:

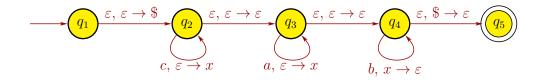


4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$S \rightarrow cSb \mid X$$
$$X \rightarrow aXb \mid \varepsilon$$

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:



In the above PDA, state q_2 pushes an x for each c read, state q_3 pushes an x for each a read, and state q_4 pops an x for each b read to match the c's and a's.

- 5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = a^p b a^p b a^p b$. Note that $s \in A$ because s = www with $w = a^p b$. Also, we have that |s| = 3p + 3 > p, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz and
 - (a) $xy^iz \in A$ for each $i \ge 0$,
 - (b) |y| > 0,

(c)
$$|xy| \leq p$$
.

Because the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the first set of a's (possibly none), followed by ba^pba^pb . The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$x = a^{j}$$
 for some $j \ge 0$,
 $y = a^{k}$ for some $k \ge 1$,
 $z = a^{m}ba^{p}ba^{p}b$ for some $m > 0$.

Because

$$a^pba^pba^pb = s = xyz = a^ja^ka^mba^pba^pb = a^{j+k+m}ba^pba^pb,$$

we must have that

$$j + k + m = p$$
 and $k \ge 1$.

The first property implies that the pumped string $xy^2z \in A$, but

$$xy^2z = a^j a^k a^k a^m b a^p b a^p b$$
$$= a^{p+k} b a^p b a^p b \not\in A.$$

To see why $a^{p+k}ba^pba^pb \not\in A$, note that when we split the original string $s=a^pba^pba^pb$ into equal thirds, each third was exactly the same, i.e., a^pb . But if we split the pumped string $a^{p+k}ba^pba^pb$ into equal thirds, the splitting locations shift to the left because k>0, so the first third has only a's. But there are b's in the at least one of the other thirds, so we see that the pumped string $a^{p+k}ba^pba^pb$ cannot be written as www for some $w\in\Sigma^*$, i.e., $a^{p+k}ba^pba^pb\not\in A$, which contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.

Note that if you instead chose the string $s = a^p a^p a^p = a^{3p}$, you would not get a contradiction. This is because you could then choose x, y, z with $y = a^3$, and for any $i \ge 0$, the pumped string is

$$xy^{i}z = a^{3p+3(i-1)} = a^{3(p+i-1)} = a^{p+i-1}a^{p+i-1}a^{p+i-i} \in A,$$

so the first property of the pumping lemma holds, and there is no contradiction.