
CS 341-003, Fall 2021
Solutions for Midterm 2, Hybrid

1. (a) False, by Theorem 3.16.

(b) True, by slide 4-25.

(c) False, e.g., if A = {00, 11} and B = {00, 11, 111}, then A∩B = ∅ but A ̸= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩B) = ∅.

(d) False. A TM M may loop on input w.

(e) False. ATM is not Turing-recognizable by Corollary 4.23.

(f) True, because the definition of Turing-decidable is more restrictive than the
definition of Turing-recognizable.

(g) True, by Theorem 3.13.

(h) False, because the set N = {1, 2, 3, . . .} is countable.

(i) True, because every regular language is context-free by Corollary 2.32, and
every context-free language is decidable by Theorem 4.9.

(j) True, by slide 4-38.

2. (a) Yes, because each element of D maps to a different element in R.

(b) No, because nothing in D maps to 2 ∈ R.

(c) No, because f is not one-to-one.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w ̸∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1b#b xq3#b x#q5b xq6#x q7x#x xq1#x x#q8x x#xq8
x#x⌞⌟qaccept

4. (This is problem 2a from Homework 7.) For any two decidable languages L1 and
L2, let M1 and M2, respectively be the TMs that decide them. We construct a
TM M ′ that decides the union of L1 and L2:

M ′ = “On input string w:

1. Run M1 on w. If it accepts, accept.

2. Run M2 on w. If it accepts, accept. Otherwise, reject.”

To see why M ′ decides L1 ∪ L2, first consider w ∈ L1 ∪ L2. Then w is in L1 or
in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept w.
Similarly, if w ̸∈ L1 but w ∈ L2, then M1 will reject w because M1 is a decider
(i.e., M1 never loops), and M2 will accept w, so M ′ will eventually accept w. On
the other hand, if w ̸∈ L1 ∪ L2, then w ̸∈ L1 and w ̸∈ L2. Thus, both M1 and M2

reject w, so M ′ rejects w ̸∈ L1 ∪ L2. Hence, M
′ decides L1 ∪ L2.
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5. (From slides 4-39 and 4-40). Let L be the collection of languages over an alphabet
Σ, and let B be the set of infinite binary strings, which we know is uncountable
(by a diagonalization argument, on slide 4-39). We will show that there is a
correspondence between L and B, so they have the same size. Let s1, s2, s3, . . .
be an enumeration of the strings in Σ∗, e.g., the enumeration can list the strings
in string order. Define mapping χ : L → B such that for a language A ∈ L, the
nth bit of χ(A) is 1 if and only if the nth string sn ∈ A. We now show χ is a
correspondence.

� To show that χ is one-to-one, suppose that A1, A2 ∈ L with A1 ̸= A2. Then
there is some string si such that si is in one of the languages but not the
other. Then χ(A1) and χ(A2) differ in the ith bit, so χ is one-to-one.

� To show that χ is onto, consider any infinite binary sequence b = b1b2b3 . . . ∈
B. Consider the language A that includes all strings si for which bi = 1 and
does not include any string bj for which bj = 0. Then χ(A) = b, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, L and B have the
same size, so L is uncountable because B is uncountable.

6. (This is half of Theorem 4.22.) Because A is Turing-recognizable, there is a TM M
with L(M) = A. Because A is co-Turing-recognizable, A is Turing-recognizable,
so there is a TM M ′ with L(M ′) = A. Any string w ∈ Σ∗ is either in A or A but
not both, so either M or M ′ (but not both) must accept w. Now build another
TM D as follows:

D = “On input string w:

1. Alternate running one step on each of M and M ′, both on input w.

2. If M accepts w, accept. If M ′ accepts w, reject.

Because exactly one of M or M ′ will accept w, we see that D can’t loop. Also, if
w ∈ A, then M is the TM that will accept, so D accepts w. If w ̸∈ A, then M ′ is
the TM that will accept, so D rejects w. Hence, D decides A, so A is decidable.

7. The language of the decision problem is

A = { ⟨N⟩ | N is an NFA that accepts at least one string that begins with 01 }.

For alphabet Σ = {0, 1}, consider the regular expression R = 01(0 ∪ 1)∗, so L(R)
is the language of strings over Σ that begins with 01. Because L(R) has a regular
expression, it is regular. For any NFA N , its language L(N) is regular by Corollary
1.40. Let T be a Turing machine that decides EDFA, as in the proof of Theorem 4.4.
For a given NFAN , we have that its encoding ⟨N⟩ ∈ A if and only if L(N)∩L(R) ̸=
∅, and we know that L(N)∩L(R) is regular because the class of regular languages
is closed under intersection (slide 1-34). Thus, a Turing machine that decides A is

2



as follows:

S = “On input ⟨N⟩, where N is an NFA:

1. For the regular expression R = 01(0 ∪ 1)∗,

construct DFA D that recognizes L(N) ∩ L(R),

which is possible because L(N) and L(R) are regular,

and the class of regular languages is closed under intersection.

2. Run TM T that decides EDFA on input ⟨D⟩.
If T rejects ⟨D⟩, accept. Otherwise, reject.”
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