CS 341-003, Fall 2021

Solutions for Midterm 2, Hybrid

1. (a) False, by Theorem 3.16.
(b) True, by slide 4-25.
(c) False, e.g., if $A=\{00,11\}$ and $B=\{00,11,111\}$, then $A \cap \bar{B}=\emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(d) False. A TM M may loop on input w.
(e) False. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable by Corollary 4.23.
(f) True, because the definition of Turing-decidable is more restrictive than the definition of Turing-recognizable.
(g) True, by Theorem 3.13.
(h) False, because the set $\mathcal{N}=\{1,2,3, \ldots\}$ is countable.
(i) True, because every regular language is context-free by Corollary 2.32, and every context-free language is decidable by Theorem 4.9.
(j) True, by slide 4-38.
2. (a) Yes, because each element of D maps to a different element in R.
(b) No, because nothing in D maps to $2 \in R$.
(c) No, because f is not one-to-one.
(d) A language L_{1} that is Turing-recognizable is recognized by a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turingdecidable is recognized by a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} b \# b \quad x q_{3} \# b \quad x \# q_{5} b \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
4. (This is problem 2a from Homework 7.) For any two decidable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively be the TMs that decide them. We construct a TM M^{\prime} that decides the union of L_{1} and L_{2} :

$$
\begin{aligned}
M^{\prime}= & \text { "On input string } w \text { : } \\
& \text { 1. Run } M_{1} \text { on } w . \text { If it accepts, accept. } \\
& \text { 2. Run } M_{2} \text { on } w \text {. If it accepts, accept. Otherwise, reject." }
\end{aligned}
$$

To see why M^{\prime} decides $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \notin L_{1}$ but $w \in L_{2}$, then M_{1} will reject w because M_{1} is a decider (i.e., M_{1} never loops), and M_{2} will accept w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, both M_{1} and M_{2} reject w, so M^{\prime} rejects $w \notin L_{1} \cup L_{2}$. Hence, M^{\prime} decides $L_{1} \cup L_{2}$.
5. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ, and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable (by a diagonalization argument, on slide 4-39). We will show that there is a correspondence between \mathcal{L} and \mathcal{B}, so they have the same size. Let $s_{1}, s_{2}, s_{3}, \ldots$ be an enumeration of the strings in Σ^{*}, e.g., the enumeration can list the strings in string order. Define mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the nth bit of $\chi(A)$ is 1 if and only if the nth string $s_{n} \in A$. We now show χ is a correspondence.

- To show that χ is one-to-one, suppose that $A_{1}, A_{2} \in \mathcal{L}$ with $A_{1} \neq A_{2}$. Then there is some string s_{i} such that s_{i} is in one of the languages but not the other. Then $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ in the i th bit, so χ is one-to-one.
- To show that χ is onto, consider any infinite binary sequence $b=b_{1} b_{2} b_{3} \ldots \in$ \mathcal{B}. Consider the language A that includes all strings s_{i} for which $b_{i}=1$ and does not include any string b_{j} for which $b_{j}=0$. Then $\chi(A)=b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.
6. (This is half of Theorem 4.22.) Because A is Turing-recognizable, there is a TM M with $L(M)=A$. Because A is co-Turing-recognizable, \bar{A} is Turing-recognizable, so there is a TM M^{\prime} with $L\left(M^{\prime}\right)=\bar{A}$. Any string $w \in \Sigma^{*}$ is either in A or \bar{A} but not both, so either M or M^{\prime} (but not both) must accept w. Now build another TM D as follows:
$D=$ "On input string w :

1. Alternate running one step on each of M and M^{\prime}, both on input w.
2. If M accepts w, accept. If M^{\prime} accepts w, reject.

Because exactly one of M or M^{\prime} will accept w, we see that D can't loop. Also, if $w \in A$, then M is the TM that will accept, so D accepts w. If $w \notin A$, then M^{\prime} is the TM that will accept, so D rejects w. Hence, D decides A, so A is decidable.
7. The language of the decision problem is
$A=\{\langle N\rangle \mid N$ is an NFA that accepts at least one string that begins with 01$\}$.
For alphabet $\Sigma=\{0,1\}$, consider the regular expression $R=01(0 \cup 1)^{*}$, so $L(R)$ is the language of strings over Σ that begins with 01 . Because $L(R)$ has a regular expression, it is regular. For any NFA N, its language $L(N)$ is regular by Corollary 1.40. Let T be a Turing machine that decides E_{DFA}, as in the proof of Theorem 4.4. For a given NFA N, we have that its encoding $\langle N\rangle \in A$ if and only if $L(N) \cap L(R) \neq$ \emptyset, and we know that $L(N) \cap L(R)$ is regular because the class of regular languages is closed under intersection (slide 1-34). Thus, a Turing machine that decides A is
as follows:
$S=$ "On input $\langle N\rangle$, where N is an NFA:

1. For the regular expression $R=01(0 \cup 1)^{*}$, construct DFA D that recognizes $L(N) \cap L(R)$, which is possible because $L(N)$ and $L(R)$ are regular, and the class of regular languages is closed under intersection.
2. Run TM T that decides $E_{\text {DFA }}$ on input $\langle D\rangle$. If T rejects $\langle D\rangle$, accept. Otherwise, reject."
