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Solutions for Midterm 2, Hybrid

1. (a) False. ATM is not Turing-recognizable by Corollary 4.23.

(b) False. Theorem 4.11 shows that ATM is undecidable, so no TM can decide
ATM. The universal TM recognizes ATM but doesn’t decide it.

(c) False. For example, for Σ = {0}, consider languages A = {0} and B =
{0, 00}, both of which are subsets of the universe Σ∗. Then A 6= B and
A ∩B = {00} 6= ∅, but A ∩B = ∅.

(d) False. The set N = {1, 2, 3, . . .} of natural numbers is infinite and countable.

(e) True. Every finite language is context-free by slide 1-95, and every regular
language is context-free by Corollary 2.32. Every context-free language is de-
cidable by Theorem 4.9, and every decidable language is Turing-recognizable
because the definition of Turing-recognizable is less restrictive than the defi-
nition of decidable (also see slide 4.55). Thus, every finite language is Turing-
recognizable.

(f) False. TM M can loop on w 6∈ L(M), so M never ends in qreject.

(g) False. For any alphabet Σ, the set Σ∗ is countable (just list the strings in
string order). Define L as the set of languages over Σ, so L is the power set
of Σ∗. But we know that L is uncountable (see slide 4-39).

(h) True. This is part of Theorem 3.21.

(i) False. Consider Σ = {a, b}, and for each k = 1, 2, 3, . . ., define a language
Lk = {ak}. Each Lk is a regular language because |Lk| = 1, so Lk is decidable.
Thus, there is a Turing machineMk that decides Lk. There are infinitely many
such languages Lk, so there are infinitely many corresponding TMs Mk.

(j) False. Let B = ℜ, which is the set of real numbers, and let A = {0}. Then
A ⊆ B, but B is countable because it is finite.

2. (a) Yes, because each element of D maps to a different element in R.

(b) No, because nothing in D maps to 2 ∈ R.

(c) No, because f is not one-to-one.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w 6∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1abba#baba xq2bba#baba xbq2ba#baba xbbq2a#baba xbbaq2#baba xbba#q4baba

xbba#bqrejectaba

4. (From slides 4-39 and 4-40). Let L be the collection of languages over an alphabet
Σ, and let B be the set of infinite binary strings, which we know is uncountable
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(by a diagonalization argument, on slide 4-39). We will show that there is a
correspondence between L and B, so they have the same size. Let s1, s2, s3, . . .

be an enumeration of the strings in Σ∗, e.g., the enumeration can list the strings
in string order. Define mapping χ : L → B such that for a language A ∈ L, the
nth bit of χ(A) is 1 if and only if the nth string sn ∈ A. We now show χ is a
correspondence.

� To show that χ is one-to-one, suppose that A1, A2 ∈ L with A1 6= A2. Then
there is some string si such that si is in one of the languages but not the
other. Then χ(A1) and χ(A2) differ in the ith bit, so χ is one-to-one.

� To show that χ is onto, consider any infinite binary sequence b = b1b2b3 . . . ∈
B. Consider the language A that includes all strings si for which bi = 1 and
does not include any string bj for which bj = 0. Then χ(A) = b, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, L and B have the
same size, so L is uncountable because B is uncountable.

5. (This is half of Theorem 3.21.) Suppose that A is Turing-recognizable, and
we need to show that there is an enumerator that enumerates A. Let M =
(Q,Σ,Γ, δ, q0, qaccept, qreject) be a Turing machine that recognizes A, and let s1, s2, . . .
be an enumeration of all strings in Σ∗, e.g., in string order. We can construct an
enumerator E for A as follows:

E = “Ignore the input.
1. Repeat the following for i = 1, 2, 3, . . .
2. Run M for i steps on each of s1, s2, . . . , si.
3. If any computation accepts, print out the corresponding string s.”

The main issue is that we cannot sequentially run M on s1, s2, s3, . . .. The problem
with doing this is that if M accepts some sj ∈ A but loops on si 6∈ A for some
i < j, then E will be stuck on si forever, so that sj will never get printed. This is
why Stage 2 runs M for only i steps on each of the first i strings.

6. The language of the decision problem is

A = { 〈N〉 |N is an NFA that accepts at least one string that has 101 as a substring }.

For alphabet Σ = {0, 1}, consider the regular expression R = (0 ∪ 1)∗101(0 ∪ 1)∗,
so L(R) is the language of strings over Σ that have 101 as a substring. Because
L(R) has a regular expression, it is regular. For any NFA N , its language L(N)
is regular by Corollary 1.40. Let T be a Turing machine that decides EDFA, as in
the proof of Theorem 4.4. For a given NFA N , we have that its encoding 〈N〉 ∈ A

if and only if L(N)∩L(R) 6= ∅, and we know that L(N)∩L(R) is regular because
the class of regular languages is closed under intersection (slide 1-34). Thus, a
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Turing machine that decides A is as follows:

S = “On input 〈N〉, where N is an NFA:

1. For the regular expression R = (0 ∪ 1)∗101(0 ∪ 1)∗,

construct DFA D that recognizes L(N) ∩ L(R),

which is possible because L(N) and L(R) are regular,

and the class of regular languages is closed under intersection.

2. Run TM T that decides EDFA on input 〈D〉.

If T rejects 〈D〉, accept. Otherwise, reject.”
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