CS 341-006, Spring 2021

 Solutions for Midterm 2, Hybrid1. (a) False. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable by Corollary 4.23.
(b) False. Theorem 4.11 shows that $A_{\text {TM }}$ is undecidable, so no TM can decide A_{TM}. The universal TM recognizes A_{TM} but doesn't decide it.
(c) False. For example, for $\Sigma=\{0\}$, consider languages $A=\{0\}$ and $B=$ $\{0,00\}$, both of which are subsets of the universe Σ^{*}. Then $A \neq B$ and $\bar{A} \cap B=\{00\} \neq \emptyset$, but $A \cap \bar{B}=\emptyset$.
(d) False. The set $\mathcal{N}=\{1,2,3, \ldots\}$ of natural numbers is infinite and countable.
(e) True. Every finite language is context-free by slide 1-95, and every regular language is context-free by Corollary 2.32. Every context-free language is decidable by Theorem 4.9, and every decidable language is Turing-recognizable because the definition of Turing-recognizable is less restrictive than the definition of decidable (also see slide 4.55). Thus, every finite language is Turingrecognizable.
(f) False. TM M can loop on $w \notin L(M)$, so M never ends in $q_{\text {reject }}$.
(g) False. For any alphabet Σ, the set Σ^{*} is countable (just list the strings in string order). Define \mathcal{L} as the set of languages over Σ, so \mathcal{L} is the power set of Σ^{*}. But we know that \mathcal{L} is uncountable (see slide 4-39).
(h) True. This is part of Theorem 3.21.
(i) False. Consider $\Sigma=\{a, b\}$, and for each $k=1,2,3, \ldots$, define a language $L_{k}=\left\{a^{k}\right\}$. Each L_{k} is a regular language because $\left|L_{k}\right|=1$, so L_{k} is decidable. Thus, there is a Turing machine M_{k} that decides L_{k}. There are infinitely many such languages L_{k}, so there are infinitely many corresponding TMs M_{k}.
(j) False. Let $B=\Re$, which is the set of real numbers, and let $A=\{0\}$. Then $A \subseteq B$, but B is countable because it is finite.
2. (a) Yes, because each element of D maps to a different element in R.
(b) No, because nothing in D maps to $2 \in R$.
(c) No, because f is not one-to-one.
(d) A language L_{1} that is Turing-recognizable is recognized by a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turingdecidable is recognized by a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} a b b a \# b a b a \quad x q_{2} b b a \# b a b a \quad x b q_{2} b a \# b a b a \quad x b b q_{2} a \# b a b a \quad x b b a q_{2} \# b a b a \quad x b b a \# q_{4} b a b a$ $x b b a \# b q_{\text {reject }} a b a$
4. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ, and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable
(by a diagonalization argument, on slide 4-39). We will show that there is a correspondence between \mathcal{L} and \mathcal{B}, so they have the same size. Let $s_{1}, s_{2}, s_{3}, \ldots$ be an enumeration of the strings in Σ^{*}, e.g., the enumeration can list the strings in string order. Define mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the nth bit of $\chi(A)$ is 1 if and only if the nth string $s_{n} \in A$. We now show χ is a correspondence.

- To show that χ is one-to-one, suppose that $A_{1}, A_{2} \in \mathcal{L}$ with $A_{1} \neq A_{2}$. Then there is some string s_{i} such that s_{i} is in one of the languages but not the other. Then $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ in the i th bit, so χ is one-to-one.
- To show that χ is onto, consider any infinite binary sequence $b=b_{1} b_{2} b_{3} \ldots \in$ \mathcal{B}. Consider the language A that includes all strings s_{i} for which $b_{i}=1$ and does not include any string b_{j} for which $b_{j}=0$. Then $\chi(A)=b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.
5. (This is half of Theorem 3.21.) Suppose that A is Turing-recognizable, and we need to show that there is an enumerator that enumerates A. Let $M=$ $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine that recognizes A, and let s_{1}, s_{2}, \ldots be an enumeration of all strings in Σ^{*}, e.g., in string order. We can construct an enumerator E for A as follows:

$$
\begin{aligned}
& E=\text { "Ignore the input. } \\
& \text { 1. Repeat the following for } i=1,2,3, \ldots \\
& \text { 2. Run } M \text { for } i \text { steps on each of } s_{1}, s_{2}, \ldots, s_{i} \text {. } \\
& \text { 3. If any computation accepts, print out the corresponding string } s . "
\end{aligned}
$$

The main issue is that we cannot sequentially run M on $s_{1}, s_{2}, s_{3}, \ldots$ The problem with doing this is that if M accepts some $s_{j} \in A$ but loops on $s_{i} \notin A$ for some $i<j$, then E will be stuck on s_{i} forever, so that s_{j} will never get printed. This is why Stage 2 runs M for only i steps on each of the first i strings.
6. The language of the decision problem is
$A=\{\langle N\rangle \mid N$ is an NFA that accepts at least one string that has 101 as a substring $\}$.
For alphabet $\Sigma=\{0,1\}$, consider the regular expression $R=(0 \cup 1)^{*} 101(0 \cup 1)^{*}$, so $L(R)$ is the language of strings over Σ that have 101 as a substring. Because $L(R)$ has a regular expression, it is regular. For any NFA N, its language $L(N)$ is regular by Corollary 1.40. Let T be a Turing machine that decides E_{DFA}, as in the proof of Theorem 4.4. For a given NFA N, we have that its encoding $\langle N\rangle \in A$ if and only if $L(N) \cap L(R) \neq \emptyset$, and we know that $L(N) \cap L(R)$ is regular because the class of regular languages is closed under intersection (slide 1-34). Thus, a

Turing machine that decides A is as follows:

$$
S=\text { "On input }\langle N\rangle \text {, where } N \text { is an NFA: }
$$

1. For the regular expression $R=(0 \cup 1)^{*} 101(0 \cup 1)^{*}$, construct DFA D that recognizes $L(N) \cap L(R)$, which is possible because $L(N)$ and $L(R)$ are regular, and the class of regular languages is closed under intersection.
2. Run TM T that decides $E_{\text {DFA }}$ on input $\langle D\rangle$.

If T rejects $\langle D\rangle$, accept. Otherwise, reject."

