CS 341-006, Spring 2021 Solutions for Midterm 2, Hybrid

- 1. (a) False. $\overline{A_{\text{TM}}}$ is not Turing-recognizable by Corollary 4.23.
 - (b) False. Theorem 4.11 shows that $A_{\rm TM}$ is undecidable, so no TM can decide $A_{\rm TM}$. The universal TM recognizes $A_{\rm TM}$ but doesn't decide it.
 - (c) False. For example, for $\Sigma = \{0\}$, consider languages $A = \{0\}$ and $B = \{0, 00\}$, both of which are subsets of the universe Σ^* . Then $A \neq B$ and $\overline{A} \cap B = \{00\} \neq \emptyset$, but $A \cap \overline{B} = \emptyset$.
 - (d) False. The set $\mathcal{N} = \{1, 2, 3, ...\}$ of natural numbers is infinite and countable.
 - (e) True. Every finite language is context-free by slide 1-95, and every regular language is context-free by Corollary 2.32. Every context-free language is decidable by Theorem 4.9, and every decidable language is Turing-recognizable because the definition of Turing-recognizable is less restrictive than the definition of decidable (also see slide 4.55). Thus, every finite language is Turingrecognizable.
 - (f) False. TM M can loop on $w \notin L(M)$, so M never ends in q_{reject} .
 - (g) False. For any alphabet Σ , the set Σ^* is countable (just list the strings in string order). Define \mathcal{L} as the set of languages over Σ , so \mathcal{L} is the power set of Σ^* . But we know that \mathcal{L} is uncountable (see slide 4-39).
 - (h) True. This is part of Theorem 3.21.
 - (i) False. Consider $\Sigma = \{a, b\}$, and for each k = 1, 2, 3, ..., define a language $L_k = \{a^k\}$. Each L_k is a regular language because $|L_k| = 1$, so L_k is decidable. Thus, there is a Turing machine M_k that decides L_k . There are infinitely many such languages L_k , so there are infinitely many corresponding TMs M_k .
 - (j) False. Let $B = \Re$, which is the set of real numbers, and let $A = \{0\}$. Then $A \subseteq B$, but B is countable because it is finite.
- 2. (a) Yes, because each element of D maps to a different element in R.
 - (b) No, because nothing in D maps to $2 \in R$.
 - (c) No, because f is not one-to-one.
 - (d) A language L_1 that is Turing-recognizable is recognized by a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable is recognized by a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. $q_1abba\#baba xq_2bba\#baba xbq_2ba\#baba xbbq_2a\#baba xbbaq_2\#baba xbba#q_4baba xbba#bq_{reject}aba$
- 4. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ , and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable

(by a diagonalization argument, on slide 4-39). We will show that there is a correspondence between \mathcal{L} and \mathcal{B} , so they have the same size. Let s_1, s_2, s_3, \ldots be an enumeration of the strings in Σ^* , e.g., the enumeration can list the strings in string order. Define mapping $\chi : \mathcal{L} \to \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the *n*th bit of $\chi(A)$ is 1 if and only if the *n*th string $s_n \in A$. We now show χ is a correspondence.

- To show that χ is one-to-one, suppose that $A_1, A_2 \in \mathcal{L}$ with $A_1 \neq A_2$. Then there is some string s_i such that s_i is in one of the languages but not the other. Then $\chi(A_1)$ and $\chi(A_2)$ differ in the *i*th bit, so χ is one-to-one.
- To show that χ is onto, consider any infinite binary sequence $b = b_1 b_2 b_3 \ldots \in \mathcal{B}$. Consider the language A that includes all strings s_i for which $b_i = 1$ and does not include any string b_j for which $b_j = 0$. Then $\chi(A) = b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.

- 5. (This is half of Theorem 3.21.) Suppose that A is Turing-recognizable, and we need to show that there is an enumerator that enumerates A. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be a Turing machine that recognizes A, and let s_1, s_2, \ldots be an enumeration of all strings in Σ^* , e.g., in string order. We can construct an enumerator E for A as follows:
 - E = "Ignore the input.
 - 1. Repeat the following for $i = 1, 2, 3, \ldots$
 - 2. Run M for i steps on each of s_1, s_2, \ldots, s_i .
 - 3. If any computation accepts, print out the corresponding string s."

The main issue is that we cannot sequentially run M on s_1, s_2, s_3, \ldots . The problem with doing this is that if M accepts some $s_j \in A$ but loops on $s_i \notin A$ for some i < j, then E will be stuck on s_i forever, so that s_j will never get printed. This is why Stage 2 runs M for only i steps on each of the first i strings.

6. The language of the decision problem is

 $A = \{ \langle N \rangle \mid N \text{ is an NFA that accepts at least one string that has 101 as a substring } \}.$

For alphabet $\Sigma = \{0, 1\}$, consider the regular expression $R = (0 \cup 1)^* 101(0 \cup 1)^*$, so L(R) is the language of strings over Σ that have 101 as a substring. Because L(R) has a regular expression, it is regular. For any NFA N, its language L(N)is regular by Corollary 1.40. Let T be a Turing machine that decides E_{DFA} , as in the proof of Theorem 4.4. For a given NFA N, we have that its encoding $\langle N \rangle \in A$ if and only if $L(N) \cap L(R) \neq \emptyset$, and we know that $L(N) \cap L(R)$ is regular because the class of regular languages is closed under intersection (slide 1-34). Thus, a Turing machine that decides A is as follows:

- S = "On input $\langle N \rangle$, where N is an NFA:
 - 1. For the regular expression $R = (0 \cup 1)^* 101(0 \cup 1)^*$, construct DFA *D* that recognizes $L(N) \cap L(R)$, which is possible because L(N) and L(R) are regular, and the class of regular languages is closed under intersection.
 - 2. Run TM T that decides E_{DFA} on input $\langle D \rangle$. If T rejects $\langle D \rangle$, accept. Otherwise, reject."