1.

CS 341-006, Spring 2021, Hybrid Section
Solutions for Midterm 1

(a) False. The language A = {0"1" | n >} is context-free, but is nonregular, so A
does not have an NFA.

(b) False. Let A have the regular expression (0 U 1)*, and let B = {0"1" | n >}.
Then A is regular, B is nonregular, and AU B = A, which is regular.

(c) False. Let A =10, and let B ={0"1" | n >}. Then A is regular, B is nonregular,
and AN B = A, which is regular.

(d) False. The language a* is regular but infinite.

(e) True. Let A be nonregular, and suppose for contradiction that A is regular.
Because the class of regular languages is closed under complements, we must
then have that the complement of A is regular. But the complement of A is

A= A, which we said was nonregular, so we get a contradiction. Thus, A must
be nonregular.
(f) False. HW 6, problem 2(a).

(g) False. The language A is non-context-free, which can be proven using the same
basic proof on slides 2-96 and 2-97, so A cannot have a CFG.

(h) True. If A has a regular expression, then A is a regular language by Kleene’s
Theorem. All regular languages are also context-free, so A must then be context-
free, and A then has a PDA by Theorem 2.20.

(i) False. The language A = {a™"c" | n > 0} is nonregular. But A is also non-
context-free (slides 2-96 and 2-97), so A cannot have a context-free grammar.

(j) True. HW 5, problem 3b.
(a) b*(ba*b U a)ab*. Other regular expressions for the language include b*ba*bab* U

b*aab* and b* (ba*bUa)ab*U (). There are infinitely many correct regular expressions
for the language.

(b) G3 = (‘/3, E,Rg, Sg) with Sg ¢ ‘/1 U ‘/2, where

Vs =V1UVaU{Ss},
Ss is the (new) starting variable,

Y is the same alphabet of terminals as in GG; and G, and
R3:R1UR2U{SQ—>51|SQ}.
(C) M3 = (Q?n 27 63) q3, F3)a where

o (3= Q1 X Qo;

e) is the same alphabet as M; and M, have;

e the transition function &3 satisfies d3((q,7),) = (01(q,), d2(r, ¢)) for (q,7) €
Qs and [€ ¥;

e the starting state g3 = (¢1, ¢2); and

° F3 = Fl X F2
(d) After the one step of removing S — ¢, the CFG is then
S() — S | £

S — 0A1SA|0A1A
A = 050 00| A0S10S1 | A010S1 | A0S101 | A0101 | &

3. (a) A DFA for C = {w € ¥* | w = sbba for some s € ¥* }, ¥ = {a, b}, is below:

A 5-tuple description of the DFA above is M = (Q, %, 6, q1, F'), where
o Q=1{q, ¢, ¢ q}

e ¥ ={a,b}
e The transition function ¢ : Q x ¥ — () is defined as
a|b
ai || 91 | 92
a || 91 | G3
qs || 44 | 43
qq || 41 | Q2

e (is the start state
o F'={q}
There are infinitely many other correct DFAs for C.
(b) A regular expression for C'is (a U b)*bba. There are infinitely many other correct

regular expressions for C'.

4. A CFG for D = {a't’ |1 < j}is G = (V,%, R, S) with set of variables V = {5, X},
where S is the start variable; set of terminals ¥ = {a, b}; and rules

S — aSh| X
X = Xble

There are infinitely many other correct CFGs for D. For example, we could define R
to instead be

S — aSb| X
X — bX e

2

5. Language £ = {w € ¥* | w = w® } with ¥ = {0, 1} is nonregular. We prove this by
contradiction. Suppose that F is a regular language. Let p be the “pumping length”
of the Pumping Lemma. Consider the string

s = a’ba®.

Note that s € E because s® = s. Also, the length of s is |s| = 2p +1 > p, so the
Pumping Lemma will hold. Thus, there exists strings z, y, and z such that s = xyz
and

(i) zy'z € E for each i > 0,

(ii) [yl >0,

(iii) [zy| <p.

Since the first p symbols of s are all a’s, the third property implies that x and y consist
only of a’s. So z will be the rest of the a’s at the beginning, followed by baP. The

second property states that |y| > 0, so y has at least one a. More precisely, we can
then say that

= o for some j > 0,
= d for some k > 1,

z = a™ba® for some m > 0.
Since aPba? = s = xyz = a’a*ambaP? = a?TFT™baP, we must have that
j+k+m=p, where k >1

by (ii). The first property implies that xy?z € E, but
ry’z = dd*ada™ba?
a"*ba? ¢ B

because (aP*baP)® = abaP™* # abaP. Because the pumped string zy*z ¢ E, we have a
contradiction. Therefore, F is a nonregular language.

A string that will not work for getting a contradiction is s = 0P € E, which has |s| > p,
so the pumping lemma will apply. Then we could let x = z = ¢ and y = 0P, and every
pumped string zy‘z = 0% € E, so there is no contradiction. There are many other
strings that won’t work.

