CS 341-006, Spring 2021, Hybrid Section Solutions for Midterm 1

1. (a) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq\right\}$ is context-free, but is nonregular, so A does not have an NFA.
(b) False. Let A have the regular expression $(0 \cup 1)^{*}$, and let $B=\left\{0^{n} 1^{n} \mid n \geq\right\}$. Then A is regular, B is nonregular, and $A \cup B=A$, which is regular.
(c) False. Let $A=\emptyset$, and let $B=\left\{0^{n} 1^{n} \mid n \geq\right\}$. Then A is regular, B is nonregular, and $A \cap B=A$, which is regular.
(d) False. The language a^{*} is regular but infinite.
(e) True. Let A be nonregular, and suppose for contradiction that \bar{A} is regular. Because the class of regular languages is closed under complements, we must then have that the complement of \bar{A} is regular. But the complement of \bar{A} is $\overline{\bar{A}}=A$, which we said was nonregular, so we get a contradiction. Thus, \bar{A} must be nonregular.
(f) False. HW 6, problem 2(a).
(g) False. The language A is non-context-free, which can be proven using the same basic proof on slides 2-96 and 2-97, so A cannot have a CFG.
(h) True. If A has a regular expression, then A is a regular language by Kleene's Theorem. All regular languages are also context-free, so A must then be contextfree, and A then has a PDA by Theorem 2.20.
(i) False. The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular. But A is also non-context-free (slides 2-96 and 2-97), so A cannot have a context-free grammar.
(j) True. HW 5, problem 3b.
2. (a) $b^{*}\left(b a^{*} b \cup a\right) a b^{*}$. Other regular expressions for the language include $b^{*} b a^{*} b a b^{*} \cup$ $b^{*} a a b^{*}$ and $b^{*}\left(b a^{*} b \cup a\right) a b^{*} \cup \emptyset$. There are infinitely many correct regular expressions for the language.
(b) $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $S_{3} \notin V_{1} \cup V_{2}$, where

- $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$,
- S_{3} is the (new) starting variable,
- Σ is the same alphabet of terminals as in G_{1} and G_{2}, and
- $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{2} \rightarrow S_{1} \mid S_{2}\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where
- $Q_{3}=Q_{1} \times Q_{2}$;
- Σ is the same alphabet as M_{1} and M_{2} have;
- the transition function δ_{3} satisfies $\delta_{3}((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in$ Q_{3} and $\ell \in \Sigma$;
- the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and
- $F_{3}=F_{1} \times F_{2}$
(d) After the one step of removing $S \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \mid \varepsilon \\
S & \rightarrow 0 A 1 S A \mid 0 A 1 A \\
A & \rightarrow 0 S 0|00| A 0 S 10 S 1|A 010 S 1| A 0 S 101|A 0101| \varepsilon
\end{aligned}
$$

3. (a) A DFA for $C=\left\{w \in \Sigma^{*} \mid w=s b b a\right.$ for some $\left.s \in \Sigma^{*}\right\}, \Sigma=\{a, b\}$, is below:

A 5-tuple description of the DFA above is $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- The transition function $\delta: Q \times \Sigma \rightarrow Q$ is defined as

	a	b
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}	q_{4}	q_{3}
q_{4}	q_{1}	q_{2}

- q_{1} is the start state
- $F=\left\{q_{4}\right\}$

There are infinitely many other correct DFAs for C.
(b) A regular expression for C is $(a \cup b)^{*} b b a$. There are infinitely many other correct regular expressions for C.
4. A CFG for $D=\left\{a^{i} b^{j} \mid i \leq j\right\}$ is $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b\}$; and rules

$$
\begin{aligned}
S & \rightarrow a S b \mid X \\
X & \rightarrow X b \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for D. For example, we could define R to instead be

$$
\begin{aligned}
S & \rightarrow a S b \mid X \\
X & \rightarrow b X \mid \varepsilon
\end{aligned}
$$

5. Language $E=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$ with $\Sigma=\{0,1\}$ is nonregular. We prove this by contradiction. Suppose that E is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string

$$
s=a^{p} b a^{p} .
$$

Note that $s \in E$ because $s^{\mathcal{R}}=s$. Also, the length of s is $|s|=2 p+1>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(i) $x y^{i} z \in E$ for each $i \geq 0$,
(ii) $|y|>0$,
(iii) $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third property implies that x and y consist only of a 's. So z will be the rest of the a 's at the beginning, followed by $b a^{p}$. The second property states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{p} b a^{p}=s=x y z=a^{j} a^{k} a^{m} b a^{p}=a^{j+k+m} b a^{p}$, we must have that

$$
j+k+m=p, \text { where } k \geq 1
$$

by (ii). The first property implies that $x y^{2} z \in E$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} \\
& =a^{p+k} b a^{p} \notin E
\end{aligned}
$$

because $\left(a^{p+k} b a^{p}\right)^{\mathcal{R}}=a^{b} a^{p+k} \neq a^{b} a^{p}$. Because the pumped string $x y^{2} z \notin E$, we have a contradiction. Therefore, E is a nonregular language.
A string that will not work for getting a contradiction is $s=0^{p} \in E$, which has $|s| \geq p$, so the pumping lemma will apply. Then we could let $x=z=\varepsilon$ and $y=0^{p}$, and every pumped string $x y^{i} z=0^{i p} \in E$, so there is no contradiction. There are many other strings that won't work.

