CS 341-008, Spring 2021
 Solutions for Midterm 2, Hybrid

1. (a) True. If $A \subseteq B$, then $x \in A$ implies that $x \in B$, so $|A| \leq|B|$. Thus, if B is countable, we must have that A is also countable.
(b) False. Theorem 4.11 shows that A_{TM} is undecidable, so no TM can decide A_{TM}. The universal TM recognizes A_{TM} but doesn't decide it.
(c) False. The set $\mathcal{N}=\{1,2,3, \ldots\}$ is infinite and countable.
(d) True, as is shown in the proof of Theorem 3.16.
(e) False. Every regular language is context-free by Corollary 2.32. Every contextfree language is decidable by Theorem 4.9, and every decidable language is Turing-recognizable because the definition of Turing-recognizable is less restrictive than the definition of decidable (also see slide 4.55). Thus, every regular language is Turing-recognizable.
(f) False. For example, we always have that $\emptyset \subseteq A$ for any set A, countable or uncountable, and $|\emptyset|=0$, which is finite so countable.
(g) False. Suppose $\underline{A}=\{a\}$ and $B=\{a, a a\}$ are languages defined over alphabet $\Sigma=\{a\}$. Then $\bar{A} \cap B=\{a a\}$ and $A \cap \bar{B}=\emptyset$, so the statement " $\bar{A} \cap B=\emptyset$ or $A \cap \bar{B}=\emptyset "$ is true because at least one is empty, but $A \neq B$.
(h) False, by slide 4-38.
(i) False. Just because a language A is recognized by a TM T that loops on some $w \notin A$, that doesn't necessarily mean there isn't another TM M that also recognizes A but never loops so M decides A. For example, we could modify the TM M on slide 4-7 for $A_{\text {DFA }}$ to create another TM T that is the same as M except we change stage 2 to instead do the following: "If B ends in state $q \in F$, then M accepts; otherwise, loop." Then T recognizes $A_{\text {DFA }}$ but does not decide $A_{\text {DFA }}$ because T loops on $\langle B, w\rangle \notin A_{\text {DFA }}$. But $A_{\text {DFA }}$ is decided by TM M.
(j) False. TM M can loop on w.
2. (a) No, because $f(1)=f(3)=b$.
(b) Yes, because everything in R is hit by f.
(c) No, because f is not one-to-one.
(d) A language L_{1} that is Turing-recognizable is recognized by a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turingdecidable is recognized by a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} b a a b \# a a b a \quad x q_{3} a a b \# a a b a \quad x a q_{3} a b \# a a b a \quad x a a q_{3} b \# a a b a \quad x a a b q_{3} \# a a b a \quad x a a b \# q_{5} a a b a$ $x a a b \# a q_{\text {reject }} a b a$
4. This is HW 9, problem 1. Let \mathcal{B} be the set of infinite binary sequences. Each element in \mathcal{B} is an infinite sequence $\left(b_{1}, b_{2}, b_{3}, \ldots\right)$, where each $b_{i} \in\{0,1\}$. Suppose \mathcal{B} is countable. Then we can define a correspondence f between $\mathcal{N}=\{1,2,3, \ldots\}$ and \mathcal{B}. Specifically, for $n \in \mathcal{N}$, let $f(n)=\left(b_{n 1}, b_{n 2}, b_{n 3}, \ldots\right)$, where $b_{n i}$ is the i th bit in the nth sequence, i.e.,

n	$f(n)$
1	$\left(b_{11}, b_{12}, b_{13}, b_{14}, b_{15}, \ldots\right)$
2	$\left(b_{21}, b_{22}, b_{23}, b_{24}, b_{25}, \ldots\right)$
3	$\left(b_{31}, b_{32}, b_{33}, b_{34}, b_{35}, \ldots\right)$
4	$\left(b_{41}, b_{42}, b_{43}, b_{44}, b_{45}, \ldots\right)$
\vdots	\vdots

Now define the infinite sequence $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, \ldots\right) \in \mathcal{B}$ over $\{0,1\}$, where $c_{i}=1-b_{i i}$. In other words, the i th bit in c is the opposite of the i th bit in the i th sequence. For example, if

n	$f(n)$
1	$(0,1,1,0,0, \ldots)$
2	$(1,0,1,0,1, \ldots)$
3	$(1,1,1,1,1, \ldots)$
4	$(1,0,0,1,0, \ldots)$
\vdots	\vdots

then we would define $c=(1,1,0,0, \ldots)$. Thus, $c \in \mathcal{B}$ differs from each sequence by at least one bit, so c does not equal $f(n)$ for any n, which is a contradiction. Hence, \mathcal{B} is uncountable.
5. (This is HW 8, problem 2.) The language of the decision problem is

$$
A \varepsilon_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG that generates } \varepsilon\} .
$$

If a CFG $G=(V, \Sigma, R, S)$ includes the rule $S \rightarrow \varepsilon$, then clearly G can generate ε. But G could still generate ε even if it doesn't include the rule $S \rightarrow \varepsilon$. For example, if G has rules $S \rightarrow X Y, X \rightarrow a Y \mid \varepsilon$, and $Y \rightarrow b a X \mid \varepsilon$, then the derivation $S \Rightarrow X Y \Rightarrow \varepsilon Y \Rightarrow \varepsilon \varepsilon=\varepsilon$ shows that $\varepsilon \in L(G)$, even though G doesn't include the rule $S \rightarrow \varepsilon$. So it's not sufficient to simply check if G includes the rule $S \rightarrow \varepsilon$ to determine if $\varepsilon \in L(G)$.
But if we have a CFG $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ that is in Chomsky normal form, then G^{\prime} generates ε if and only if $S^{\prime} \rightarrow \varepsilon$ is a rule in G^{\prime}. Thus, we first convert the CFG G into an equivalent CFG $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ in Chomsky normal form. If $S^{\prime} \rightarrow \varepsilon$ is a rule in G^{\prime}, then clearly G^{\prime} generates ε, so G also generates ε since $L(G)=L\left(G^{\prime}\right)$. Since G^{\prime} is in Chomsky normal form, the only possible ε-rule in G^{\prime} is $S^{\prime} \rightarrow \varepsilon$, so the only way we can have $\varepsilon \in L\left(G^{\prime}\right)$ is if G^{\prime} includes the rule $S^{\prime} \rightarrow \varepsilon$ in R. Hence, if G^{\prime} does not include the rule $S^{\prime} \rightarrow \varepsilon$, then $\varepsilon \notin L\left(G^{\prime}\right)$. Thus, a Turing machine
that decides $A \varepsilon_{\mathrm{CFG}}$ is as follows:

$$
M=\text { "On input }\langle G\rangle \text {, where } G \text { is a CFG: }
$$

1. Convert G into an equivalent $\mathrm{CFG} G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ in Chomsky normal form.
2. If G^{\prime} includes the rule $S^{\prime} \rightarrow \varepsilon$, accept. Otherwise, reject."

An alternative correct solution is as follows. Let T be a TM that decides $A_{\mathrm{CFG}}=$ $\{\langle G, w\rangle \mid G$ is a CFG that generates string $w\}$. Then the following TM M^{\prime} decides $A \varepsilon_{\mathrm{CFG}}$:

$$
M^{\prime}=\text { "On input }\langle G\rangle \text {, where } G \text { is a CFG: }
$$

1. Run T on input $\langle G, \varepsilon\rangle$, where TM T decides A_{CFG}.
2. If T accepts, then accept. Otherwise, reject."
3. (This is HW 8, problem 4.) We need to show there is a Turing machine that recognizes $\overline{E_{\mathrm{TM}}}$, the complement of E_{TM}. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a list of all strings in Σ^{*}. For a given Turing machine M, we want to determine if any of the strings $s_{1}, s_{2}, s_{3}, \ldots$ is accepted by M. If M accepts at least one string s_{i}, then $L(M) \neq \emptyset$, so $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$; if M accepts none of the strings, then $L(M)=\emptyset$, so $\langle M\rangle \notin \overline{E_{\mathrm{TM}}}$. However, we cannot just run M sequentially on the strings $s_{1}, s_{2}, s_{3}, \ldots$. For example, suppose M accepts s_{2} but loops on s_{1}. Since M accepts s_{2}, we have that $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$. But if we run M sequentially on $s_{1}, s_{2}, s_{3}, \ldots$, we never get past the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\mathrm{TM}}}$:

$$
R=\text { "On input }\langle M\rangle \text {, where } M \text { is a Turing machine: }
$$

1. Repeat the following for $i=1,2,3, \ldots$..
2. Run M for i steps on each input $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computation accepts, accept.
