CS 341-008, Spring 2021
Solutions for Midterm 2, Hybrid

1. (a) True. If A C B, then x € A implies that z € B, so |A| < |B|. Thus, if B is
countable, we must have that A is also countable.

(b) False. Theorem 4.11 shows that Aty is undecidable, so no TM can decide
Arym. The universal TM recognizes Aty but doesn’t decide it.

(c) False. The set N'={1,2,3,...} is infinite and countable.
(d) True, as is shown in the proof of Theorem 3.16.

(e) False. Every regular language is context-free by Corollary 2.32. Every context-
free language is decidable by Theorem 4.9, and every decidable language is
Turing-recognizable because the definition of Turing-recognizable is less re-
strictive than the definition of decidable (also see slide 4.55). Thus, every
regular language is Turing-recognizable.

(f) False. For example, we always have that) C A for any set A, countable or
uncountable, and || = 0, which is finite so countable.

(g) False. Suppose A = {a} and B = {a, aa} are languages defined over alphabet
Y = {a}. Then AN B = {aa} and AN B =, so the statement “AN B =0
or AN B = () is true because at least one is empty, but A # B.

(h) False, by slide 4-38.

(i) False. Just because a language A is recognized by a TM T that loops on some
w & A, that doesn’t necessarily mean there isn’t another TM M that also
recognizes A but never loops so M decides A. For example, we could modify
the TM M on slide 4-7 for Apga to create another TM T that is the same as
M except we change stage 2 to instead do the following: “If B ends in state
q € F, then M accepts; otherwise, loop.” Then T recognizes Apga but does

not decide Appa because T loops on (B, w) & Appa. But Appa is decided by
™ M.

(j) False. TM M can loop on w.
2. (a) No, because f(1) = f(3) =1b.
(b) Yes, because everything in R is hit by f.
(¢) No, because f is not one-to-one.
)

(d) A language L, that is Turing-recognizable is recognized by a Turing machine
M that may loop forever on a string w € L;. A language L, that is Turing-
decidable is recognized by a Turing machine M, that always halts.

(e) An algorithm is a Turing machine that always halts.

3. qibaab#Haaba xrqzaab#aaba xagzab#aaba raaqzsbFHaaba raabgs#aaba xaabF#Hqsaaba
Taab#agrejectaba

4. This is HW 9, problem 1. Let B be the set of infinite binary sequences. Each
element in B is an infinite sequence (by, be, b3, ...), where each b; € {0, 1}. Suppose
B is countable. Then we can define a correspondence f between N = {1,2,3,...}
and B. Specifically, for n € N, let f(n) = (bu1, bua, bus, - ..), where by; is the ith
bit in the nth sequence, i.e.,

f(n)
(b11, b, i3, big, bis, - .
(ba1, baz, b3, bag, bos, - ..
(
(

b317 b327 b337 b347 b357 s
b4l> b42a b437 b44> b45> s

ol w3
S N N

Now define the infinite sequence ¢ = (¢, ¢9, ¢3, €4, C5, ...) € B over {0, 1}, where
¢; = 1 —by;. In other words, the ith bit in ¢ is the opposite of the ith bit in the ith
sequence. For example, if

n f(n)

11(0,1,1,0,0,..)
21(1,0,1,0,1,...)
30(1,1,1,1,1,...)
41(1,0,0,1,0,...)

then we would define ¢ = (1,1,0,0,...). Thus, ¢ € B differs from each sequence
by at least one bit, so ¢ does not equal f(n) for any n, which is a contradiction.
Hence, B is uncountable.

5. (This is HW 8, problem 2.) The language of the decision problem is
Accre = { (G) | G is a CFG that generates ¢ }.

If a CFG G = (V, %, R, S) includes the rule S — ¢, then clearly G can generate ¢.
But G could still generate ¢ even if it doesn’t include the rule S — . For example,
if G has rules S — XY, X — aY|e, and Y — baX |e, then the derivation
S = XY = Y = e = ¢ shows that ¢ € L(G), even though G doesn’t include
the rule S — €. So it’s not sufficient to simply check if G includes the rule S — ¢
to determine if € € L(G).

But if we have a CFG G' = (V' X, R/, S’) that is in Chomsky normal form, then G’
generates ¢ if and only if S’ — ¢ is a rule in G’. Thus, we first convert the CFG G
into an equivalent CFG G’ = (V/, X, R, S’) in Chomsky normal form. If S" — ¢ is
arule in G’ then clearly G’ generates ¢, so G also generates ¢ since L(G) = L(G).
Since G’ is in Chomsky normal form, the only possible e-rule in G’ is S" — ¢, so
the only way we can have ¢ € L(G’) is if G’ includes the rule S” — ¢ in R. Hence,
if G' does not include the rule §" — ¢, then ¢ ¢ L(G’). Thus, a Turing machine

that decides Ascpe is as follows:

M = “On input (G), where G is a CFG:
1. Convert G into an equivalent CFG G' = (V') X, R/, S")
in Chomsky normal form.
2. If G’ includes the rule 8" — ¢, accept. Otherwise, reject.”

An alternative correct solution is as follows. Let 7" be a TM that decides Acpg =
{(G,w) | G is a CFG that generates string w }. Then the following TM M’ de-
cides Aecpg:

M' = “On input (G), where G is a CFG:
1. Run T on input (G, ¢), where TM T decides Acpg.
2. If T accepts, then accept. Otherwise, reject.”

. (This is HW 8, problem 4.) We need to show there is a Turing machine that
recognizes Ery, the complement of Ery. Let sy, 89, 53,... be a list of all strings
in 3*. For a given Turing machine M, we want to determine if any of the strings
$1, S2, 83, . . . is accepted by M. If M accepts at least one string s;, then L(M) # 0,
so (M) € Ery; if M accepts none of the strings, then L(M) = 0, so (M) & Ery.
However, we cannot just run M sequentially on the strings s, ss,s3,.... For
example, suppose M accepts s, but loops on s;. Since M accepts sg, we have
that (M) € Ety. But if we Tun M sequentially on sy, s, 83, . . ., We never get past
the first string. The following Turing machine avoids this problem and recognizes
ETMZ

R = “On input (M), where M is a Turing machine:
1. Repeat the following for i =1,2,3,.. ..
2. Run M for i steps on each input sq, s, ..., S;.
3. If any computation accepts, accept.

