
CS 341-008, Spring 2021

Solutions for Midterm 2, Hybrid

1. (a) True. If A ⊆ B, then x ∈ A implies that x ∈ B, so |A| ≤ |B|. Thus, if B is
countable, we must have that A is also countable.

(b) False. Theorem 4.11 shows that ATM is undecidable, so no TM can decide
ATM. The universal TM recognizes ATM but doesn’t decide it.

(c) False. The set N = {1, 2, 3, . . .} is infinite and countable.

(d) True, as is shown in the proof of Theorem 3.16.

(e) False. Every regular language is context-free by Corollary 2.32. Every context-
free language is decidable by Theorem 4.9, and every decidable language is
Turing-recognizable because the definition of Turing-recognizable is less re-
strictive than the definition of decidable (also see slide 4.55). Thus, every
regular language is Turing-recognizable.

(f) False. For example, we always have that ∅ ⊆ A for any set A, countable or
uncountable, and |∅| = 0, which is finite so countable.

(g) False. Suppose A = {a} and B = {a, aa} are languages defined over alphabet
Σ = {a}. Then A ∩ B = {aa} and A ∩ B = ∅, so the statement “A ∩ B = ∅
or A ∩ B = ∅” is true because at least one is empty, but A 6= B.

(h) False, by slide 4-38.

(i) False. Just because a language A is recognized by a TM T that loops on some
w 6∈ A, that doesn’t necessarily mean there isn’t another TM M that also
recognizes A but never loops so M decides A. For example, we could modify
the TM M on slide 4-7 for ADFA to create another TM T that is the same as
M except we change stage 2 to instead do the following: “If B ends in state
q ∈ F , then M accepts ; otherwise, loop.” Then T recognizes ADFA but does
not decide ADFA because T loops on 〈B,w〉 6∈ ADFA. But ADFA is decided by
TM M .

(j) False. TM M can loop on w.

2. (a) No, because f(1) = f(3) = b.

(b) Yes, because everything in R is hit by f .

(c) No, because f is not one-to-one.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w 6∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q1baab#aaba xq3aab#aaba xaq3ab#aaba xaaq3b#aaba xaabq3#aaba xaab#q5aaba

xaab#aqrejectaba

1

4. This is HW 9, problem 1. Let B be the set of infinite binary sequences. Each
element in B is an infinite sequence (b1, b2, b3, . . .), where each bi ∈ {0, 1}. Suppose
B is countable. Then we can define a correspondence f between N = {1, 2, 3, . . .}
and B. Specifically, for n ∈ N , let f(n) = (bn1, bn2, bn3, . . .), where bni is the ith
bit in the nth sequence, i.e.,

n f(n)
1 (b11, b12, b13, b14, b15, . . .)
2 (b21, b22, b23, b24, b25, . . .)
3 (b31, b32, b33, b34, b35, . . .)
4 (b41, b42, b43, b44, b45, . . .)
...

...

Now define the infinite sequence c = (c1, c2, c3, c4, c5, . . .) ∈ B over {0, 1}, where
ci = 1− bii. In other words, the ith bit in c is the opposite of the ith bit in the ith
sequence. For example, if

n f(n)
1 (0, 1, 1, 0, 0, . . .)
2 (1, 0, 1, 0, 1, . . .)
3 (1, 1, 1, 1, 1, . . .)
4 (1, 0, 0, 1, 0, . . .)
...

...

then we would define c = (1, 1, 0, 0, . . .). Thus, c ∈ B differs from each sequence
by at least one bit, so c does not equal f(n) for any n, which is a contradiction.
Hence, B is uncountable.

5. (This is HW 8, problem 2.) The language of the decision problem is

AεCFG = { 〈G〉 | G is a CFG that generates ε }.

If a CFG G = (V,Σ, R, S) includes the rule S → ε, then clearly G can generate ε.
But G could still generate ε even if it doesn’t include the rule S → ε. For example,
if G has rules S → XY , X → aY | ε, and Y → baX | ε, then the derivation
S ⇒ XY ⇒ εY ⇒ εε = ε shows that ε ∈ L(G), even though G doesn’t include
the rule S → ε. So it’s not sufficient to simply check if G includes the rule S → ε

to determine if ε ∈ L(G).

But if we have a CFG G′ = (V ′,Σ, R′, S ′) that is in Chomsky normal form, then G′

generates ε if and only if S ′ → ε is a rule in G′. Thus, we first convert the CFG G

into an equivalent CFG G′ = (V ′,Σ, R′, S ′) in Chomsky normal form. If S ′ → ε is
a rule in G′, then clearly G′ generates ε, so G also generates ε since L(G) = L(G′).
Since G′ is in Chomsky normal form, the only possible ε-rule in G′ is S ′ → ε, so
the only way we can have ε ∈ L(G′) is if G′ includes the rule S ′ → ε in R. Hence,
if G′ does not include the rule S ′ → ε, then ε 6∈ L(G′). Thus, a Turing machine

2

that decides AεCFG is as follows:

M = “On input 〈G〉, where G is a CFG:

1. Convert G into an equivalent CFG G′ = (V ′,Σ, R′, S ′)

in Chomsky normal form.

2. If G′ includes the rule S ′ → ε, accept. Otherwise, reject.”

An alternative correct solution is as follows. Let T be a TM that decides ACFG =
{ 〈G,w〉 | G is a CFG that generates string w }. Then the following TM M ′ de-
cides AεCFG:

M ′ = “On input 〈G〉, where G is a CFG:

1. Run T on input 〈G, ε〉, where TM T decides ACFG.

2. If T accepts, then accept. Otherwise, reject.”

6. (This is HW 8, problem 4.) We need to show there is a Turing machine that
recognizes ETM, the complement of ETM. Let s1, s2, s3, . . . be a list of all strings
in Σ∗. For a given Turing machine M , we want to determine if any of the strings
s1, s2, s3, . . . is accepted by M . If M accepts at least one string si, then L(M) 6= ∅,
so 〈M〉 ∈ ETM; if M accepts none of the strings, then L(M) = ∅, so 〈M〉 6∈ ETM.
However, we cannot just run M sequentially on the strings s1, s2, s3, For
example, suppose M accepts s2 but loops on s1. Since M accepts s2, we have
that 〈M〉 ∈ ETM. But if we run M sequentially on s1, s2, s3, . . ., we never get past
the first string. The following Turing machine avoids this problem and recognizes
ETM:

R = “On input 〈M〉, where M is a Turing machine:

1. Repeat the following for i = 1, 2, 3,

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

3

