CS 341-008, Spring 2021, Hybrid Section Solutions for Midterm 1

1. (a) False. The language a^{*} is regular but infinite.
(b) True. Homework 3, problem 2b.
(c) False. Let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, A$ is nonregular, and B is regular.
(d) False. Homework 6, problem 2 a .
(e) False. If A is recognized by an NFA, then A must be regular by Corollary 1.40.
(f) False. $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but not regular.
(g) True. If A is recognized by an NFA, then A is regular by Corollary 1.40. Then by Corollary 2.32, A is context-free, so Theorem 2.9 ensures that A has a CFG in Chomsky normal form.
(h) False. Let $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and B have regular expression $(a \cup b \cup c)^{*}$. Then $A \subseteq B, A$ is not context-free (see slide 2-96), and B is context-free because it is regular (Corollary 2.32).
(i) False. Let $A=\emptyset$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$. Then A is regular because it is finite (slide 1-95), so A is also context-free (Corollary 2.32). Language B is not context-free (see slide 2-96). But $A \circ B=\emptyset$ (e.g., see slide 0-30), which is regular so also context-free.
(j) False. $1^{*} 0^{*}$ generates the string $1000 \notin A$, so the regular expression is not correct. In fact, A is nonregular, so it can't have a regular expression.
2. (a) $(b b \cup a) b^{*} a a^{*}$ Another regular expression is $b b b^{*} a a^{*} \cup a b^{*} a a^{*}$. There are infinitely many correct regular expressions for the language.
(b) $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ with $S_{2} \notin V_{1}$, where

- $V_{2}=V_{1} \cup\left\{S_{2}\right\}$,
- S_{2} is the (new) starting variable,
- Σ is the same alphabet of terminals as in G_{1}, and
- $R_{2}=R_{1} \cup\left\{S_{2} \rightarrow S_{1} S_{2} \mid \varepsilon\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where
- $Q_{3}=Q_{1} \times Q_{2}$;
- Σ is the same alphabet as M_{1} and M_{2} have;
- the transition function δ_{3} satisfies $\delta_{3}((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in$ Q_{3} and $\ell \in \Sigma$;
- the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and
- $F_{3}=\left(Q_{1} \times F_{2}\right) \cup\left(F_{1} \times Q_{2}\right)$
(d) After the one step of removing $A \rightarrow \varepsilon$, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow 10 A 1 S A|101 S A| 10 A 1 S|101 S| A 101|101| \varepsilon \\
A & \rightarrow 110 A 0 \mid 1100
\end{aligned}
$$

3. (a) For the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ does not end in a double letter $\}$ with $\Sigma=$ $\{a, b\}$, consider its complement $\bar{C}=\left\{w \in \Sigma^{*} \mid w\right.$ ends in a double letter $\}$, which has DFA on slide 1-17 of the notes. The complement of \bar{C} is $\overline{\bar{C}}=C$, so we can obtain a DFA M for C by swapping the accepting and non-accepting states of a DFA for \bar{C}.
A DFA for C is below:

A 5-tuple description of the DFA above is $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
- $\Sigma=\{a, b\}$
- The transition function $\delta: Q \times \Sigma \rightarrow Q$ is defined as

	a	b
q_{1}	q_{2}	q_{3}
q_{2}	q_{4}	q_{3}
q_{3}	q_{2}	q_{5}
q_{4}	q_{4}	q_{3}
q_{5}	q_{2}	q_{5}

- q_{1} is the start state
- $F=\left\{q_{1}, q_{2}, q_{3}\right\}$

There are infinitely many other correct DFAs for C.
(b) A regular expression for C is $\varepsilon \cup a \cup b \cup(a \cup b)^{*}(a b \cup b a)$. There are infinitely many other correct regular expressions for C.
4. A CFG for $D=\left\{b^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $\left.k=i+j\right\}$ is $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b\}$; and rules

$$
\begin{aligned}
S & \rightarrow b S b \mid X \\
X & \rightarrow a X b \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for D.
5. Language $D=\left\{b^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $\left.k=i+j\right\}$ is nonregular. We prove this by contradiction. Suppose that D is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string

$$
s=b^{p} a^{p} b^{2 p}
$$

Note that $s \in D$ because the number of b 's at the end $(2 p)$ equals the sum of the number of b 's at the beginning (p) and the number of a 's in the middle (p). Also, the length of s is $|s|=4 p>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(i) $x y^{i} z \in D$ for each $i \geq 0$,
(ii) $|y|>0$,
(iii) $|x y| \leq p$.

Since the first p symbols of s are all b 's, the third property implies that x and y consist only of b 's. So z will be the rest of the b 's at the beginning, followed by $a^{p} b^{2 p}$. The second property states that $|y|>0$, so y has at least one b. More precisely, we can then say that

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m} a^{p} b^{2 p} \text { for some } m \geq 0
\end{aligned}
$$

Since $b^{p} a^{p} b^{2 p}=s=x y z=b^{j} b^{k} b^{m} a^{p} b^{2 p}=b^{j+k+m} a^{p} b^{2 p}$, we must have that

$$
j+k+m=p, \text { where } k \geq 1
$$

The first property implies that $x y^{2} z \in D$, but

$$
\begin{aligned}
x y^{2} z & =b^{j} b^{k} b^{k} b^{m} a^{p} b^{2 p} \\
& =b^{p+k} a^{p} b^{2 p} \notin D
\end{aligned}
$$

because the number of b 's at the end $(2 p)$ does not equal the number of b 's at the beginning $(p+k)$ plus the number of a 's in the middle (p) since $p+k>p$ by $k \geq 1$. Because the pumped string $x y^{2} z \notin D$, we have a contradiction. Therefore, D is a nonregular language.

