
CS 341-006, Spring 2022
Solutions for Midterm 1, Hybrid

1. (a) True. HW 4, problem 5(a).

(b) True. HW 4, problem 5(c).

(c) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies
A is context-free, which is a contradiction.

(d) True. If A ⊆ B, then x ∈ A implies x ∈ B, so there is no x ∈ A with x 6∈ B.
Thus, A ∩ B = ∅.

(e) False. For example, A = {0n1n0n | n ≥ 0} is a subset of B = L((0 ∪ 1)∗), but A
is non-context-free and B is context-free.

(f) False. The language { anbn | 5 ≤ n ≤ 20} = {a5b5, a6b6, . . . , a20b20} is finite. Thus,
slide 1-95 implies the language is regular.

(g) True. Because A has a regular expression, A is a regular language by Kleene’s
Theorem (1.54). Then Corollary 2.32 implies A is also context-free, so it has a
CFG. Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.

(h) True. See slide 2-111.

(i) True. By HW 2, problem 3, we know that A is regular. Because A and B are
regular, then A ∪ B is regular by Theorem 1.25. Theorem 1.49 then implies
(A ∪B)∗ is regular.

(j) False. See HW 6, problem 2(a).

2. (a) (a∗ba∗ba∗)∗a∗ba∗. Another regular expression is (a∗ba∗b)∗a∗ba∗. There are in-
finitely many correct regular expressions for the language. But the regular ex-
pression (a∗ba∗ba∗)∗ba∗ is wrong because it cannot generate the string ab ∈ A.

(b) G2 = (V2,Σ, R2, S2), where

• V2 = V1 ∪ {S2},

• S2 is the starting variable, where S2 6∈ V1

• Σ is the same alphabet of terminals as in G1, and

• R2 = R1 ∪ {S2 → S1S2 | ε }.

(c) M3 = (Q3,Σ, δ3, q3, F3), where

• Q3 = Q1 ×Q2;

• Σ is the same alphabet as M1 and M2 have;

• the transition function δ3 satisfies δ3((q, r), ℓ) = (δ1(q, ℓ), δ2(r, ℓ)) for (q, r) ∈
Q3 and ℓ ∈ Σ;

• the starting state q3 = (q1, q2); and

• F3 = (Q1 × F2) ∩ (F1 ×Q2), which also can be written as F1 × F2.

1

(d) After the one step of removing A → ε, the CFG is then

S0 → S

S → 0SA0SA | 0S0SA | 0SA0S | 0S0S | 0A0S | 00S | ε

A → 10A01 | 1001

3. (a) ε, aa, ba, aaa, aba

(b) A DFA for C is below:

1, 2 2, 3

3 1, 2, 3∅

a

b ab
a

b

a

b

a, b

Although the problem did not ask for it, a 5-tuple description of the DFA above
is M = (Q,Σ, δ, {1, 2}, F), where

• Q = { {1, 2}, {2, 3}, {3}, {1, 2, 3}, ∅ }

• Σ = {a, b}

• The transition function δ : Q× Σ → Q is defined as

a b

{1, 2} {2, 3} {3}
{2, 3} {1, 2, 3} {3}
{3} {1, 2} ∅

{1, 2, 3} {1, 2, 3} {3}
∅ ∅ ∅

• {1, 2} is the start state

• F = { {1, 2}, {1, 2, 3} }

There are infinitely many other correct DFAs for A.

4. (a) This is a slight variation of HW 5, problem 1(f). A CFG for the language D =
{ ciajbk | i, j, k ≥ 0, and j = i+k } is G = (V,Σ, R, S) with V = {S,X, Y } as the
set of variables, where S is the start variable; Σ = {a, b, c} is the set of terminals;
and rules R given by

S → XY

X → cXa | ε

Y → aY b | ε

2

There are infinitely many other correct CFGs for D.

We next prove the correctness of the CFG G, although the problem doesn’t re-
quiring providing such a proof. To see why the given CFG G works for D, we
first claim that D = A1 ◦ A2, where

A1 = { ciai | i ≥ 0 },

A2 = { akbk | k ≥ 0 }.

To prove that D = A1 ◦ A2, we need to show that both A1 ◦ A2 ⊆ D and
D ⊆ A1 ◦ A2.

• To prove that A1 ◦ A2 ⊆ D, we have to show that concatenating a string
from A1 with a string from A2 always results in a string in D. This is true
because concatenating a string ciai ∈ A1 with a string akbk ∈ A2 leads to
ciaiakbk = ciai+kbk ∈ D.

• Conversely, to show that D ⊆ A1 ◦ A2, we need to show that every string
in D can be expressed as a concatenation of a string from A1 with a string
from A2. This is true because any string s = ciajbk ∈ D has j = i + k, so
s = ciai+kbk = ciaiakbk ∈ A1 ◦ A2.

In our CFG G, the rules X → cXa | ε with X as the starting variable result
in the language A1. The rules Y → aY b | ε with starting variable Y result in
the language A2. As shown in HW 5, problem 3(b), the class of context-free
languages is closed under concatenation, and the approach in that problem leads
to the given CFG G for D.

(b) This is a slight variation of HW 6, problem 1(g). A PDA M for D is as follows:

q1 q2 q3 q4 q5 q6
ε, ε → $ ε, ε → ε

c, ε → x a, x → ε

ε, $ → $

a, ε → x

ε, ε → ε

b, x → ε

ε, $ → ε

To understand the PDA M for D = { ci aj bk | i, j, k ≥ 0 and j = i+ k }, the
previous part explains thatD = L1◦L2 because concatenating any string ciai ∈ L1

for i ≥ 0 with any string akbk ∈ L2 for k ≥ 0 results in a string ciaiakbk =
ciai+kbk ∈ D. Thus, for a string ciajbk ∈ D, which must have j = i + k, the
number i of c’s at the beginning has to be no more than the number j of a’s in
the middle (because i + k = j implies i ≤ j since i, j, k ≥ 0), and the remaining
number j − i of a’s in the middle must match the number k of b’s at the end.
Hence, if we have PDAs M1 and M2 for L1 and L2, respectively, then we can then
build a PDA for D by connecting M1 and M2 so that M1 processes the first part
of the string ciai, and M2 processes the second part of the string akbk. A PDA
M1 for L1 is

3

q′1 q′2 q′3 q′4
ε, ε → $ ε, ε → ε

c, ε → x a, x → ε

ε, $ → ε

(We can get another PDA for L1 by slightly modifying the one on slide 2-38 of
the notes.) Similarly, a PDA M2 for L2 is

q′′1 q′′2 q′′3 q′′4
ε, ε → $ ε, ε → ε

a, ε → x b, x → ε

ε, $ → ε

But in connecting the two PDAs M1 and M2 to get a PDA M for D, we need
to make sure the stack is empty after M1 finishes processing the first part of
the string and before M2 starts processing the second part of the string. This
is accomplished in the PDA M for D by the transition from q3 to q4 with label
“ε, $ → $”.

There are infinitely many other correct PDAs for D.

There are also infinitely many incorrect PDAs for D. For example, in the given
solution, if we change the label on the transition from q3 to q4 to instead be
“ε, ε → ε”, then the PDA would incorrectly accept the string cabb 6∈ D by not
looping in q3 but instead looping once in q4.

5. Language D = { ci aj bk | i, j, k ≥ 0 and j = i+ k } is nonregular. We prove this by
contradiction. Suppose that D is a regular language. Let p be the “pumping length”
of the Pumping Lemma. Consider the string s = cpa2pbp. (Other possible strings that
can work in the proof (with appropriate modifications) are apbp or cpap.) Note that
s ∈ D because s ∈ L(c∗a∗b∗), with the sum of the numbers of c’s and b’s in s equaling
the number of a’s in the middle. Also, |s| = 3p > p, so all of the assumptions of the
Pumping Lemma hold. Thus, there exists strings x, y, and z such that s = xyz and

(i) xyiz ∈ D for each i ≥ 0,

(ii) |y| > 0,

(iii) |xy| ≤ p.

Since the first p symbols of s are all c’s, the third property implies that x and y consist
only of c’s. So z will be the rest of the c’s, followed by a2pbp. The second property
states that |y| > 0, so y has at least one c. More precisely, we can then say that

x = cj for some j ≥ 0,

y = ck for some k ≥ 1,

z = cma2pbp for some m ≥ 0.

4

Since cpa2pbp = s = xyz = cjckcma2pbp = cj+k+ma2pbp, we must have that

j + k +m = p and k ≥ 1.

The first property implies that xy2z ∈ D, but

xy2z = cjckckcma2pbp

= cp+ka2pbp 6∈ D

since p + k + p > 2p because j + k + m = p and k ≥ 1, so in the pumped string
xy2z, the sum of the numbers of c’s and b’s doesn’t match the number of a’s. Because
the pumped string xy2z 6∈ D, we have a contradiction. Therefore, D is a nonregular
language.

5

