
CS 341-006, Hybrid section, Spring 2022
Solutions for Midterm 2

1. (a) True. For example, the universal Turing machine recognizes ATM, which is
undecidable.

(b) False, by Theorems 3.13 and 3.16.

(c) False. A TM M may loop on input w.

(d) True, by Theorem 4.9.

(e) True, by slide 4-38.

(f) False, by Theorem 4.8.

(g) False, e.g., ATM is not Turing-recognizable.

(h) True. A ⊆ B means that every element of A also belongs to B, which is
equivalent to saying that there are no elements in A that do not belong to B,
i.e., A ∩B = ∅.

(i) True, by Theorem 4.5.

(j) False, by Theorem 4.11.

2. (a) Yes, because f(x) ̸= f(y) whenever x ̸= y.

(b) Yes, because everything in R is “hit” by f .

(c) Yes, because f is one-to-one and onto.

(d) A language L1 that is Turing-recognizable is recognized by a Turing machine
M1 that may loop forever on a string w ̸∈ L1. A language L2 that is Turing-
decidable is recognized by a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q10001#10 xq2001#10 x0q201#10 x00q21#10 x001q2#10 x001#q410
x001#1qreject

4. (This is a slight modification of Theorem 4.17.) For a proof by contradiction,
suppose that A = {x ∈ ℜ | 6 ≤ x < 7 } is countable. The set A is clearly infinite,
so the assumption that A is countable means that we can define a correspondence
f : N → A, where N = {1, 2, 3, . . .} is the set of natural numbers, and let an =
f(n). In other words, we can enumerate the elements of A as a list a1, a2, a3, . . .,
where

n f(n) = an
1 6.d11d12d13 . . .
2 6.d21d22d23 . . .
3 6.d31d32d33 . . .
...

. . .

1



For the nth number an in the list, its ith digit after the decimal point is dni. Now
we construct a number y ∈ A as y = 6.b1b2b3 . . ., where for each n = 1, 2, 3, . . ., the
nth digit in y after the decimal point is bn = 3 if dnn = 1, and bn = 1 if dnn ̸= 1.
The number y belongs to the set A, but for each n = 1, 2, 3, . . ., the number y
but does not equal the nth number in the list because they differ in the nth digit,
i.e., bn ̸= dnn. Therefore, we get a contradiction because the list was supposed to
contain all elements of A, but the list does not include y ∈ A. We thus conclude
that A is uncountable.

5. (This is HW 7, problem 2b.) For any two Turing-recognizable languages L1 and
L2, let M1 and M2, respectively, be TMs that recognize them. We construct a TM
M ′ that recognizes the union L1 ∪ L2:

M ′ = “On input string w:

1. Run M1 and M2 alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.

To see why M ′ recognizes L1 ∪ L2, first consider w ∈ L1 ∪ L2. Then w is in L1

or in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept
w. Similarly, if w ∈ L2, then M2 accepts w, so M ′ will eventually accept w. On
the other hand, if w ̸∈ L1 ∪ L2, then w ̸∈ L1 and w ̸∈ L2. Thus, neither M1 nor
M2 accepts w, so M ′ will also not accept w. Hence, M ′ recognizes L1 ∪ L2. Note
that if neither M1 nor M2 accepts w and one of them does so by looping, then M ′

will loop, but this is fine because we only needed M ′ to recognize and not decide
L1 ∪ L2.

6. (This is a modification of Theorem 4.5, which shows that EQDFA is decidable.)
The language of the decision problem is

A = { ⟨D1, D2⟩ | D1 and D2 are DFAs with L(D1) ⊆ L(D2) }.

To simplify notation, let L1 = L(D1) and L2 = L(D2), and define L3 = L1 ∩ L2.
Note that L1 ⊆ L2 if and only if L3 = ∅, so we will show that A is decidable
through a TM S that

� first constructs a DFA D3 for L3 (using that the class of regular languages is
closed under complementation (HW 2, problem 3) and intersection (HW 2,
problem 5)), and

� then checks if D3 recognizes the empty language (the emptiness problem for
DFAs is decidable by Theorem 4.4).

2



Specifically, here are the details of a decider S for A:

S = “On input ⟨D1, D2⟩, where D1 and D2 are DFAs:

0. If ⟨D1, D2⟩ is not a proper encoding of two DFAs, then reject.

1. Construct a DFA D3 for language L3 = L(D1) ∩ L(D2)

using the algorithms for DFA complementation and intersection.

2. Run TM R that decides EDFA on input ⟨D3⟩.
3. If R accepts, accept. If H rejects, reject.”

Below are additional details, which are not required in an answer. To start, we are
given two DFAs ⟨D1, D2⟩ as input. Then L1 = L(D1) and L2 = L(D2) are regular
because they are the languages recognized by DFAs D1 = (Q1,Σ, δ1, q1, F1) and
D2 = (Q2,Σ, δ2, q2, F2), respectively. The proof that the class of regular languages
is closed under complementation (HW 2, problem 3) shows how to construct a
DFA D′

2 for L2 by swapping accepting and non-accepting states of the DFA D2 for
L2; i.e., D

′
2 = (Q2,Σ, δ2, q2, Q2 − F2) recognizes L2. Because the class of regular

languages is also closed under intersections (HW 2, problem 5), we then have that
L1 ∩ L2 is regular, and we can construct a DFA D3 for L3 = L1 ∩ L2 by running
D1 and D′

2 simultaneously and accepting if and only if both accept; i.e., L3 is
recognized by D3 = (Q3,Σ, δ3, q3, F3), where

� Q3 = Q1 ×Q2,

� δ3((x, y), ℓ) = (δ1(x, ℓ), δ2(y, ℓ)) for (x, y) ∈ Q3 and ℓ ∈ Σ,

� q3 = (q1, q2), and

� F3 = F1 × (Q2 − F2).

Now let TM R be the decider for EDFA in Theorem 4.4 (emptiness problem for
DFAs), and we can determine if the DFA D3 recognizes the empty language (i.e.,
if L3 = ∅, or equivalently if L1 ⊆ L2) by running R on input ⟨D3⟩. Putting this
all together gives us the above Turing machine S to decide A.

An incorrect answer is

S ′ = “On input ⟨D1, D2⟩, where D1 and D2 are DFAs:

0. If ⟨D1, D2⟩ is not a proper encoding of two DFAs, then reject.

1. Run D1 on input string w.

2. If D1 accepts, then run D2 on string w.

If D2 accepts, accept; else, reject.

One problem with TM S ′ is that in Stage 1, what is the string w? Even if D1 and
D2 both accept one particular string w, there may be another string w′ that D1

accepts but D2 rejects, so then L(D1) ̸⊆ L(D2), in which case ⟨D1, D2⟩ ̸∈ A. But
S ′ can’t determine this because it tests D1 and D2 on only one specific string w.
The only YES instances ⟨D1, D2⟩ ∈ A that S ′ accept are when L(D1) = {w} and

3



w ∈ L(D2). But there are many other YES instances ⟨D1, D2⟩ ∈ A that S ′ does
not accept, so S ′ does not even recognize A.

We could try to fix TM S ′ by constructing another TM S ′′ that tests D1 and D2

on all possible strings w ∈ Σ∗, but this modification also does not lead to a decider
for A. Specifically, let w1, w2, w3, . . . be an enumeration of the strings in Σ∗ (e.g.,
in string order), and consider the following TM S ′′:

S ′′ = “On input ⟨D1, D2⟩, where D1 and D2 are DFAs:

0. If ⟨D1, D2⟩ is not a proper encoding of two DFAs, then reject.

1. For i = 1, 2, 3, . . .

2. Run D1 on input string wi.

3. If D1 accepts wi, then run D2 on string wi.

If D2 rejects wi, reject.

4. If D2 accepts every string wi that D1 accepts, accept.

A problem with TM S ′′ is that S ′′ does not even recognize the language A. To
see why, first note that Σ∗ is infinite, so the loop starting in Stage 1 could go on
forever. Now suppose that ⟨D1, D2⟩ is a NO instance; i.e., ⟨D1, D2⟩ ̸∈ A, so there
is at least one string wk (depending on both D1 and D2) that D1 accepts but D2

rejects. The TM S ′′ will eventually find this string wk, so S ′′ correctly will reject
the NO instance. But when ⟨D1, D2⟩ is a YES instance (i.e., ⟨D1, D2⟩ ∈ A), then
the TM S ′′ will loop forever because it will never find a string wi that D1 accepts
and D2 rejects, so S ′′ never rejects in Stage 3 and never reaches Stage 4. Thus,
TM S ′′ does not even recognize A because S ′′ does not accept every YES instance,
and in fact, S ′′ loops on each YES instance.

7. (This is HW 8, problem 4, worded slightly differently.) We need to show there is
a Turing machine that recognizes ETM, the complement of ETM. Let s1, s2, s3, . . .
be a list of all strings in Σ∗. For a given Turing machine M , we want to determine
if any of the strings s1, s2, s3, . . . is accepted by M . If M accepts at least one
string si, then L(M) ̸= ∅, so ⟨M⟩ ∈ ETM; if M accepts none of the strings,
then L(M) = ∅, so ⟨M⟩ ̸∈ ETM. However, we cannot just run M sequentially
on the strings s1, s2, s3, . . .. For example, suppose M accepts s2 but loops on s1.
Since M accepts s2, we have that ⟨M⟩ ∈ ETM. But if we run M sequentially
on s1, s2, s3, . . ., we never get past the first string. The following Turing machine
avoids this problem and recognizes ETM:

R = “On input ⟨M⟩, where M is a Turing machine:

1. Repeat the following for i = 1, 2, 3, . . ..

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

4


