CS 341-006, Hybrid section, Spring 2022 Solutions for Midterm 2

- 1. (a) True. For example, the universal Turing machine recognizes $A_{\rm TM}$, which is undecidable.
 - (b) False, by Theorems 3.13 and 3.16.
 - (c) False. A TM M may loop on input w.
 - (d) True, by Theorem 4.9.
 - (e) True, by slide 4-38.
 - (f) False, by Theorem 4.8.
 - (g) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (h) True. $A \subseteq B$ means that every element of A also belongs to B, which is equivalent to saying that there are no elements in A that do not belong to B, i.e., $A \cap \overline{B} = \emptyset$.
 - (i) True, by Theorem 4.5.
 - (j) False, by Theorem 4.11.
- 2. (a) Yes, because $f(x) \neq f(y)$ whenever $x \neq y$.
 - (b) Yes, because everything in R is "hit" by f.
 - (c) Yes, because f is one-to-one and onto.
 - (d) A language L_1 that is Turing-recognizable is recognized by a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable is recognized by a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. $q_10001\#10 \quad xq_2001\#10 \quad x0q_201\#10 \quad x00q_21\#10 \quad x001q_2\#10 \quad x001\#q_410 \quad x001\#1q_{\text{reject}}$
- 4. (This is a slight modification of Theorem 4.17.) For a proof by contradiction, suppose that $A = \{x \in \Re \mid 6 \le x < 7\}$ is countable. The set A is clearly infinite, so the assumption that A is countable means that we can define a correspondence $f : \mathcal{N} \to A$, where $\mathcal{N} = \{1, 2, 3, \ldots\}$ is the set of natural numbers, and let $a_n = f(n)$. In other words, we can enumerate the elements of A as a list a_1, a_2, a_3, \ldots , where

$$\begin{array}{c|c|c} n & f(n) = a_n \\ \hline 1 & 6.d_{11}d_{12}d_{13}\dots \\ 2 & 6.d_{21}d_{22}d_{23}\dots \\ 3 & 6.d_{31}d_{32}d_{33}\dots \\ \vdots & \ddots \end{array}$$

For the *n*th number a_n in the list, its *i*th digit after the decimal point is d_{ni} . Now we construct a number $y \in A$ as $y = 6.b_1b_2b_3...$, where for each n = 1, 2, 3, ..., the *n*th digit in *y* after the decimal point is $b_n = 3$ if $d_{nn} = 1$, and $b_n = 1$ if $d_{nn} \neq 1$. The number *y* belongs to the set *A*, but for each n = 1, 2, 3, ..., the number *y* but does not equal the *n*th number in the list because they differ in the *n*th digit, i.e., $b_n \neq d_{nn}$. Therefore, we get a contradiction because the list was supposed to contain all elements of *A*, but the list does not include $y \in A$. We thus conclude that *A* is uncountable.

- 5. (This is HW 7, problem 2b.) For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 , respectively, be TMs that recognize them. We construct a TM M' that recognizes the union $L_1 \cup L_2$:
 - M' = "On input string w:
 - 1. Run M_1 and M_2 alternately on w, one step at a time. If either accepts, *accept*. If both halt and reject, *reject*.

To see why M' recognizes $L_1 \cup L_2$, first consider $w \in L_1 \cup L_2$. Then w is in L_1 or in L_2 (or both). If $w \in L_1$, then M_1 accepts w, so M' will eventually accept w. Similarly, if $w \in L_2$, then M_2 accepts w, so M' will eventually accept w. On the other hand, if $w \notin L_1 \cup L_2$, then $w \notin L_1$ and $w \notin L_2$. Thus, neither M_1 nor M_2 accepts w, so M' will also not accept w. Hence, M' recognizes $L_1 \cup L_2$. Note that if neither M_1 nor M_2 accepts w and one of them does so by looping, then M'will loop, but this is fine because we only needed M' to recognize and not decide $L_1 \cup L_2$.

6. (This is a modification of Theorem 4.5, which shows that EQ_{DFA} is decidable.) The language of the decision problem is

 $A = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs with } L(D_1) \subseteq L(D_2) \}.$

To simplify notation, let $L_1 = L(D_1)$ and $L_2 = L(D_2)$, and define $L_3 = L_1 \cap \overline{L_2}$. Note that $L_1 \subseteq L_2$ if and only if $L_3 = \emptyset$, so we will show that A is decidable through a TM S that

- first constructs a DFA D_3 for L_3 (using that the class of regular languages is closed under complementation (HW 2, problem 3) and intersection (HW 2, problem 5)), and
- then checks if D_3 recognizes the empty language (the emptiness problem for DFAs is decidable by Theorem 4.4).

Specifically, here are the details of a decider S for A:

- S = "On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs:
 - **0.** If $\langle D_1, D_2 \rangle$ is not a proper encoding of two DFAs, then *reject*.
 - 1. Construct a DFA D_3 for language $L_3 = L(D_1) \cap L(D_2)$ using the algorithms for DFA complementation and intersection.
 - **2.** Run TM R that decides E_{DFA} on input $\langle D_3 \rangle$.
 - **3.** If *R* accepts, *accept*. If *H* rejects, *reject*."

Below are additional details, which are not required in an answer. To start, we are given two DFAs $\langle D_1, D_2 \rangle$ as input. Then $L_1 = L(D_1)$ and $L_2 = L(D_2)$ are regular because they are the languages recognized by DFAs $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, respectively. The proof that the class of regular languages is closed under complementation (HW 2, problem 3) shows how to construct a DFA D'_2 for $\overline{L_2}$ by swapping accepting and non-accepting states of the DFA D_2 for L_2 ; i.e., $D'_2 = (Q_2, \Sigma, \delta_2, q_2, Q_2 - F_2)$ recognizes $\overline{L_2}$. Because the class of regular languages is also closed under intersections (HW 2, problem 5), we then have that $L_1 \cap \overline{L_2}$ is regular, and we can construct a DFA D_3 for $L_3 = L_1 \cap \overline{L_2}$ by running D_1 and D'_2 simultaneously and accepting if and only if both accept; i.e., L_3 is recognized by $D_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$, where

- $Q_3 = Q_1 \times Q_2$,
- $\delta_3((x,y),\ell) = (\delta_1(x,\ell), \delta_2(y,\ell))$ for $(x,y) \in Q_3$ and $\ell \in \Sigma$,
- $q_3 = (q_1, q_2)$, and
- $F_3 = F_1 \times (Q_2 F_2).$

Now let TM R be the decider for E_{DFA} in Theorem 4.4 (emptiness problem for DFAs), and we can determine if the DFA D_3 recognizes the empty language (i.e., if $L_3 = \emptyset$, or equivalently if $L_1 \subseteq L_2$) by running R on input $\langle D_3 \rangle$. Putting this all together gives us the above Turing machine S to decide A.

An incorrect answer is

- S' = "On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs:
 - **0.** If $\langle D_1, D_2 \rangle$ is not a proper encoding of two DFAs, then *reject*.
 - **1.** Run D_1 on input string w.
 - **2.** If D_1 accepts, then run D_2 on string w. If D_2 accepts, *accept*; else, *reject*.

One problem with TM S' is that in Stage 1, what is the string w? Even if D_1 and D_2 both accept one particular string w, there may be another string w' that D_1 accepts but D_2 rejects, so then $L(D_1) \not\subseteq L(D_2)$, in which case $\langle D_1, D_2 \rangle \notin A$. But S' can't determine this because it tests D_1 and D_2 on only one specific string w. The only YES instances $\langle D_1, D_2 \rangle \in A$ that S' accept are when $L(D_1) = \{w\}$ and

 $w \in L(D_2)$. But there are many other YES instances $\langle D_1, D_2 \rangle \in A$ that S' does not accept, so S' does not even recognize A.

We could try to fix TM S' by constructing another TM S" that tests D_1 and D_2 on all possible strings $w \in \Sigma^*$, but this modification also does not lead to a decider for A. Specifically, let w_1, w_2, w_3, \ldots be an enumeration of the strings in Σ^* (e.g., in string order), and consider the following TM S":

- S'' = "On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs:
 - **0.** If $\langle D_1, D_2 \rangle$ is not a proper encoding of two DFAs, then *reject*.
 - 1. For $i = 1, 2, 3, \ldots$
 - **2.** Run D_1 on input string w_i .
 - **3.** If D_1 accepts w_i , then run D_2 on string w_i . If D_2 rejects w_i , reject.
 - 4. If D_2 accepts every string w_i that D_1 accepts, accept.

A problem with TM S'' is that S'' does not even recognize the language A. To see why, first note that Σ^* is infinite, so the loop starting in Stage 1 could go on forever. Now suppose that $\langle D_1, D_2 \rangle$ is a NO instance; i.e., $\langle D_1, D_2 \rangle \notin A$, so there is at least one string w_k (depending on both D_1 and D_2) that D_1 accepts but D_2 rejects. The TM S'' will eventually find this string w_k , so S'' correctly will reject the NO instance. But when $\langle D_1, D_2 \rangle$ is a YES instance (i.e., $\langle D_1, D_2 \rangle \in A$), then the TM S'' will loop forever because it will never find a string w_i that D_1 accepts and D_2 rejects, so S'' never rejects in Stage 3 and never reaches Stage 4. Thus, TM S'' does not even recognize A because S'' does not accept every YES instance, and in fact, S'' loops on each YES instance.

- 7. (This is HW 8, problem 4, worded slightly differently.) We need to show there is a Turing machine that recognizes \overline{E}_{TM} , the complement of E_{TM} . Let s_1, s_2, s_3, \ldots be a list of all strings in Σ^* . For a given Turing machine M, we want to determine if any of the strings s_1, s_2, s_3, \ldots is accepted by M. If M accepts at least one string s_i , then $L(M) \neq \emptyset$, so $\langle M \rangle \in \overline{E}_{\text{TM}}$; if M accepts none of the strings, then $L(M) = \emptyset$, so $\langle M \rangle \notin \overline{E}_{\text{TM}}$. However, we cannot just run M sequentially on the strings s_1, s_2, s_3, \ldots For example, suppose M accepts s_2 but loops on s_1 . Since M accepts s_2 , we have that $\langle M \rangle \in \overline{E}_{\text{TM}}$. But if we run M sequentially on s_1, s_2, s_3, \ldots , we never get past the first string. The following Turing machine avoids this problem and recognizes \overline{E}_{TM} :
 - R = "On input $\langle M \rangle$, where M is a Turing machine:
 - 1. Repeat the following for $i = 1, 2, 3, \ldots$
 - **2.** Run *M* for *i* steps on each input s_1, s_2, \ldots, s_i .
 - **3.** If any computation accepts, *accept*.