CS 341-006, Hybrid section, Spring 2022
 Solutions for Midterm 2

1. (a) True. For example, the universal Turing machine recognizes $A_{T M}$, which is undecidable.
(b) False, by Theorems 3.13 and 3.16.
(c) False. A TM M may loop on input w.
(d) True, by Theorem 4.9.
(e) True, by slide 4-38.
(f) False, by Theorem 4.8 .
(g) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(h) True. $A \subseteq B$ means that every element of A also belongs to B, which is equivalent to saying that there are no elements in A that do not belong to B, i.e., $A \cap \bar{B}=\emptyset$.
(i) True, by Theorem 4.5.
(j) False, by Theorem 4.11.
2. (a) Yes, because $f(x) \neq f(y)$ whenever $x \neq y$.
(b) Yes, because everything in R is "hit" by f.
(c) Yes, because f is one-to-one and onto.
(d) A language L_{1} that is Turing-recognizable is recognized by a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turingdecidable is recognized by a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} 0001 \# 10 \quad x q_{2} 001 \# 10 \quad x 0 q_{2} 01 \# 10 \quad x 00 q_{2} 1 \# 10 \quad x 001 q_{2} \# 10 \quad x 001 \# q_{4} 10$ $x 001 \# 1 q_{\text {reject }}$
4. (This is a slight modification of Theorem 4.17.) For a proof by contradiction, suppose that $A=\{x \in \Re \mid 6 \leq x<7\}$ is countable. The set A is clearly infinite, so the assumption that A is countable means that we can define a correspondence $f: \mathcal{N} \rightarrow A$, where $\mathcal{N}=\{1,2,3, \ldots\}$ is the set of natural numbers, and let $a_{n}=$ $f(n)$. In other words, we can enumerate the elements of A as a list $a_{1}, a_{2}, a_{3}, \ldots$, where

n	$f(n)=a_{n}$
1	$6 . d_{11} d_{12} d_{13} \cdots$
2	$6 . d_{21} d_{22} d_{23} \cdots$
3	$6 . d_{31} d_{32} d_{33} \cdots$
\vdots	\ddots

For the nth number a_{n} in the list, its i th digit after the decimal point is $d_{n i}$. Now we construct a number $y \in A$ as $y=6 . b_{1} b_{2} b_{3} \ldots$, where for each $n=1,2,3, \ldots$, the nth digit in y after the decimal point is $b_{n}=3$ if $d_{n n}=1$, and $b_{n}=1$ if $d_{n n} \neq 1$. The number y belongs to the set A, but for each $n=1,2,3, \ldots$, the number y but does not equal the nth number in the list because they differ in the nth digit, i.e., $b_{n} \neq d_{n n}$. Therefore, we get a contradiction because the list was supposed to contain all elements of A, but the list does not include $y \in A$. We thus conclude that A is uncountable.
5. (This is HW 7, problem 2b.) For any two Turing-recognizable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively, be TMs that recognize them. We construct a TM M^{\prime} that recognizes the union $L_{1} \cup L_{2}$:

$$
M^{\prime}=\text { "On input string } w \text { : }
$$

1. Run M_{1} and M_{2} alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.
To see why M^{\prime} recognizes $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \in L_{2}$, then M_{2} accepts w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, neither M_{1} nor M_{2} accepts w, so M^{\prime} will also not accept w. Hence, M^{\prime} recognizes $L_{1} \cup L_{2}$. Note that if neither M_{1} nor M_{2} accepts w and one of them does so by looping, then M^{\prime} will loop, but this is fine because we only needed M^{\prime} to recognize and not decide $L_{1} \cup L_{2}$.
6. (This is a modification of Theorem 4.5 , which shows that $E Q_{\text {DFA }}$ is decidable.) The language of the decision problem is

$$
A=\left\{\left\langle D_{1}, D_{2}\right\rangle \mid D_{1} \text { and } D_{2} \text { are DFAs with } L\left(D_{1}\right) \subseteq L\left(D_{2}\right)\right\}
$$

To simplify notation, let $L_{1}=L\left(D_{1}\right)$ and $L_{2}=L\left(D_{2}\right)$, and define $L_{3}=L_{1} \cap \overline{L_{2}}$. Note that $L_{1} \subseteq L_{2}$ if and only if $L_{3}=\emptyset$, so we will show that A is decidable through a TM S that

- first constructs a DFA D_{3} for L_{3} (using that the class of regular languages is closed under complementation (HW 2, problem 3) and intersection (HW 2, problem 5)), and
- then checks if D_{3} recognizes the empty language (the emptiness problem for DFAs is decidable by Theorem 4.4).

Specifically, here are the details of a decider S for A :

$$
S=\text { "On input }\left\langle D_{1}, D_{2}\right\rangle, \text { where } D_{1} \text { and } D_{2} \text { are DFAs: }
$$

0. If $\left\langle D_{1}, D_{2}\right\rangle$ is not a proper encoding of two DFAs, then reject.
1. Construct a DFA D_{3} for language $L_{3}=L\left(D_{1}\right) \cap \overline{L\left(D_{2}\right)}$
using the algorithms for DFA complementation and intersection.
2. Run TM R that decides $E_{\text {DFA }}$ on input $\left\langle D_{3}\right\rangle$.
3. If R accepts, accept. If H rejects, reject."

Below are additional details, which are not required in an answer. To start, we are given two DFAs $\left\langle D_{1}, D_{2}\right\rangle$ as input. Then $L_{1}=L\left(D_{1}\right)$ and $L_{2}=L\left(D_{2}\right)$ are regular because they are the languages recognized by DFAs $D_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $D_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, respectively. The proof that the class of regular languages is closed under complementation (HW 2, problem 3) shows how to construct a DFA D_{2}^{\prime} for $\overline{L_{2}}$ by swapping accepting and non-accepting states of the DFA D_{2} for L_{2}; i.e., $D_{2}^{\prime}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, Q_{2}-F_{2}\right)$ recognizes $\overline{L_{2}}$. Because the class of regular languages is also closed under intersections (HW 2, problem 5), we then have that $L_{1} \cap \overline{L_{2}}$ is regular, and we can construct a DFA D_{3} for $L_{3}=L_{1} \cap \overline{L_{2}}$ by running D_{1} and D_{2}^{\prime} simultaneously and accepting if and only if both accept; i.e., L_{3} is recognized by $D_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where

- $Q_{3}=Q_{1} \times Q_{2}$,
- $\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)$ for $(x, y) \in Q_{3}$ and $\ell \in \Sigma$,
- $q_{3}=\left(q_{1}, q_{2}\right)$, and
- $F_{3}=F_{1} \times\left(Q_{2}-F_{2}\right)$.

Now let TM R be the decider for $E_{\text {DFA }}$ in Theorem 4.4 (emptiness problem for DFAs), and we can determine if the DFA D_{3} recognizes the empty language (i.e., if $L_{3}=\emptyset$, or equivalently if $L_{1} \subseteq L_{2}$) by running R on input $\left\langle D_{3}\right\rangle$. Putting this all together gives us the above Turing machine S to decide A.

An incorrect answer is
$S^{\prime}=$ "On input $\left\langle D_{1}, D_{2}\right\rangle$, where D_{1} and D_{2} are DFAs:
0. If $\left\langle D_{1}, D_{2}\right\rangle$ is not a proper encoding of two DFAs, then reject.

1. Run D_{1} on input string w.
2. If D_{1} accepts, then run D_{2} on string w.

If D_{2} accepts, accept; else, reject.
One problem with TM S^{\prime} is that in Stage 1, what is the string w ? Even if D_{1} and D_{2} both accept one particular string w, there may be another string w^{\prime} that D_{1} accepts but D_{2} rejects, so then $L\left(D_{1}\right) \nsubseteq L\left(D_{2}\right)$, in which case $\left\langle D_{1}, D_{2}\right\rangle \notin A$. But S^{\prime} can't determine this because it tests D_{1} and D_{2} on only one specific string w. The only YES instances $\left\langle D_{1}, D_{2}\right\rangle \in A$ that S^{\prime} accept are when $L\left(D_{1}\right)=\{w\}$ and
$w \in L\left(D_{2}\right)$. But there are many other YES instances $\left\langle D_{1}, D_{2}\right\rangle \in A$ that S^{\prime} does not accept, so S^{\prime} does not even recognize A.

We could try to fix TM S^{\prime} by constructing another TM $S^{\prime \prime}$ that tests D_{1} and D_{2} on all possible strings $w \in \Sigma^{*}$, but this modification also does not lead to a decider for A. Specifically, let $w_{1}, w_{2}, w_{3}, \ldots$ be an enumeration of the strings in Σ^{*} (e.g., in string order), and consider the following TM $S^{\prime \prime}$:

$$
\begin{aligned}
S^{\prime \prime}= & \text { "On input }\left\langle D_{1}, D_{2}\right\rangle \text {, where } D_{1} \text { and } D_{2} \text { are DFAs: } \\
& 0 . \text { If }\left\langle D_{1}, D_{2}\right\rangle \text { is not a proper encoding of two DFAs, then reject. }
\end{aligned}
$$

1. For $i=1,2,3, \ldots$
2. Run D_{1} on input string w_{i}.
3. If D_{1} accepts w_{i}, then run D_{2} on string w_{i}.

If D_{2} rejects w_{i}, reject.
4. If D_{2} accepts every string w_{i} that D_{1} accepts, accept.

A problem with TM $S^{\prime \prime}$ is that $S^{\prime \prime}$ does not even recognize the language A. To see why, first note that Σ^{*} is infinite, so the loop starting in Stage 1 could go on forever. Now suppose that $\left\langle D_{1}, D_{2}\right\rangle$ is a NO instance; i.e., $\left\langle D_{1}, D_{2}\right\rangle \notin A$, so there is at least one string w_{k} (depending on both D_{1} and D_{2}) that D_{1} accepts but D_{2} rejects. The TM $S^{\prime \prime}$ will eventually find this string w_{k}, so $S^{\prime \prime}$ correctly will reject the NO instance. But when $\left\langle D_{1}, D_{2}\right\rangle$ is a YES instance (i.e., $\left\langle D_{1}, D_{2}\right\rangle \in A$), then the TM $S^{\prime \prime}$ will loop forever because it will never find a string w_{i} that D_{1} accepts and D_{2} rejects, so $S^{\prime \prime}$ never rejects in Stage 3 and never reaches Stage 4. Thus, TM $S^{\prime \prime}$ does not even recognize A because $S^{\prime \prime}$ does not accept every YES instance, and in fact, $S^{\prime \prime}$ loops on each YES instance.
7. (This is HW 8, problem 4, worded slightly differently.) We need to show there is a Turing machine that recognizes $\overline{E_{\mathrm{TM}}}$, the complement of E_{TM}. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a list of all strings in Σ^{*}. For a given Turing machine M, we want to determine if any of the strings $s_{1}, s_{2}, s_{3}, \ldots$ is accepted by M. If M accepts at least one string s_{i}, then $L(M) \neq \emptyset$, so $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$; if M accepts none of the strings, then $L(M)=\emptyset$, so $\langle M\rangle \notin \overline{E_{\mathrm{TM}}}$. However, we cannot just run M sequentially on the strings $s_{1}, s_{2}, s_{3}, \ldots$ For example, suppose M accepts s_{2} but loops on s_{1}. Since M accepts s_{2}, we have that $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$. But if we run M sequentially on $s_{1}, s_{2}, s_{3}, \ldots$, we never get past the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\mathrm{TM}}}$:

$$
R=\text { "On input }\langle M\rangle \text {, where } M \text { is a Turing machine: }
$$

1. Repeat the following for $i=1,2,3, \ldots$.
2. Run M for i steps on each input $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computation accepts, accept.
