1.

CS 341-006, Hybrid section, Spring 2022
Solutions for Midterm 2

(a) True. For example, the universal Turing machine recognizes Ay, which is
undecidable.

(b) False, by Theorems 3.13 and 3.16.

(c) False. A TM M may loop on input w.

(d) True, by Theorem 4.9.

(e) True, by slide 4-38.

(f) False, by Theorem 4.8.

(g) False, e.g., Ary is not Turing-recognizable.

(h) True. A C B means that every element of A also belongs to B, which is

equivalent to saying that there are no elements in A that do not belong to B,
ie, ANB=10.

(i) True, by Theorem 4.5.
(j) False, by Theorem 4.11.

b

(c) Yes, because f is one-to-one and onto.

)
)

(a) Yes, because f(z) # f(y) whenever x # y.
(b) Yes, because everything in R is “hit” by f.
)

)

(d) A language L; that is Turing-recognizable is recognized by a Turing machine
M that may loop forever on a string w &€ L,. A language L, that is Turing-
decidable is recognized by a Turing machine M, that always halts.

(e) An algorithm is a Turing machine that always halts.

3. ¢10001#410 2q2001#10 20g201#10 200g21#10 2001ge#10 x0014#q410

20014 1 greject

(This is a slight modification of Theorem 4.17.) For a proof by contradiction,
suppose that A ={z € ® |6 <z < 7} is countable. The set A is clearly infinite,
so the assumption that A is countable means that we can define a correspondence
[N — A where N = {1,2,3,...} is the set of natural numbers, and let a,, =
f(n). In other words, we can enumerate the elements of A as a list a1, as, as, .. .,
where

f(n) = an
6.d11d12d13 .
6.d21d22d23 c.
6.d31d32d33 c.

EEGURE NC R ey

For the nth number a,, in the list, its ¢th digit after the decimal point is d,;. Now
we construct a number y € A as y = 6.b1bsbs . . ., where for each n = 1,2, 3, ..., the
nth digit in y after the decimal point is b, = 3 if d,,,, = 1, and b, = 1 if d,,, # 1.
The number y belongs to the set A, but for each n = 1,2,3,..., the number y
but does not equal the nth number in the list because they differ in the nth digit,
ie., b, # d,,. Therefore, we get a contradiction because the list was supposed to
contain all elements of A, but the list does not include y € A. We thus conclude
that A is uncountable.

. (This is HW 7, problem 2b.) For any two Turing-recognizable languages L; and
Loy, let My and M,, respectively, be TMs that recognize them. We construct a TM
M’ that recognizes the union L U Lo:

M’ = “On input string w:
1. Run M; and M, alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.

To see why M’ recognizes Ly U Lo, first consider w € Ly U Ly. Then w is in L,
or in Ly (or both). If w € Ly, then M; accepts w, so M’ will eventually accept
w. Similarly, if w € Lo, then Mj accepts w, so M’ will eventually accept w. On
the other hand, if w & L; U Ly, then w € Ly and w &€ L. Thus, neither M; nor
My accepts w, so M’ will also not accept w. Hence, M’ recognizes L; U L,. Note
that if neither M; nor M, accepts w and one of them does so by looping, then M’
will loop, but this is fine because we only needed M’ to recognize and not decide
L1 U LQ.

. (This is a modification of Theorem 4.5, which shows that FQpg, is decidable.)
The language of the decision problem is

A ={(Dy, D) | Dy and Dy are DFAs with L(D;) C L(Ds) }.

To simplify notation, let L1 = L(D;) and Ly = L(D,), and define Ly = Ly N Ly.
Note that L; C L, if and only if Lz = (), so we will show that A is decidable
through a TM S that

e first constructs a DFA Dj for Lj (using that the class of regular languages is
closed under complementation (HW 2, problem 3) and intersection (HW 2,
problem 5)), and

e then checks if D3 recognizes the empty language (the emptiness problem for
DFAs is decidable by Theorem 4.4).

Specifically, here are the details of a decider S for A:

S = “On input (Dq, Ds), where Dy and Dy are DFAs:
0. If (D, Dy) is not a proper encoding of two DFAs, then reject.

1. Construct a DFA Dj for language L3 = L(Dy) N L(Dy)

using the algorithms for DFA complementation and intersection.
2. Run TM R that decides Epga on input (Dj3).
3. If R accepts, accept. If H rejects, reject.”

Below are additional details, which are not required in an answer. To start, we are
given two DFAs (Dy, D) as input. Then Ly = L(D;) and Ly = L(D-) are regular
because they are the languages recognized by DFAs D; = (Q1,%, 61, ¢, F1) and
Dy = (@, %, 02, g2, F), respectively. The proof that the class of regular languages
is closed under complementation (HW 2, problem 3) shows how to construct a
DFA D), for L, by swapping accepting and non-accepting states of the DFA D, for
Ly; ie., Dy = (Q2,%, 6, qa, Q2 — F3) recognizes L. Because the class of regular
languages is also closed under intersections (HW 2, problem 5), we then have that
LiN Ly is regular, and we can construct a DFA D3 for Ly = L1 N Loy by running
Dy and D) simultaneously and accepting if and only if both accept; i.e., Ls is
recognized by D3 = (Q3, %, 93, g3, F3), where

® Q3 =Q1 X Qq,

o 53((2,9),£) = (91(x, 0), 52(, 0)) for (z,) € Qy and [€ 3,
® q3 = (q1,q2), and
[F3 =F x (QQ — FQ)

Now let TM R be the decider for Epgs in Theorem 4.4 (emptiness problem for
DFAs), and we can determine if the DFA Dj recognizes the empty language (i.e.,
if Ly = (), or equivalently if L; C L) by running R on input (D3). Putting this
all together gives us the above Turing machine S to decide A.

An incorrect answer is

S" = “Oninput (Dy, Dy), where D; and Dy are DFAs:
0. If (D, Dy) is not a proper encoding of two DFAs, then reject.
1. Run D; on input string w.
2. If Dy accepts, then run Dy on string w.

If Dy accepts, accept; else, reject.

One problem with TM S’ is that in Stage 1, what is the string w? Even if D; and
D, both accept one particular string w, there may be another string w’ that D,
accepts but Dy rejects, so then L(Dy) € L(Ds), in which case (Dq, Do) ¢ A. But
S’ can’t determine this because it tests D; and Dy on only one specific string w.
The only YES instances (D, D) € A that S” accept are when L(D;) = {w} and

3

w € L(Ds). But there are many other YES instances (Dy, Dy) € A that S” does
not accept, so S’ does not even recognize A.

We could try to fix TM S by constructing another TM S” that tests Dy and Dy
on all possible strings w € ¥*, but this modification also does not lead to a decider
for A. Specifically, let wy, wsy, w3, ... be an enumeration of the strings in ¥* (e.g.,
in string order), and consider the following TM S”:

S" = “On input (Dy, Dy), where D; and D, are DFAs:
0. If (Dy, Dy) is not a proper encoding of two DFAs, then reject.
1. For:=1,2,3,...
2. Run D, on input string w;.
3 If Dy accepts w;, then run D, on string w;.

If Dy rejects w;, reject.

4. If Dy accepts every string w; that Dy accepts, accept.

A problem with TM S” is that S” does not even recognize the language A. To
see why, first note that ¥* is infinite, so the loop starting in Stage 1 could go on
forever. Now suppose that (D1, Do) is a NO instance; i.e., (D1, Do) & A, so there
is at least one string wy (depending on both D; and D) that D; accepts but Do
rejects. The TM S” will eventually find this string wy,, so S” correctly will reject
the NO instance. But when (Dy, Ds) is a YES instance (i.e., (D1, Dy) € A), then
the TM S” will loop forever because it will never find a string w; that D; accepts
and D, rejects, so S” never rejects in Stage 3 and never reaches Stage 4. Thus,
TM S” does not even recognize A because S” does not accept every YES instance,
and in fact, S” loops on each YES instance.

. (This is HW 8, problem 4, worded slightly differently.) We need to show there is
a Turing machine that recognizes Ery, the complement of Ery. Let sq, $9,83,...
be a list of all strings in ¥*. For a given Turing machine M, we want to determine
if any of the strings si, s9,s3,... is accepted by M. If M accepts at least one
string s;, then L(M) # 0, so (M) € Eqy; if M accepts none of the strings,
then L(M) = (), so (M) ¢ Ery. However, we cannot just run M sequentially
on the strings si, so, s3,.... For example, suppose M accepts s, but loops on s;.
Since M accepts sq, we have that (M) € Eryv. But if we run M sequentially
on si, S, S3, ..., we never get past the first string. The following Turing machine

avoids this problem and recognizes Fry:

R = “On input (M), where M is a Turing machine:
1. Repeat the following for i =1,2,3,.. ..
2. Run M for i steps on each input sy, s9,...,S;.
3. If any computation accepts, accept.

