
CS 341-452, Spring 2022, eLearning (online) Section
Solutions for Midterm 1

1. (a) False. The language with regular expression a∗ is regular (by Kleene’s theorem)
but infinite.

(b) True. Suppose that A is decided by a nondeterministic Turing machine. Then
Corollary 3.19 implies that A is decidable, so A is decided by some deterministic
Turing machine M . Thus, A is also recognized by the same deterministic TM M .

(c) False. The DFA M ′ = (Q,Σ, δ, q1, Q− F) recognizes A, not A∗.

(d) True. For any language A defined over an alphabet Σ, we always have that
A ∪ A = Σ∗, which is regular. The fact that A is recognized by a 5-tape TM is
irrelevant.

(e) False. The CFG G gives the derivation S ⇒ 1S0S ⇒ 10S ⇒ 101S0S ⇒ 1010S ⇒
1010 6∈ A, so G does not generate A.

(f) True. If A is finite, then it is also regular (see slide 1-95). Thus, A is also regular
because the class of regular languages is closed under complementation (HW 2,
problem 3). Corollary 2.32 then implies that A is context-free, so A has a CFG
in Chomsky normal form by Theorem 2.9.

(g) False. The following NFA

q1

recognizes the empty language ∅. But ∅∗ = {ε}, which is finite.

Alternatively, the following NFA

q1

recognizes the language {ε}. But {ε}∗ = {ε}, which is finite.

(h) False. The language A = {w#w | w ∈ {0, 1}∗ } is recognized by the Turing
machine described on slide 3-9. But by considering the string s = 0p1p#0p1p, we
can use Theorem 2.34 (the pumping lemma for context-free languages) to show
that A is not context-free by slightly modifying the proof on slide 2-99 (which
shows that the closely related language D = {ww | w ∈ {0, 1}∗ } is not context-
free), so A does not have a CFG.

(i) True. If A is regular, then so is A because the class of regular languages is closed
under complementation (HW 2, problem 3). Because B is also regular, we then
have that A ◦ B is regular because the class of regular languages is closed under
concatenation (Theorem 1.26).

(j) False. The class of context-free languages is not closed under intersection (HW 6,
problem 2a), so there are context-free languages A and B such that A∩B is not
context-free. Thus, A ∩B cannot have a PDA by Theorem 2.20.

1

2. (a) b∗ba∗b∗∪b∗ab∗. Another regular expression for the language is b∗(ba∗∪a)b∗. There
are infinitely many correct regular expressions for the language.

(b) ε, a, aa, ba, aaa

(c) After the one step of removing X → ε, the CFG is then

S0 → S

S → S1XS0 | S1S0 | ε

X → 0SX1X0 | 0S1X0 | 0SX10 | 0S10 | 0X1 | 01

(d) G3 = (V3,Σ, R3, S3) with V3 = {S3, S1, X1, S2, X2}, S3 is the start variable, Σ =
{a, b}, and rules R3 given by

S3 → S2S1

S1 → aX1aX1S1b | baa

X1 → X1bS1aaX1 | ab

S2 → bX2aS2 | abb

X2 → S2bX2S2a | ba

3. (a) This is a slight variation of HW 2, problem 2g. A DFA for C = {w ∈ Σ∗ |
|w| ≥ 2, second-to-last symbol of w is a }, with Σ = {a, b}, is below:

q1 q2

q3

q4

a

b

a

b

a

b

a
b

A 5-tuple description of the DFA above is M = (Q,Σ, δ, q1, F), where

• Q = {q1, q2, q3, q4}

• Σ = {a, b}

• The transition function δ : Q× Σ → Q is defined as

a b

q1 q2 q1
q2 q3 q4
q3 q3 q4
q4 q2 q1

• q1 is the start state

• F = {q3, q4}

There are infinitely many other correct DFAs for C.

2

(b) A regular expression for C is (a ∪ b)∗a(a ∪ b). Others are (a ∪ b)∗(aa ∪ ab) and
(a∪ b)∗aa∪ (a∪ b)∗ab. There are infinitely many other correct regular expressions
for C.

4. This problem is a slight variation of HW 5, problem 1(f). A CFG for D = { biajbk |
i, j, k ≥ 0, j = i + k } is G = (V,Σ, R, S) with V = {S,X, Y } as the set of variables,
where S is the start variable; Σ = {a, b} is the set of terminals; and rules R given by

S → XY

X → bXa | ε

Y → aXb | ε

We next prove the correctness of the CFG G, although the problem doesn’t requiring
providing such a proof. To see why the given CFG G works for D, we first claim that
D = A1 ◦A2, where

A1 = { biai | i ≥ 0 },

A2 = { akbk | k ≥ 0 }.

To prove that D = A1 ◦A2, we need to show that both A1 ◦A2 ⊆ D and D ⊆ A1 ◦A2.

• To prove that A1 ◦ A2 ⊆ D, we have to show that concatenating a string from
A1 with a string from A2 always results in a string in D. This is true because
concatenating a string biai ∈ A1 with a string akbk ∈ A2 leads to biaiakbk =
biai+kbk ∈ D.

• Conversely, to show that D ⊆ A1 ◦ A2, we need to show that every string in D

can be expressed as a concatenation of a string from A1 with a string from A2.
This is true because any string s = biajbk ∈ D has j = i + k, so s = biai+kbk =
biaiakbk ∈ A1 ◦ A2.

A CFG G1 for A1 has rules X → bXa | ε with X as the starting variable. A CFG
G2 for A2 has rules Y → aY b | ε with Y as the starting variable. As shown in HW
5, problem 3(b), the class of context-free languages is closed under concatenation, and
the approach in that problem leads to the given CFG G for D.

There are infinitely many other correct CFGs for D.

5. Language E = {w ∈ Σ∗ | w = wR and w has odd length } with Σ = {c, d} is nonreg-
ular. We prove this by contradiction. Suppose that E is a regular language. Let p be
the “pumping length” of the Pumping Lemma. Consider the string

s = cpdcp.

Note that s ∈ E because sR = s and its length |s| = 2p+ 1 is odd. Also, the length of
s is |s| = 2p + 1 > p, so the Pumping Lemma will hold. Thus, there exists strings x,
y, and z such that s = xyz and

3

(i) xyiz ∈ E for each i ≥ 0,

(ii) |y| > 0,

(iii) |xy| ≤ p.

Since the first p symbols of s are all c’s, the third property implies that x and y consist
only of c’s. So z will be the rest of the c’s at the beginning, followed by dcp. The
second property states that |y| > 0, so y has at least one c. More precisely, we can
then say that

x = cj for some j ≥ 0,

y = ck for some k ≥ 1,

z = cmdcp for some m ≥ 0.

Since cpdcp = s = xyz = cjckcmdcp = cj+k+mdcp, we must have that

j + k +m = p, where k ≥ 1

by (ii). The first property implies that xy2z ∈ E, but

xy2z = cjckckcmdcp

= cp+kdcp 6∈ E

because (cp+kdcp)R = cpdcp+k is not the same as cp+kdcp since k ≥ 1. Because the
pumped string xy2z 6∈ E, we have a contradiction. Therefore, E is a nonregular
language.

A string s that will not work for getting a contradiction is when s has only one type
of symbol. For example, consider s = c2p+1, where s ∈ E because |s| = 2p + 1 is
odd, and sR = s. We claim that the pumping length p must be at least 2. (To see
why, the proof of the pumping lemma shows that p is at least the number of states
in the DFA for the language under consideration. A DFA with only 1 state can only
recognize ∅ or Σ∗, neither of which is E, so we must have p ≥ 2.) Because |s| ≥ p, the
pumping lemma will then apply. Then we could split s = xyz with x = ε, y = c2, and
z = c2p−1, which satisfy (ii) because y 6= ε, and (iii) because |xy| = 2 ≤ p as p ≥ 2.
For conclusion (i) of the pumping lemma, the pumped string xyiz = c2p+2i−1 ∈ E for
each i ≥ 0 because the pumped string is the same forwards and backwards, and has
length 2(p + i)− 1, which is odd, so there is no contradiction. There are many other
strings that also won’t work to get a contradiction.

6. (This is HW 7, problem 3.) The problem with the proof is that M on si might loop
forever. If it loops forever, then E ′ doesn’t print out si. More importantly, E ′ isn’t
going to move on to test the next string. Therefore, it won’t be able to enumerate any
other strings in the language L of the TM M . For this reason, we need to simulate M

on each of the strings si for a fixed length of time so that no looping can occur.

7. q1baba#aab xq3aba#aab xaq3ba#aab xabq3a#aab xabaq3#aab xaba#q5aab

xaba#aqrejectab

4

8. Multiple answers

(a) For the given statements, the following are true:

• T is closed under union

• R is a subset of N

• D is closed under intersection

• N is closed under complementation

• N is a subset of R

The rest are not true.

• To show that R = P is not true, consider the language A = {w#w | w ∈
{0, 1}∗ } is recognized by the Turing machine described on slide 3-9. But
by considering the string s = 0p1p#0p1p, we can use Theorem 2.34 (the
pumping lemma for context-free languages) to show that A is not context-
free by slightly modifying the proof on slide 2-99 (which shows that the closely
related language D = {ww | w ∈ {0, 1}∗ } is not context-free), so A does not
have a CFG. Thus, Theorem 2.20 implies that A does not have a PDA.

(b) Language A is finite, so there is a DFA, NFA, PDA, Turing machine, k-tape
Turing machine and nondeterministic Turing machine that will recognize A.

(c) None of the other given statements is correct. To show that all of the other
statements are not true, let B = { anbncn | n ≥ 0}, which is not context-free, and
consider the following choices for context-free A:

• If A = {ε}, then A ◦B = B is not context-free.

• If A = ∅, then A ◦B = A is context-free.

• If A = ∅, then A ∪B = B is not context-free.

• If A has CFG Σ∗ for Σ = {a, b, c}, then A ∪ B = A is context-free.

• If A has CFG Σ∗ for Σ = {a, b, c}, then A ∩ B = B is not context-free.

• If A = ∅, then A ∩B = A is context-free.

(d) By Kleene’s theorem, the class of languages having a regular expression is ex-
actly the class of regular languages. So the class is closed under union (Theorem
1.25 or 1.45), concatenation (Theorem 1.26 or 1.47), Kleene star (Theorem 1.49),
intersection (HW 2, problem 5), and complements (HW 2, problem 3).

(e) The given PDA recognizes the language A = { bnan | n ≥ 1 }. Two of the given
CFGs will generate A: rules

S → bSa | ba

and rules

S → bSa |X

X → bXa | ba

None of the other CFGs are correct.

5

