Midterm Exam I

CIS 341: Introduction to Logic and Automata - Fall 1996
Prof. Marvin K. Nakayama

Print Name (last name first):

Student Number:

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A finite automaton may have more than one start state.
(b) TRUE FALSE - A finite automaton may have no final states.
(c) TRUE FALSE - A transition graph may have more than one start state.
(d) TRUE FALSE - A transition graph may have no final states.
(e) TRUE FALSE - A finite automaton may crash when processing a string.
(f) TRUE FALSE - There may be more than one way to process a particular string on a finite automaton.
(g) TRUE FALSE - The string bbabab can be generated by the regular expres$\operatorname{sion}(\mathbf{a}+\Lambda+\mathbf{b a a}) \mathbf{b}^{*}(\mathbf{a b})^{*}(\mathbf{b}+\Lambda)$.
(h) TRUE FALSE $-\Lambda$ is in the language \emptyset.
(i) TRUE FALSE - If a finite automaton accepts Λ, then some start state must also be a final state.
(j) TRUE FALSE - If a transition graph accepts Λ, then some start state must also be a final state.
2. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all words that begin with either $a b$ or $b a$.

Regular Expression:

(b) L exactly consists of all words that have an odd number of b 's.

Regular Expression:

Scratch-work area

3. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all words that end with b.

Draw finite automaton here:

(b) L exactly consists of all words that have at least two b 's and end with $a a$.

Draw finite automaton here:

Scratch-work area
4. [20 points] Let S be any set of strings. Prove that $S^{+}=\left(S^{+}\right)^{+}$.

