Midterm Exam I CIS 341: Introduction to Logic and Automata — Fall 1996 Prof. Marvin K. Nakayama

Print Name (last name first): _____

Student Number: _____

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.

Problem	1	2	3	4	Total
Points					

1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 A finite automaton may have more than one start state.
(b)	TRUE	FALSE	 A finite automaton may have no final states.
(c)	TRUE	FALSE	 A transition graph may have more than one start state.
(d)	TRUE	FALSE	 A transition graph may have no final states.
(e)	TRUE	FALSE	 A finite automaton may crash when processing a string.
(f)	TRUE	FALSE	 There may be more than one way to process a particular string on a finite automaton.
(g)	TRUE	FALSE	 The string <i>bbabab</i> can be generated by the regular expression $(\mathbf{a} + \Lambda + \mathbf{baa})\mathbf{b}^*(\mathbf{ab})^*(\mathbf{b} + \Lambda)$.
(h)	TRUE	FALSE	 Λ is in the language \emptyset .
(i)	TRUE	FALSE	 If a finite automaton accepts Λ , then some start state must also be a final state.
(j)	TRUE	FALSE	 If a transition graph accepts Λ , then some start state must also be a final state.

- 2. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a regular expression for L.
 - (a) L exactly consists of all words that begin with either ab or ba.

Regular Expression:	
Leegana Enpression	

(b) L exactly consists of all words that have an odd number of b's.

Regular Expression:

Scratch-work area

- 3. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all words that end with b.

Draw finite automaton here:

(b) L exactly consists of all words that have at least two b's and end with aa.

Draw finite automaton here:

Scratch-work area

4. [20 points] Let S be any set of strings. Prove that $S^+ = (S^+)^+$.