Midterm Exam I

CIS 341: Introduction to Logic and Automata - Fall 1997
Prof. Marvin K. Nakayama

Print Name (last name first):

Student Number:

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A finite automaton may have an arc labeled with Λ.
(b) TRUE FALSE - A finite automaton accepts Λ if and only if the initial state is also a final state.
(c) TRUE FALSE - A transition graph accepts Λ if and only if an initial state is also a final state.
(d) TRUE FALSE - If L is a language with finitely many words, then there is a regular expression for L.
(e) TRUE FALSE - A finite automaton may crash when processing a string.
(f) TRUE FALSE - There is no finite automaton that accepts the language $L=\emptyset$.
(g) TRUE FALSE - All transition graphs are non-deterministic.
(h) TRUE FALSE - Any regular expression that uses the Kleene star must generate an infinite language.
(i) TRUE FALSE - A finite automaton can have no final states.
(j) TRUE FALSE - A finite automaton can have no initial states.
2. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all words that contain either the substring $b b a$ or the substring $a a$ (or both).

Regular Expression:

(b) L exactly consists of all words that do not contain the substring aaa or that contain the substring aaa exactly once.

Regular Expression:

Scratch-work area

3. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all words whose third letter is b.

Draw finite automaton here:

(b) L exactly consists of all words that either start with $a a$ or end with $a a$ but not both.

Draw finite automaton here:

Scratch-work area

4. [20 points] Prove that the following finite automaton accepts exactly the language $L=\{$ words not ending in $a\}$ over the alphabet $\Sigma=\{a, b\}$.

