Midterm Exam I CIS 341: Introduction to Logic and Automata — Fall 1997 Prof. Marvin K. Nakayama

Print Name (last name first): _____

Student Number: _____

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	—	A finite automaton may have an arc labeled with Λ .
(b)	TRUE	FALSE		A finite automaton accepts Λ if and only if the initial state is also a final state.
(c)	TRUE	FALSE		A transition graph accepts Λ if and only if an initial state is also a final state.
(d)	TRUE	FALSE		If L is a language with finitely many words, then there is a regular expression for L .
(e)	TRUE	FALSE		A finite automaton may crash when processing a string.
(f)	TRUE	FALSE		There is no finite automaton that accepts the language $L = \emptyset$.
(g)	TRUE	FALSE		All transition graphs are non-deterministic.
(h)	TRUE	FALSE		Any regular expression that uses the Kleene star must generate an infinite language.
(i)	TRUE	FALSE		A finite automaton can have no final states.
(j)	TRUE	FALSE		A finite automaton can have no initial states.

- 2. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a regular expression for L.
 - (a) L exactly consists of all words that contain either the substring bba or the substring aa (or both).

Regular Expression:

(b) L exactly consists of all words that do not contain the substring *aaa* or that contain the substring *aaa* exactly once.

Regular Expression:

 $\mathbf{Scratch}\textbf{-}\mathbf{work} \ \mathbf{area}$

- 3. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all words whose third letter is b.

Draw finite automaton here:

(b) L exactly consists of all words that either start with aa or end with aa but not both.

Draw finite automaton here:

Scratch-work area

4. **[20 points]** Prove that the following finite automaton accepts exactly the language $L = \{ \text{ words not ending in } a \}$ over the alphabet $\Sigma = \{a, b\}.$

