## Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 1998
Prof. Marvin K. Nakayama

Print Name (last name first):

Student Number:

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

| Problem | 1 | 2 | 3 | 4 | Total |
| :---: | :--- | :--- | :--- | :--- | :---: |
| Points |  |  |  |  |  |

1. [ 30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If $L$ is a finite language, then $L^{*}$ must be finite.
(b) TRUE FALSE - If $L$ is a finite language, then $L^{*}$ must be infinite.
(c) TRUE FALSE - If $L$ is an infinite language, then $L^{*}$ must be infinite.
(d) TRUE FALSE - A finite automaton may accept infinitely many different words.
(e) TRUE FALSE - A finite automaton may accept only finitely many different words.
(f) TRUE FALSE - All finite automata are transition graphs.
(g) TRUE FALSE - All transition graphs are finite automata
(h) TRUE FALSE - A finite automata may have more than one initial state.
(i) TRUE FALSE - A transition graph may be deterministic.
(j) TRUE FALSE - A finite automaton may have more than one final state.
2. [25 points] For each of the following languages $L$ over the alphabet $\Sigma=\{a, b\}$, give a regular expression for $L$.
(a) $L$ exactly consists of all words that do not contain the substring $a b$.

## Regular Expression:

(b) $L$ exactly consists of all words in which the substring $a a$ occurs exactly once.

## Regular Expression:

## Scratch-work area

3. [25 points] For each of the following languages $L$ over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly $L$.
(a) $L$ exactly consists of all words that do not contain the substring $a b$.

## Draw finite automaton here:

(b) $L$ exactly consists of all words whose second-to-last letter is an $a$.

## Draw finite automaton here:

Scratch-work area
4. [20 points] Let $S$ and $T$ be any arbitrary sets of strings. If $S^{*}=T^{*}$, is it always the case that $S=T$ ?

YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer.

