Midterm Exam I

CIS 341: Introduction to Logic and Automata — Spring 1998

Prof. Marvin K. Nakayama

Print Name (last name first):	
,	
Student Number:	

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

- 1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If L is a finite language, then L^* must be finite.
 - (b) TRUE FALSE If L is a finite language, then L^* must be infinite.
 - (c) TRUE FALSE If L is an infinite language, then L^* must be infinite.
 - (d) TRUE FALSE A finite automaton may accept infinitely many different words.
 - (e) TRUE FALSE A finite automaton may accept only finitely many different words.
 - (f) TRUE FALSE All finite automata are transition graphs.
 - (g) TRUE FALSE All transition graphs are finite automata
 - (h) TRUE FALSE A finite automata may have more than one initial state.
 - (i) TRUE FALSE A transition graph may be deterministic.
 - (j) TRUE FALSE A finite automaton may have more than one final state.

2. [25 points] regular expres	For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a ssion for L .
(a) L exactly	y consists of all words that do not contain the substring ab .
Regular	Expression:
(b) L exactly	y consists of all words in which the substring aa occurs exactly once.
Regular	Expression:
Scratch-wor	dr anno

3.	3. [25 points] For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L .					
	(a) L exactly consists of all words that do not contain the substring ab .					
	Draw finite automaton here:					
	(1.)					
	(b) L exactly consists of all words whose second-to-last letter is an a .					
		Draw finite automaton here:				
Scratch-work area						

4. [20 points] Let S and T be any arbitrary sets of strings. If $S^* = T^*$, is it always the case that S = T?

YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer.