Midterm Exam I CIS 341: Introduction to Logic and Automata — Fall 1999 Prof. Marvin K. Nakayama

Print Name (last name first):

Student Number: _____

- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE —	If <i>L</i> is a finite language, then it has a regular expression.
(b)	TRUE	FALSE —	If L is a finite language, then L^* must be infinite.
(c)	TRUE	FALSE —	All transitions graphs are non-deterministic.
(d)	TRUE	FALSE —	A finite automaton may have more than one initial state.
(e)	TRUE	FALSE —	A finite automaton may have more than one final state.
(f)	TRUE	FALSE —	If <i>L</i> is an infinite language, then L^* must be infinite.
(g)	TRUE	FALSE —	If <i>L</i> is any language, then $L^* = L^+$.
(h)	TRUE	FALSE —	If <i>L</i> is any language, then $L^{++} = L^+$.
(i)	TRUE	FALSE —	The regular expression $\mathbf{b}^*(\mathbf{aa})^*\mathbf{b}^*$ generates the language over the alphabet $\{a, b\}$ consisting of all words having an even number of <i>a</i> 's.

(j) TRUE FALSE — A finite automaton may have no final states.

- 2. [20 points] For each of the following languages *L* over the alphabet $\Sigma = \{a, b\}$, give a regular expression for *L*.
 - (a) *L* exactly consists of all words that begin with *a* and end with *ba*.

	Regular Expression:
(b)	L exactly consists of all words that have an even number of a 's and an even number of b 's.
	Regular Expression:

Scratch-work area

- 3. **[20 points]** For each of the following languages *L* over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly *L*.
 - (a) *L* exactly consists of all words that have an even number of *a*'s and an odd number of *b*'s.

Draw finite automaton here:

(b) *L* exactly consists of all words whose second-to-last letter is *b*.

Draw finite automaton here:

Scratch-work area

- 4. **[20 points]** In class we discussed the language PALINDROME over the alphabet $\Sigma = \{a, b\}$.
 - (a) Give a definition of the language PALINDROME. Don't just list out the words.
 - (b) List all words in PALINDROME having length 3.
 - (c) List all words in PALINDROME having length 4.
 - (d) How many words in PALINDROME have length exactly n? Be sure to give an explanation.

Scratch-work area

5. [20 points] Let S and T be any arbitrary sets of strings. If $S^* = T^*$, is it always the case that S = T?

YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer.