1. Short answers:

(a) Define the following terms and concepts:

i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

Answer:

- **Union:** \(S \cup T = \{ x \mid x \in S \text{ or } x \in T \} \)
- **Intersection:** \(S \cap T = \{ x \mid x \in S \text{ and } x \in T \} \)
- **Concatenation:** \(S \circ T = \{ xy \mid x \in S, y \in T \} \)
- **Kleene-star:** \(S^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0, w_i \in S \forall i = 1, 2, \ldots, k \} \)
- **Subtraction:** \(S - T = \{ x \mid x \in S, x \notin T \} \)
- **Complement:** \(\overline{S} = \{ x \in \Omega \mid x \notin S \} = \Omega - S \)

where \(\Omega \) is the universe of all elements under consideration.

ii. A set \(S \) is closed under an operation \(f \)

Answer: \(S \) is closed under \(f \) if applying \(f \) to members of \(S \) always returns a member of \(S \).

iii. Regular language

Answer: A regular language is defined by a DFA.

iv. Kleene’s theorem

Answer: A language is regular if and only if it has a regular expression.

v. Context-free language

Answer: A CFL is defined by a CFG.

vi. Chomsky normal form

Answer: A CFG is in Chomsky normal form if each of its rules has one of 3 forms:

\[A \rightarrow BC, \quad A \rightarrow x, \quad \text{or} \quad S \rightarrow \varepsilon, \]

where \(A, B, C \) are variables, \(B \) and \(C \) are not the start variable, \(x \) is a terminal, and \(S \) is the start variable.

vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).

viii. Turing-decidable language

Answer: A language \(A \) that is decided by a Turing machine; i.e., there is a Turing machine \(M \) such that

- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) halts and rejects on input \(w \notin A \).

Looping cannot happen.

ix. Turing-recognizable language

Answer: A language \(A \) that is recognized by a Turing machine; i.e., there is a Turing machine \(M \) such that

- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) rejects or loops on any input \(w \notin A \).
x. co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.

xi. Countable and uncountable sets

Answer:
- A set \(S \) is countable if it is finite or we can define a correspondence between \(S \) and the positive integers.
- In other words, we can create a list of all the elements in \(S \) and each specific element will eventually appear in the list.
- An uncountable set is a set that is not countable.
- A common approach to prove a set is uncountable is by using a diagonalization argument.

xii. Language \(A \) is mapping reducible to language \(B \), \(A \leq_m B \)

Answer:
- Suppose \(A \) is a language defined over alphabet \(\Sigma_1 \), and \(B \) is a language defined over alphabet \(\Sigma_2 \).
- Then \(A \leq_m B \) means there is a computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) such that \(w \in A \) if and only if \(f(w) \in B \).

\[
\Sigma_1^* \xrightarrow{f} \Sigma_2^*
\]

\[w \in A \iff f(w) \in B \]

Yes instance for problem \(A \) \iff Yes instance for problem \(B \)

xiii. Function \(f(n) \) is \(O(g(n)) \)

Answer: There exist constants \(c \) and \(n_0 \) such that \(|f(n)| \leq c \cdot g(n) \) for all \(n \geq n_0 \).

xiv. Classes P and NP

Answer:
- P is the class of languages that can be decided by a deterministic Turing machine in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- Equivalently, NP is the class of languages that can be decided by a nondeterministic Turing machine in polynomial time.

xv. Language \(A \) is polynomial-time mapping reducible to language \(B \), \(A \leq_P B \)

Answer:
- Suppose \(A \) is a language defined over alphabet \(\Sigma_1 \), and \(B \) is a language defined over alphabet \(\Sigma_2 \).
- Then \(A \leq_P B \) means \(\exists \) polynomial-time computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) such that \(w \in A \) if and only if \(f(w) \in B \).
xvi. NP-complete

Answer: Language B is NP-Complete if $B \in \text{NP}$, and for every language $A \in \text{NP}$, we have $A \leq_{\text{p}} B$.

Typical approach for proving language C is NP-Complete:
- first show $C \in \text{NP}$
- then show a known NP-Complete language B satisfies $B \leq_{\text{p}} C$.

xvii. NP-hard

Answer: Lang B is NP-hard if $A \leq_{\text{p}} B$ for every lang $A \in \text{NP}$.

(b) Give the transition functions δ of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:
- DFA, $\delta : Q \times \Sigma \rightarrow Q$, where Q is the set of states and Σ is the alphabet.
- NFA, $\delta : Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$, where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q.
- PDA, $\delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$, where Γ is the stack alphabet and $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$.
- Turing machine, $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.
- Nondeterministic Turing machine, $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

Multiple choices when in state q_i and read c from tape:

$\delta(q_i, c) = \{(q_j, a, L), (q_k, c, R), (q_{\ell}, a, L), (q_{\ell}, d, R)\}$

Stack

$a \rightarrow c$

Before

$\begin{array}{c|c|c}
 & b & c \\
 d & d & \\
 \$ & \$ & \\
\end{array}$

After

Tape

read \rightarrow write, move

Before $a \ b \ a \ \underline{\ ; \ ;}$

After $a \ b \ b \ a \ \underline{\ ; \ ;}$
(c) Explain the “P vs. NP” problem.

Answer:
- P is the class of languages that can be solved in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- We know that $P \subseteq NP$, but it is currently unknown if $P = NP$ or $P \neq NP$.

2. Recall that $A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM that accepts string $w \}$.

(a) Prove that A_{TM} is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof:
- Suppose A_{TM} is decided by some TM H, taking input $\langle M, w \rangle$.

\[
\langle M, w \rangle \rightarrow \begin{cases}
accept, & \text{if } \langle M, w \rangle \in A_{TM} \\
reject, & \text{if } \langle M, w \rangle \notin A_{TM}
\end{cases}
\]

- Define another TM D using H as a subroutine.

\[
\begin{align*}
D & \rightarrow \langle M, \langle M \rangle \rangle \\
\langle M \rangle & \rightarrow \langle M, \langle M \rangle \rangle \\
\langle M, \langle M \rangle \rangle & \rightarrow H \\
H & \rightarrow accept \\
H & \rightarrow reject
\end{align*}
\]

- What happens when we run D with input $\langle D \rangle$?
 - D accepts $\langle D \rangle$ iff D doesn’t accept $\langle D \rangle$, which is impossible.

(b) Show that A_{TM} is Turing-recognizable.

Answer: The universal TM U recognizes A_{TM}, where U is defined as follows:

\[U = "\text{On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}"
\]

1. Run M on w.
2. If M accepts w, accept; if M rejects w, reject.

Note that U only recognizes A_{TM} and does not decide A_{TM} since when we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.

CS 341 Practice Final
3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of Type REG, give a regular expression and a DFA for L.
- If a language L is of Type CFL, give a context-free grammar and a PDA for L. Also, prove that L is not regular.
- If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.

(a) $A = \{ w \in \Sigma^* \mid w = \text{reverse}(w) \text{ and the length of } w \text{ is divisible by } 4 \}$, where $\Sigma = \{0, 1\}$.

Answer: A is of type CFL. A CFG for A has rules $S \rightarrow 0S00 \mid 01S10 \mid 10S01 \mid 11S11 \mid \varepsilon$.

A PDA for A is as follows:

We now prove that A is not regular by contradiction.

- Suppose that A is regular. Let $p \geq 1$ be the pumping length of the pumping lemma (Theorem 1.1).
- Consider string $s = 0^p1^2p0^p \in A$, and note that $|s| = 4p > p$, so conclusions of pumping lemma must hold.
- Thus, can split $s = xyz$ satisfying (1) $xy^iz \in A$ for all $i \geq 0$, (2) $|y| > 0$, and (3) $|xy| \leq p$.

(b) $B = \{ b^n a^n b^n \mid n \geq 0 \}$.

Answer: B is of type DEC. Below is a description of a Turing machine that decides B.

M = "On input string $w \in \{a, b\}^*$:

1. Scan input to check if it’s in $b^n a^n b^n$; reject if not.
2. Return tape head to left-hand end of tape.
3. Repeat following until no more b’s left on tape.
 4. Replace the leftmost b with x.
 5. Scan right until a occurs. If no a’s, reject.
 6. Replace the leftmost a with x.
 7. Scan right until b occurs. If no b’s, reject.
 8. Replace the leftmost b (after the a’s) with x.
 9. Return tape head to left end of tape; go to stage 3.
10. If tape contains any a’s, reject. Else, accept."

We now prove that B is not context-free by contradiction.
Suppose that B is context-free.
• Let p be pumping length of CFL pumping lemma (Theorem 2.D).
• Consider string $s = b^p a^p b^p \in B$. Note that $|s| = 3p > p$, so the pumping lemma will hold.
• Thus, can split $s = b^p a^p b^p = uvxyz$ satisfying $uv^ixy^iz \in B$ for all $i \geq 0$, $|vy| \geq 1$, and $|vxy| \leq p$.
• We now consider all of the possible choices for v and y:
 • Suppose strings v and y are uniform (e.g., $v = b^j$ for some $j \geq 0$, and $y = a^k$ for some $k \geq 0$). Then $|vy| \geq 1$ implies that $v \neq \epsilon$ or $y \neq \epsilon$ (or both), so uv^2xy^2z won’t have the correct number of b’s at the beginning, a’s in the middle, and b’s at the end. Hence, $uv^2xy^2z \not\in B$.
 • Now suppose strings v and y are not both uniform. Then uv^2xy^2z won’t have form $b \cdots ba \cdots ab \cdots b$, so $uv^2xy^2z \not\in B$.
• Every case gives contradiction, so B is not a CFL.

(d) $D = \{ b^n a^n b^k c^k | n \geq 0, k \geq 0 \}$. [Hint: Recall that the class of context-free languages is closed under concatenation.]

Answer: D is of type CFL. A CFG for D is

$$S \to XY$$
$$X \to bXa | \epsilon$$
$$Y \to bYe | \epsilon$$

A PDA for D is below:

![PDA diagram](image)

Important: q_3 to q_4 pops and pushes $\$ to make sure stack is empty.

We now prove that D is not regular by contradiction.
• Suppose that D is regular. Let $p \geq 1$ be pumping length of pumping lemma (Theorem 1.I).
• Consider string $s = b^p a^p b^p c^p \in D$, and note that $|s| = 4p > p$, so conclusions of pumping lemma must hold.

(c) $C' = \{ w \in \Sigma^* | n_a(w) \mod 4 = 1 \}$, where $\Sigma = \{a, b\}$ and $n_a(w)$ is the number of a’s in string w. For example, $n_a(babaabb) = 3$. Also, $3 \mod 4 = 3$, and $9 \mod 4 = 1$.

Answer: C is of type REG. A regular expression for C is $(a^*ba^*ab^*a^*b^*)^*b^*a^*$, and a DFA for C is below:

![DFA diagram](image)

• Thus, can split $s = xyz$ satisfying (1) $xy^iz \in D$ for all $i \geq 0$, (2) $|y| > 0$, and (3) $|xy| \leq p$.
• Since all of the first p symbols of s are b’s, (3) implies that x and y must only consist of b’s. Also, z must consist of the rest of the b’s at the beginning, followed by $a^p b^p c^p$.
• Hence, we can write $x = b^j$, $y = b^k$, $z = b^m a^p b^p c^p$, where $j + k + m = p$ since $s = b^p a^p b^p c^p = xyz = b^j b^k b^m a^p b^p c^p$.
• Moreover, (2) implies that $k > 0$.
• Finally, (1) states that $xyyz$ must belong to D, but $xyyz = b^j b^k b^m a^p b^p c^p = b^{p+k} a^p b^p c^p$ since $j + k + m = p$. Also $k > 0$, so $xyyz \not\in D$, which contradicts (1). Therefore, D is a nonregular language.
4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:
 - Type DEC. It is Turing-decidable.
 - Type TMR. It is Turing-recognizable, but not decidable.
 - Type NTR. It is not Turing-recognizable.
For each of the following languages, specify which type it is. Also, follow these instructions:
 - If a language L is of Type DEC, give a description of a Turing machine that decides L.
 - If a language L is of Type TMR, give a description of a Turing machine that recognizes L. Also, prove that L is not decidable.
 - If a language L is of Type NTR, give a proof that it is not Turing-recognizable.

(a) A_{TM}, where $A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM that accepts string $w \}$.
 Answer: A_{TM} is of type NTR, which is just Theorem 4.M.
 Proof:
 - If A_{TM} were Turing-recognizable, then A_{TM} would be both Turing-recognizable (see slide 4-25) and co-Turing-recognizable.
 - But then Theorem 4.L would imply that A_{TM} is decidable, which we know is not true by Theorem 4.I.
 - Hence, A_{TM} is not Turing-recognizable.

(b) $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 $ are TMs with $L(M_1) = L(M_2) \}$.
 [Hint: show $A_{TM} \leq_T EQ_{TM}$]
 Answer: EQ_{TM} is of type NTR (see Theorem 5.K). We prove this by showing $\overline{A_{TM}} \leq_T EQ_{TM}$ and applying Corollary 5.1.
 - Define the reducing function $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where
 - M_1 = “reject on all inputs.”
 - M_2 = “On input x:
 1. Ignore input x, and run M on w.
 2. If M accepts w, accept.”
 - $L(M_1) = \emptyset$.
 - If M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{TM}}$), then $L(M_2) = \Sigma^*$.
 If M doesn’t accept w (i.e., $\langle M, w \rangle \in \overline{A_{TM}}$), then $L(M_2) = \emptyset$.
 - Thus, $\langle M, w \rangle \in \overline{A_{TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{TM}$, so $\overline{A_{TM}} \leq_T EQ_{TM}$.
 - But $\overline{A_{TM}}$ is not TM-recognizable (Corollary 4.4.M), so EQ_{TM} is not TM-recognizable by Corollary 5.1.

(c) $HALT_{TM} = \{ \langle M, w \rangle \mid M$ is a TM that halts on input $w \}$. [Hint: modify the universal TM to show $HALT_{TM}$ is Turing-recognizable.]
 Answer: $HALT_{TM}$ is of type TMR (see Theorem 5.A). The following Turing machine recognizes $HALT_{TM}$:
 - T = “On input $\langle M, w \rangle$, where M is a TM and w is a string:
 1. Run M on w.
 2. If M halts on w, accept.”
 We now prove that $HALT_{TM}$ is undecidable, which is Theorem 5.A.
 - Suppose there exists a TM R that decides $HALT_{TM}$.
 - Then could use R to build a TM S to decide A_{TM} by modifying universal TM to first use R to see if it’s safe to run M on w.
$S = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}\n$
\begin{enumerate}
\item Run R on input $\langle M, w \rangle$.
\item If R rejects, reject.
\item If R accepts, simulate M on input w until it halts.
\item If M accepts, accept; otherwise, reject."
\end{enumerate}

- Since TM R is a decider, TM S always halts and is a decider.
- Thus, deciding A_{TM} is reduced to deciding $HALT_{TM}$.
- However, A_{TM} is undecidable (Theorem 4.1), so that must mean that $HALT_{TM}$ is also undecidable.

5. Let L_1, L_2, L_3, \ldots be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ.
- Let $L = \bigcup_{k=1}^{\infty} L_k$ be the infinite union of L_1, L_2, L_3, \ldots.
- Is it always the case that L is a regular language?
- If your answer is YES, give a proof.
- If your answer is NO, give a counterexample.
- Explain your answer.
- Hint: Consider, for each $k \geq 1$, the language $L_k = \{a^kb^k\}$.

(d) $EQ_{DFA} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs with } L(M_1) = L(M_2) \}$.

Answer: EQ_{DFA} is of type DEC (see Theorem 4.E). The following TM decides EQ_{DFA}:

\begin{enumerate}
\item Check if $\langle A, B \rangle$ properly encodes 2 DFAs. If not, reject.
\item Construct DFA C such that $L(C) = [L(A) \cap \overline{L(B)}] \cup [\overline{L(A)} \cap L(B)]$ using algorithms for DFA union, intersection and complementation.
\item Run TM that decides E_{DFA} (Theorem 4.D) on $\langle C \rangle$.
\item If $\langle C \rangle \in E_{DFA}$, accept; if $\langle C \rangle \notin E_{DFA}$, reject."

Answer: The answer is NO.
- For each $k \geq 1$, let $L_k = \{a^kb^k\}$, so L_k is a language consisting of just a single string a^kb^k.
- Since L_k is finite, it must be a regular language by Theorem 1.F.
- But $L = \bigcup_{k=1}^{\infty} L_k = \{ a^kb^k \mid k \geq 1 \}$, which we know is not regular (see end of Chapter 1).
6. Let L_1, L_2, and L_3 be languages defined over the alphabet $\Sigma = \{a, b\}$, where

- L_1 consists of all possible strings over Σ except the strings $w_1, w_2, \ldots, w_{100}$; i.e.,
 - start with all possible strings over the alphabet
 - take out 100 particular strings
 - the remaining strings form the language L_1;
- L_2 is recognized by an NFA; and
- L_3 is recognized by a PDA.

Prove that $(L_1 \cap L_2)L_3$ is a context-free language.

[Hint: First show that L_1 and L_2 are regular.
Also, consider $\overline{L_1}$.]
9. Recall that

\[\text{CLIQUE} = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \} \]

\[\text{3SAT} = \{ \langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-function} \} \]

- Show that \text{CLIQUE} is \text{NP-Complete} by showing that \text{CLIQUE} \in \text{NP} and \text{3SAT} \leq_p \text{CLIQUE}.
- Be sure to prove your reduction works and that it requires polynomial time.
- Also, be sure to provide proofs of these results, and don’t just cite a theorem.

Answer:

Prove \text{3SAT} \leq_m \text{CLIQUE}

Proof Idea: Convert instance \(\phi \) of \text{3SAT} problem with \(k \) clauses into instance \(\langle G, k \rangle \) of clique problem.

- Suppose \(\phi \) is a 3cnf-function with \(k \) clauses, e.g.,

\[\phi = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_3 \lor \bar{x}_5 \lor \bar{x}_6) \land (x_3 \lor \bar{x}_6 \lor x_4) \land (x_2 \lor x_1 \lor \bar{x}_5) \]

- Convert \(\phi \) into a graph \(G \) as follows:

 - Nodes in \(G \) are organized into \(k \) triples \(t_1, t_2, \ldots, t_k \).
 - Triple \(t_i \) corresponds to the \(i \)th clause in \(\phi \).
 - Each node in a triple corresponds to a literal within the clause.
 - Add edges between each pair of nodes, except
 - within same triple
 - between contradictory literals, e.g., \(x_1 \) and \(\bar{x}_1 \)

- Prove \(\langle \phi \rangle \in \text{3SAT} \) iff \(\langle G, k \rangle \in \text{CLIQUE} \).
3SAT \leq_m CLIQUE

Example: 3cnf-function with \(k = 3\) clauses and \(m = 2\) variables:
\[
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)
\]

Corresponding Graph:

- Clause 1
 - \(x_1\)
 - \(x_1\)
 - \(x_2\)
- Clause 2
 - \(x_1\)
 - \(x_1\)
 - \(x_2\)
- Clause 3
 - \(x_1\)
 - \(x_2\)
 - \(x_2\)

Claim: \(\langle \phi \rangle \in 3SAT\) iff \(\langle G, k \rangle \in CLIQUE\).

Proof. Use that \(G\) has edges between every pair of nodes except for
- pairs in same triple
- contradictory literals.

Also, \(\phi\) satisfiable iff each clause has \(\geq 1\) true literal.

Claim: The mapping \(\phi \rightarrow \langle G, k \rangle\) is polynomial-time computable.

Proof.
- Given 3cnf-function \(\phi\) with
 - \(k\) clauses
 - \(m\) variables.
- Constructed graph \(G\) has
 - \(3k\) nodes
 - \((\#\) of edges in \(G\)) \(= \frac{3k(3k-1)}{2} = O(k^2)\)
 - Size of graph \(G\) is polynomial in size of 3cnf-function \(\phi\).

10. Recall that

\[
ILP = \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay \leq b \text{ with } y \text{ an integer vector} \}.
\]

- Show that \(ILP\) is NP-Complete by showing that \(ILP \in NP\) and \(3SAT \leq_p ILP\).
- Be sure to prove your reduction works and that it requires polynomial time.
- Also, be sure to provide proofs of these results, and don’t just cite a theorem.
ILP ∈ NP

Proof.
- The certificate c is an integer vector satisfying $Ac \leq b$.
- Here is a verifier for ILP:
 - $V = "On input \langle A, b, c \rangle:"$
 1. Test whether c is a vector of all integers.
 2. Test whether $Ac \leq b$.
 3. If both tests pass, accept; otherwise, reject.
- If $Ay \leq b$ has m inequalities and n variables, then
 - Stage 1 takes $O(n)$ time
 - Stage 2 takes $O(mn)$ time
 - So verifier V runs in $O(mn)$, which is polynomial in size of problem.

Now prove ILP is NP-Hard by showing $3SAT \leq_p ILP$.

3SAT ≤ₘ ILP

- Recall 3cnf-formula with $m = 4$ variables and $k = 3$ clauses:
 \[\phi = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \land (\overline{x}_2 \lor x_4 \lor \overline{x}_3) \]
 - ϕ satisfiable iff each clause evaluates to 1.
 - A clause evaluates to 1 iff at least one literal in the clause equals 1.
 - For each clause $(x_i \lor \overline{x}_j \lor x_k)$, create inequality $y_i + y'_j + y_k \geq 1$.
 - For our example, ILP has inequalities
 \[
 \begin{align*}
 y_1 + y_2 + y'_3 & \geq 1 \\
 y'_1 + y'_2 + y_4 & \geq 1 \\
 y'_2 + y'_4 + y'_3 & \geq 1
 \end{align*}
 \]
 which guarantee that each clause evaluates to 1.

- Consider 3cnf-formula with $m = 4$ variables and $k = 3$ clauses:
 \[\phi = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \land (\overline{x}_2 \lor x_4 \lor \overline{x}_3) \]
 - Define integer linear program with
 - $2m = 8$ variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - y_i corresponds to x_i
 - y'_i corresponds to \overline{x}_i
 - 3 sets of inequalities for each of pair y_i, y'_i:
 \[
 \begin{align*}
 0 \leq y_1 \leq 1, & \quad 0 \leq y'_1 \leq 1, & \quad y_1 + y'_1 = 1 \\
 0 \leq y_2 \leq 1, & \quad 0 \leq y'_2 \leq 1, & \quad y_2 + y'_2 = 1 \\
 0 \leq y_3 \leq 1, & \quad 0 \leq y'_3 \leq 1, & \quad y_3 + y'_3 = 1 \\
 0 \leq y_4 \leq 1, & \quad 0 \leq y'_4 \leq 1, & \quad y_4 + y'_4 = 1
 \end{align*}
 \]
 which guarantee that exactly one of y_i and y'_i is 1, and other is 0.
- $0 \leq y_i \leq 1 \iff -y_i \leq 0 \& y_i \leq 1$
- $y_i + y'_i = 1 \iff y_i + y'_i \leq 1 \& y_i + y'_i \geq 1$

- Given 3cnf-formula:
 \[\phi = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \land (\overline{x}_2 \lor x_4 \lor \overline{x}_3) \]
- Constructed ILP:
 \[
 \begin{align*}
 0 \leq y_1 \leq 1, & \quad 0 \leq y'_1 \leq 1, & \quad y_1 + y'_1 = 1 \\
 0 \leq y_2 \leq 1, & \quad 0 \leq y'_2 \leq 1, & \quad y_2 + y'_2 = 1 \\
 0 \leq y_3 \leq 1, & \quad 0 \leq y'_3 \leq 1, & \quad y_3 + y'_3 = 1 \\
 0 \leq y_4 \leq 1, & \quad 0 \leq y'_4 \leq 1, & \quad y_4 + y'_4 = 1 \\
 y_1 + y_2 + y'_3 \geq 1 \\
 y'_1 + y'_2 + y_3 \geq 1 \\
 y'_2 + y'_4 + y'_3 \geq 1
 \end{align*}
 \]
- Note that:
 \[\phi \text{ satisfiable} \iff \text{constructed ILP has solution} \]
 (with values of variables $\in \{0, 1\}$)
Reducing 3SAT to ILP Takes Polynomial Time

- Given 3cnf-formula ϕ with
 - m variables: x_1, x_2, \ldots, x_m
 - k clauses
- Constructed ILP has
 - $2m$ variables: $y_1, y'_1, y_2, y'_2, \ldots, y_m, y'_m$
 - $6m + k$ inequalities:
 ▲ 3 sets of inequalities for each pair y_i, y'_i:

 \[
 0 \leq y_i \leq 1, \quad 0 \leq y'_i \leq 1, \quad y_i + y'_i = 1,
 \]

 so total of $6m$ inequalities of this type.
 ▲ For each clause in ϕ, ILP has corresponding inequality, e.g.,
 \[
 (x_1 \lor x_2 \lor \overline{x_3}) \iff y_1 + y_2 + y'_3 \geq 1,
 \]

 so total of k inequalities of this type.
- Thus, size of ILP is polynomial in m and k.