1. Short answers:

(a) Define the following terms and concepts:

i. **Union, intersection, set concatenation, Kleene-star, set subtraction, complement**

Answer:
- Union: \(S \cup T = \{ x \mid x \in S \text{ or } x \in T \} \)
- Intersection: \(S \cap T = \{ x \mid x \in S \text{ and } x \in T \} \)
- Concatenation: \(S \circ T = \{ xy \mid x \in S, y \in T \} \)
- Kleene-star: \(S^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0, w_i \in S \forall i = 1, 2, \ldots, k \} \)
- Subtraction: \(S - T = \{ x \mid x \in S, x \not\in T \} \)
- Complement: \(\overline{S} = \{ x \in \Omega \mid x \not\in S \} = \Omega - S \), where \(\Omega \) is the universe of all elements under consideration.

ii. A set \(S \) is closed under an operation \(f \)

Answer: \(S \) is closed under \(f \) if applying \(f \) to members of \(S \) always returns a member of \(S \).

iii. **Regular language**

Answer: A regular language is defined by a DFA.

iv. **Kleene’s theorem**

Answer: A language is regular if and only if it has a regular expression.

v. **Context-free language**

Answer: A CFL is defined by a context-free grammar (CFG).

vi. **Chomsky normal form**

Answer: A CFG is in Chomsky normal form if each of its rules has one of 3 forms:

\[A \rightarrow BC, \quad A \rightarrow x, \quad \text{or} \quad S \rightarrow \varepsilon, \]

where \(A, B, C \) are variables, \(B \) and \(C \) are not the start variable, \(x \) is a terminal, and \(S \) is the start variable.

vii. **Church-Turing Thesis**

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).

viii. **Turing-decidable language**

Answer: A language \(A \) that is decided by a Turing machine; i.e., there is a Turing machine \(M \) such that
- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) halts and rejects on input \(w \not\in A \).

Loopy cannot happen.

ix. **Turing-recognizable language**

Answer: A language \(A \) that is recognized by a Turing machine; i.e., there is a Turing machine \(M \) such that
- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) rejects or loops on any input \(w \not\in A \).
x. Co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.

xi. Countable and uncountable sets

Answer:
- A set S is countable if it is finite or we can define a correspondence between the positive integers and S.
- In other words, can create (possibly infinite) list of all elements in S and each specific element will eventually appear in list.
- An uncountable set is a set that is not countable.
- A common approach to prove a set is uncountable is by using a diagonalization argument.

xii. Language A is mapping reducible to language B, $A \leq_m B$

Answer:
- Suppose A is a language defined over alphabet Σ_1, and B is a language defined over alphabet Σ_2.
- Then $A \leq_m B$ means there is a computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.

xiii. Function $f(n)$ is $O(g(n))$

Answer: There exist constants c and n_0 such that $|f(n)| \leq c \cdot g(n)$ for all $n \geq n_0$.

xiv. Classes P and NP

Answer:
- P is the class of languages that can be decided by a deterministic Turing machine in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- Equivalently, NP is the class of languages that can be decided by a nondeterministic Turing machine in polynomial time.

xv. Language A is polynomial-time mapping reducible to language B, $A \leq_P B$

Answer:
- Suppose A is a language defined over alphabet Σ_1, and B is a language defined over alphabet Σ_2.
- Then $A \leq_P B$ means \exists polynomial-time computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.
xvi. NP-complete

Answer: Language B is NP-Complete if $B \in \text{NP}$, and B is NP-Hard ($\forall A \in \text{NP}, \text{we have } A \leq_p B$).

![NP-complete](image)

Typical approach for proving language C is NP-Complete:
- first show $C \in \text{NP}$
- then show a known NP-Complete language B satisfies $B \leq_p C$.

xvii. NP-hard

Answer: Lang B is NP-hard if $A \leq_p B$ for every lang $A \in \text{NP}$.

[b] Give the transition functions δ (i.e., give domain and range) of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:
- DFA, $\delta: Q \times \Sigma \rightarrow Q$, where Q is the set of states and Σ is the alphabet.

- NFA, $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$, where $\Sigma \cup \{\epsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q.

- PDA, $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$, where Γ is the stack alphabet and $\Gamma \epsilon = \Gamma \cup \{\epsilon\}$.

- Turing machine, $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$, where Γ is the tape alphabet, L means move tape head one cell left, and R means move tape head one cell right.

- Nondeterministic Turing machine, $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$.

Multiple choices when in state q_i and read c from tape:

$$\delta(q_i, c) = \{ (q_j, a, L), (q_k, c, R), (q_\ell, a, L), (q_\ell, d, R) \}$$
(c) Explain the “P vs. NP” problem.

Answer:
- P is class of languages that can be solved in deterministic poly time.
- NP is class of languages that can be verified in deterministic poly time (equivalently, solved by poly-time NTM).
- We know that $P \subseteq NP$.
- Each poly-time DTM is also a poly-time NTM.
- But it is currently unknown if $P = NP$ or $P \neq NP$.

NP

or

P

P = NP

Detailed Proof:
- Suppose there exists a TM H that decides A_{TM}.
- Consider language $L = \{ \langle M \rangle \mid M \text{ is a TM that does not accept } \langle M \rangle \}$.
- Now construct a TM D for L using TM H as a subroutine:
 $D = \text{"On input } \langle M \rangle \text{, where } M \text{ is a TM:} \quad$
 1. Run H on input $\langle M, \langle M \rangle \rangle$.
 2. If H accepts, reject. If H rejects, accept."
- If we run TM D on input $\langle D \rangle$, then D accepts $\langle D \rangle$ if and only if D doesn’t accept $\langle D \rangle$.
- Since this is impossible, TM H must not exist.

2. Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$.

(a) Prove that A_{TM} is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof:
- Suppose A_{TM} is decided by some TM H, taking input $\langle M, w \rangle \in \Omega = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \text{ a string} \}$.
 $\langle M, w \rangle \rightarrow H \quad \text{accept, if } \langle M, w \rangle \in A_{TM}$
 $\langle M, w \rangle \rightarrow H \quad \text{reject, if } \langle M, w \rangle \notin A_{TM}$
- Define another TM (decider) D using H as a subroutine.
 $\langle M \rangle \rightarrow \langle M, \langle M \rangle \rangle \rightarrow H \quad \text{accept \rightarrow accept \rightarrow accept}$
 $\text{reject \rightarrow reject}$
- What happens when we run D with input $\langle D \rangle$?
 - D accepts $\langle D \rangle$ iff D doesn’t accept $\langle D \rangle$, which is impossible.

(b) Show that A_{TM} is Turing-recognizable.

Answer: Universal TM (UTM) U recognizes A_{TM}:
$U =$ “On input $\langle M, w \rangle \in \Omega$, where M is a TM and w is a string:
 1. Run M on w.
 2. If M accepts w, accept; if M rejects w, reject.”
U recognizes A_{TM} but does not decide A_{TM}
- When we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.
3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:
 - Type REG. It is regular.
 - Type CFL. It is context-free, but not regular.
 - Type DEC. It is Turing-decidable, but not context-free.

 For each of the following languages, specify which type it is. Also, follow these instructions:
 - If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.
 - If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not regular.
 - If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.

(a) $A = \{ w \in \Sigma^* \mid w = w^R \}$, where $\Sigma = \{0, 1\}$.

Answer: A is of type CFL.

A CFG $G = (V, \Sigma, R, S)$ for A has
- $V = \{S\}$,
- $\Sigma = \{0, 1\}$,
- starting variable S,
- rules $R = \{ S \rightarrow 00S00 \mid 01S10 \mid 10S01 \mid 11S11 \mid \varepsilon \}$.

Prove $A = \{ w \in \Sigma^* \mid w = w^R, \text{length of } w \text{ is divisible by } 4 \}$ nonregular.

- For a contradiction, suppose that A is regular.
- Pumping Lemma (Theorem 1.1): If L is regular language, then \exists number p
 where, if $s \in L$ with $|s| \geq p$, then can split $s = xyz$ satisfying properties
 (1) $xy^iz \in L$ for each $i \geq 0$, (2) $|y| > 0$, (3) $|xy| \leq p$
- Let $p \geq 1$ be the pumping length of the pumping lemma.
- Consider string $s = 0^p1^{2p}0^p \in A$, and note that $|s| = 4p > p$, so conclusions of pumping lemma must hold.
- Since all of the first p symbols of s are 0s, (3) implies that x and y must only consist of 0s.
 Also, z must consist of rest of 0s at the beginning, followed by $1^{2p}0^p$.
- Hence, we can write $x = 0^j$, $y = 0^k$, $z = 0^m 1^{2p}0^p$, where $j + k + m = p$ since $s = 0^p1^{2p}0^p = xy = 0^j 0^k 0^m 1^{2p}0^p$.
- Moreover, (2) implies that $k > 0$.
- Finally, (1) states that x^yyzz must belong to A. However,
 $$x^yyzz = 0^j 0^k 0^k 0^m 1^{2p}0^p = 0^j 0^k 1^{2p}0^p$$
 since $j + k + m = p$.
- But, $k > 0$ implies reverse(x^yyzz) $\neq x^yyzz$, which means $x^yyzz \notin A$, which contradicts (1).
- Therefore, A is a nonregular language.
(b) $B = \{ b^n a^n b^n \mid n \geq 0 \}$.

Answer: B is of type DEC.

Below is a description of a Turing machine that decides B.

$M =$ "On input string $w \in \{a, b\}^*$:
1. Scan input to check if it's in b^*a*b^*; reject if not.
2. Return tape head to left-hand end of tape.
3. Repeat following until no more b's left on tape.
 4. Replace the leftmost b with x.
 5. Scan right until a occurs. If no a's, reject.
 6. Replace the leftmost a with x.
 7. Scan right until b occurs. If no b's, reject.
 8. Replace the leftmost b (after the a's) with x.
 9. Return tape head to left end of tape; go to stage 3.
10. If tape contains any a's, reject. Else, accept."

We now prove that B is not context-free by contradiction.

(c) $C = \{ w \in \Sigma^* \mid n_a(w) \mod 4 = 1 \}$, where $\Sigma = \{a, b\}$ and $n_a(w)$ is the number of a's in string w. For example, $n_a(babaabb) = 3$. Also, $3 \mod 4 = 3$, and $9 \mod 4 = 1$.

Answer: C is of type REG.

A regular expression for C is

$$(b^*ab*ab^*ab^*)^*b^*ab^*$$

$C = \{ w \in \Sigma^* \mid n_a(w) \mod 4 = 1 \}$

DFA 5-tuple $(Q, \Sigma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{a, b\}$
- q_1 is start state
- $F = \{q_2\}$
- transition fcn $\delta : Q \times \Sigma \to Q$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_4</td>
</tr>
<tr>
<td>q_4</td>
<td>q_1</td>
</tr>
</tbody>
</table>
(d) \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \).

[Hint: Recall that the class of CFLs is closed under concatenation.]

Answer: \(D \) is of type CFL.

A CFG \(G = (V, \Sigma, R, S) \) for \(D \) has
- \(V = \{ S, X, Y \} \)
- \(\Sigma = \{ a, b, c \} \)
- starting variable \(S \)
- Rules \(R \):

\[
\begin{align*}
S & \rightarrow XY \\
X & \rightarrow bXa \mid \varepsilon \\
Y & \rightarrow bYc \mid \varepsilon
\end{align*}
\]

Prove \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \) not regular.

- Suppose that \(D \) is regular. Let \(p \geq 1 \) be pumping length of pumping lemma (Theorem 1.1).
- Consider string \(s = b^p \ a^p \ b^p \ c^p \in D \), and note that \(|s| = 4p > p \), so conclusions of pumping lemma must hold.
- Thus, can split \(s = xyz \) satisfying
 1. \(xy^iz \in D \) for all \(i \geq 0 \),
 2. \(|y| > 0 \),
 3. \(|xy| \leq p \).
- Since all of the first \(p \) symbols of \(s \) are \(b \)’s, (3) implies that \(x \) and \(y \) must consist of only \(b \)’s.
- Also, \(z \) is rest of \(b \)’s at beginning, followed by \(a^p \ b^p \ c^p \).
- Hence, we can write \(x = b^j \), \(y = b^k \), \(z = b^{m-p} \ a^p \ b^p \ c^p \), where \(j + k + m = p \) since \(s = b^p \ a^p \ b^p \ c^p = xy = b^j \ b^k \ b^{m-p} \ a^p \ b^p \ c^p \).
- Moreover, (2) implies that \(k > 0 \).
- Finally, (1) states that \(xyyz \) must belong to \(D \), but
 \[
 xyyz = b^j \ b^k \ b^m \ a^p \ b^p \ c^p = b^{p+j+k} \ a^p \ b^p \ c^p
 \]
 since \(j + k + m = p \). Also \(k > 0 \), so \(xyyz \notin D \), which contradicts (1). Therefore, \(D \) is a nonregular language.

PDA for \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \):

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>($)</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>($)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_3)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_4)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_5)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_6)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important: \(q_3 \) to \(q_4 \) pops and pushes \(\$ \) to make sure stack is empty.

4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

- Type DEC. It is Turing-decidable.
- Type TMR. It is Turing-recognizable, but not decidable.
- Type NTR. It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language \(L \) is of Type DEC, give a description of a Turing machine that decides \(L \).
- If a language \(L \) is of Type TMR, give a description of a Turing machine that recognizes \(L \). **Also, prove that \(L \) is not decidable.**
- If a language \(L \) is of Type NTR, give a proof that it is not Turing-recognizable.
In each part below, if you need to prove that the given language L is decidable, undecidable, or not Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that establishes this without a proof. However, if in your proof you need to show another language L' has a particular property for which there is a theorem that establishes this without a proof, then you may simply cite the theorem without proof. However, if in your proof you need to show another language L' has a particular property for which there is a theorem that establishes this, you may simply cite the theorem without proof.

(a) $\overline{A_{TM}}$, where $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$.

Answer: $\overline{A_{TM}}$ is of type NTR, which is just Theorem 4.M.

Proof:
- If $\overline{A_{TM}}$ were Turing-recognizable, then A_{TM} would be both Turing-recognizable (see slide 4-25) and co-Turing-recognizable.
- But then Theorem 4.L would imply that A_{TM} is decidable, which we know is not true by Theorem 4.1.
- Hence, $\overline{A_{TM}}$ is not Turing-recognizable.

(b) $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$.

Answer: EQ_{TM} is of type NTR (see Theorem 5.K).

Prove by showing $\overline{A_{TM}} \leq_m EQ_{TM}$ and applying Corollary 5.I.

- Define reducing function $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where
 - M_1 = “reject on all inputs.”
 - M_2 = “On input x:
 1. Ignore input x, and run M on w.
 2. If M accepts w, accept; if M rejects w, reject.”
- $L(M_1) = \emptyset$.
- If M accepts w (i.e., $\langle M, w \rangle \not\in \overline{A_{TM}}$), then $L(M_2) = \Sigma^*$.
- If M doesn’t accept w (i.e., $\langle M, w \rangle \in \overline{A_{TM}}$), then $L(M_2) = \emptyset$.
- Thus, $\langle M, w \rangle \in \overline{A_{TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{TM}$, so $\overline{A_{TM}} \leq_m EQ_{TM}$.
- But $\overline{A_{TM}}$ is not TM-recognizable (Corollary 4.M), so EQ_{TM} is not TM-recognizable by Corollary 5.I.

(c) $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$.

[Hint: modify universal TM to show $HALT_{TM}$ is TM-recognizable.]

Answer: $HALT_{TM}$ is of type TMR (see Theorem 5.A).

Decision problem: Given TM M and string w, does M halt on input w?

Universe: $\Omega_H = \{ \langle M, w \rangle \mid \text{TM } M, \text{string } w \}$.

Consider following Turing machine T:

$T = \text{"On input } \langle M, w \rangle \in \Omega_H, \text{where } M \text{ is TM and } w \text{ is string: }$

1. Run M on w.
2. If M halts (i.e., accepts or rejects) on w, accept.”

- TM T recognizes $HALT_{TM}$
 - accepts each $\langle M, w \rangle \in HALT_{TM}$
 - loops on each $\langle M, w \rangle \not\in HALT_{TM}$

We now prove that $HALT_{TM}$ is undecidable, which is Theorem 5.A.

- We will show that A_{TM} reduces to $HALT_{TM}$, where
 - $A_{TM} \subseteq \Omega_A \equiv \{ \langle M, w \rangle \mid \text{TM } M, \text{string } w \}$
 - $HALT_{TM} \subseteq \Omega_H \equiv \{ \langle M, w \rangle \mid \text{TM } M, \text{string } w \}$.
- Suppose \exists TM R that decides $HALT_{TM}$.
- Then could use R to build a TM S to decide A_{TM} by modifying UTM to first use R to check if it’s safe to run M on w.

$S = \text{"On input } \langle M, w \rangle \in \Omega_A, \text{where } M \text{ is TM and } w \text{ is string: }$

1. Run R on input $\langle M, w \rangle$.
2. If R rejects, reject.
3. If R accepts, simulate M on input w until it halts.
4. If M accepts, accept; otherwise, reject.”

- Since TM R is a decider, TM S always halts and decides A_{TM}.
- However, A_{TM} is undecidable (Theorem 4.I), so that must mean that $HALT_{TM}$ is also undecidable.
(d) $EQ_{DFA} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are DFAs with } L(M_1) = L(M_2) \}$.

Answer: EQ_{DFA} is of type DEC (see Theorem 4.E).

- **Decision problem:** For DFAs M_1, M_2, is $L(M_1) = L(M_2)$?
- **Universe:** $\Omega = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are DFAs} \}$.
- **The following TM T decides EQ_{DFA}:**

 $T = \text{"On input } \langle A, B \rangle \in \Omega, \text{ where } A \text{ and } B \text{ are DFAs:"
 1. Check if $\langle A, B \rangle$ properly encodes 2 DFAs. If not, reject.
 2. Construct DFA C such that $L(C) = [L(A) \cap \overline{L(B)}] \cup [L(A) \cap L(B)]$
 using algorithms for DFA union, intersection and complementation.
 3. Run TM that decides E_{DFA} (Theorem 4.D) on $\langle C \rangle$.
 4. If $\langle C \rangle \in E_{DFA}$, accept; if $\langle C \rangle \not\in E_{DFA}$, reject."

Answer: The answer is NO.

- For each $k \geq 1$, let $L_k = \{ a^k b^k \}$, so L_k is a language consisting of just a single string $a^k b^k$.
- Since L_k is finite, it must be a regular language by Theorem 1.F.
- But $L = \cup_{k=1}^{\infty} L_k = \{ a^k b^k | k \geq 1 \}$, which we know is not regular (see end of Chapter 1).

5. Let L_1, L_2, L_3, \ldots be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ.

- Let $L = \cup_{k=1}^{\infty} L_k$ be the infinite union of L_1, L_2, L_3, \ldots.
- Is it always the case that L is a regular language?
- If your answer is YES, give a proof.
- If your answer is NO, give a counterexample.
- Explain your answer.
- Hint: Consider, for each $k \geq 1$, the language $L_k = \{ a^k b^k \}$.

6. Let L_1, L_2, and L_3 be languages defined over the alphabet $\Sigma = \{ a, b \}$, where

- L_1 consists of all possible strings over Σ except the strings $w_1, w_2, \ldots, w_{100}$; i.e.,
 - start with all possible strings over the alphabet
 - take out 100 particular strings
 - the remaining strings form the language L_1;
- L_2 is recognized by an NFA; and
- L_3 is recognized by a PDA.

Prove that $(L_1 \cap L_2) \cap L_3$ is a context-free language.

[Hint: First show that L_1 and L_2 are regular. Also, consider $\overline{L_1}$]
Answer:
• \(L_1 = \{w_1, w_2, \ldots, w_{100}\} \), so \(|L_1| = 100 \). Thus, \(L_1 \) is a regular language since it is finite by Theorem 1.F.
• Then Theorem 1.H implies that the complement of \(L_1 \) must be regular, but the complement of \(L_1 \) is \(L_1 \). Thus, \(L_1 \) is regular.

• Language \(L_2 \) has an NFA, so it also has a DFA by Theorem 1.C. Therefore, \(L_2 \) is regular.
• Since \(L_1 \) and \(L_2 \) are regular, \(L_1 \cap L_2 \) must be regular by Theorem 1.G. Theorem 2.B then implies that \(L_1 \cap L_2 \) is CFL.
• Since \(L_3 \) has a PDA, \(L_3 \) is CFL by Theorem 2.C.
• Hence, since \(L_1 \cap L_2 \) and \(L_3 \) are both CFLs, their concatenation is CFL by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Regular languages</th>
<th>CFLs</th>
<th>Decidable languages</th>
<th>Turing-recognizable languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>∪</td>
<td>Y (Thm 1.A)</td>
<td>Y (Thm 2.E)</td>
<td>Y (HW 7, prob 2a)</td>
<td>Y (HW 7, prob 2b)</td>
</tr>
<tr>
<td>∩</td>
<td>Y (Thm 1.G)</td>
<td>N (HW 6, prob 2a)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Compl.</td>
<td>Y (Thm 1.H)</td>
<td>N (HW 6, prob 2b)</td>
<td>Y (swap acc/rej)</td>
<td>N (e.g., (A_{TM}))</td>
</tr>
</tbody>
</table>

Answer:

8. Consider the following CFG \(G \) in Chomsky normal form:

\[
S \rightarrow a \mid YZ \\
Z \rightarrow ZY \mid a \\
Y \rightarrow b \mid ZZ \mid YY
\]

Use CYK (dynamic programming) algorithm to fill in following table to determine if \(G \) generates string \(babba \). Does \(G \) generate \(babba \)?

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>S, Z</td>
<td>Z</td>
<td>Z</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S, Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

\(G \) does not generate \(babba \) because \(S \) is not in \((1, 5)\) entry
9. Recall that

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is undirected graph with } k\text{-clique} \} \]

\[\subseteq \{ \langle G, k \rangle \mid G \text{ is undirected graph, integer } k \} \equiv \Omega_C, \]

\[3\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3cnf-function} \} \]

\[\subseteq \{ \langle \phi \rangle \mid \phi \text{ is 3cnf-function} \} \equiv \Omega_3. \]

- Show that CLIQUE is NP-Complete by showing that CLIQUE ∈ NP and 3SAT ≤_P CLIQUE.
- Be sure to prove your reduction works and that it takes polynomial time.
- Also, be sure to provide proofs of these results, and don’t just cite a theorem.

Answer:

Prove CLIQUE ∈ NP

- Certificate c is the k-clique.
- Here is a verifier for CLIQUE:
 \[V = \text{"On input } \langle \langle G, k \rangle, c \rangle \text{:
 1. Test whether } c \text{ is a set of } k \text{ different nodes in } G.
 2. Test whether } G \text{ contains all edges connecting nodes in } c.
 3. If both tests pass, accept; otherwise, reject."} \]

- If graph G has m nodes, then (when G is encoded as list of nodes followed by list of edges)
 - Stage 1 takes \(O(k)O(m) = O(km) \) time.
 - Stage 2 takes \(O(k^2)O(m^2) = O(k^2m^2) \) time.

Prove 3SAT ≤_m CLIQUE

Proof Idea:

Convert instance \(\phi \) of 3SAT problem with \(k \) clauses into instance \(\langle G, k \rangle \) of clique problem.

- Reducing fcn \(f : \Omega_3 \to \Omega_C \)
 - \(\langle \phi \rangle \in 3\text{SAT} \iff f(\langle \phi \rangle) = \langle G, k \rangle \in \text{CLIQUE} \)
 - Suppose \(\phi \) is a 3cnf-function with \(k \) clauses, e.g.,
 \[\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \]
 - Convert \(\phi \) into a graph \(G \) as follows:
 - Nodes in \(G \) are organized into \(k \) triples \(t_1, t_2, \ldots, t_k \).
 - Triple \(t_i \) corresponds to the \(i \)th clause in \(\phi \).
 - Each node in a triple corresponds to a literal within the clause.
 - Add edges between each pair of nodes, except
 - within same triple
 - between contradictory literals, e.g., \(x_1 \) and \(\overline{x_1} \)
 - Prove \(\langle \phi \rangle \in 3\text{SAT} \iff \langle G, k \rangle \in \text{CLIQUE} \).
\[\text{3SAT} \leq_m \text{CLIQUE} \]

- 3cnf-formula with \(k = 3 \) clauses and \(m = 2 \) variables
 \[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \]
 is satisfiable by assignment \(x_1 = 0, x_2 = 1 \).
- Corresponding graph has \(k \)-clique:

\[\quad \]

Claim: \(\langle \phi \rangle \in 3\text{SAT} \) iff \(\langle G, k \rangle \in \text{CLIQUE} \).

Proof. Use that \(G \) has edges between every pair of nodes except for
- pairs in same triple
- contradictory literals.

Also, \(\phi \) satisfiable iff each clause has \(\geq 1 \) true literal.

Claim: The mapping \(\phi \to \langle G, k \rangle \) is polynomial-time computable.

Proof.
- Given 3cnf-function \(\phi \) with \(k \) clauses \(m \) variables.
- Constructing graph \(G \)
 - \(G \) has \(3k \) nodes
 - Adding edges entails considering each pair of nodes in \(G \):
 \[\binom{3k}{2} = \frac{3k(3k-1)}{2} = O(k^2) \]
 - Time to construct \(G \) is polynomial in size of 3cnf-function \(\phi \).

10. Recall that

\[\text{3SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3cnf-function } \} \]
\[\subseteq \{ \langle \phi \rangle \mid \phi \text{ is 3cnf-function } \} \equiv \Omega_3, \]
\[\text{ILP} = \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay \leq b \}
 \quad \text{for some integer vector } y \}
\[\subseteq \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \} \equiv \Omega_I \]

- Show that \(\text{ILP} \) is NP-Complete by showing that \(\text{ILP} \in \text{NP} \) and \(\text{3SAT} \leq_p \text{ILP} \).
- Be sure to prove your reduction works and takes polynomial time.
- Also, be sure to provide proofs of these results, and don't just cite a theorem.
- \(Ay \leq b \) denotes

\[a_{11} y_1 + a_{12} y_2 + \cdots + a_{1n} y_n \leq b_1 \]
\[a_{21} y_1 + a_{22} y_2 + \cdots + a_{2n} y_n \leq b_2 \]
\[\vdots \]
\[a_{m1} y_1 + a_{m2} y_2 + \cdots + a_{mn} y_n \leq b_m \]

ILP \in \text{NP}

Proof.
- The certificate \(c \) is an integer vector satisfying \(Ac \leq b \).
- Here is a verifier for \(\text{ILP} \):
 \[V = \text{"On input } \langle \langle A, b \rangle, c \rangle \text{:"} \]
 1. Test whether \(c \) is a vector of all integers.
 2. Test whether \(Ac \leq b \).
 3. If both tests pass, accept; otherwise, reject."

- If \(Ay \leq b \) has \(m \) inequalities and \(n \) variables, then
 - Stage 1 takes \(O(n) \) time
 - Stage 2 takes \(O(mn) \) time
 - So verifier \(V \) runs in \(O(mn) \),
 which is polynomial in size of problem instance.

Now prove \(\text{ILP} \) is NP-Hard by showing \(\text{3SAT} \leq_p \text{ILP} \).
3SAT \leq_{m} ILP

- Consider 3cnf-formula with $m = 4$ variables and $k = 3$ clauses:
 \[\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (x_2 \lor x_4 \lor \overline{x_3}) \]

- Define integer linear program with
 - $2m = 8$ variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - y_i corresponds to x_i
 - y'_i corresponds to $\overline{x_i}$

 - 3 sets of inequalities for each pair y_i, y'_i:
 - $0 \leq y_1 \leq 1, \quad 0 \leq y'_1 \leq 1, \quad y_1 + y'_1 = 1$
 - $0 \leq y_2 \leq 1, \quad 0 \leq y'_2 \leq 1, \quad y_2 + y'_2 = 1$
 - $0 \leq y_3 \leq 1, \quad 0 \leq y'_3 \leq 1, \quad y_3 + y'_3 = 1$
 - $0 \leq y_4 \leq 1, \quad 0 \leq y'_4 \leq 1, \quad y_4 + y'_4 = 1$

 all hold with y_i, y'_i integer iff one of y_i, y'_i is 1, and other 0.

- $0 \leq y_i \leq 1 \iff -y_i \leq 0 \text{ and } y_i \leq 1$

- $y_i + y'_i = 1 \iff y_i + y'_i \leq 1 \text{ and } y_i + y'_i \geq 1$

3SAT \leq_{m} ILP

- Given 3cnf-formula:
 \[\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (x_2 \lor x_4 \lor \overline{x_3}) \]

- Constructed ILP:
 - $0 \leq y_1 \leq 1, \quad 0 \leq y'_1 \leq 1, \quad y_1 + y'_1 = 1$
 - $0 \leq y_2 \leq 1, \quad 0 \leq y'_2 \leq 1, \quad y_2 + y'_2 = 1$
 - $0 \leq y_3 \leq 1, \quad 0 \leq y'_3 \leq 1, \quad y_3 + y'_3 = 1$
 - $0 \leq y_4 \leq 1, \quad 0 \leq y'_4 \leq 1, \quad y_4 + y'_4 = 1$

 \[y_1 + y_2 + y_3 \geq 1 \]

 \[y'_1 + y'_2 + y'_4 \geq 1 \]

 \[y'_2 + y'_4 + y'_3 \geq 1 \]

- Note that:
 \[\phi \text{ satisfiable } \iff \text{ constructed ILP has solution} \]

 (with values of variables $\in \{0, 1\}$)

Reducing 3SAT to ILP Takes Polynomial Time

- Given 3cnf-formula ϕ with
 - m variables: x_1, x_2, \ldots, x_m
 - k clauses

- Constructed ILP has
 - $2m$ variables: $y_1, y'_1, y_2, y'_2, \ldots, y_m, y'_m$
 - $6m + k$ inequalities:
 - 3 sets of inequalities for each pair y_i, y'_i:
 \[0 \leq y_i \leq 1, \quad 0 \leq y'_i \leq 1, \quad y_i + y'_i = 1, \]
 so total of $6m$ inequalities of this type.
 - For each clause in ϕ, ILP has corresponding inequality, e.g.,
 \[(x_1 \lor x_2 \lor \overline{x_3}) \iff y_1 + y_2 + y'_3 \geq 1, \]
 so total of k inequalities of this type.

- Thus, size of ILP is polynomial in m and k.

\[\phi \text{ satisfiable } \iff \text{ constructed ILP has solution} \]

(with values of variables $\in \{0, 1\}$)