1. Short answers:

(a) Define the following terms and concepts:

i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

Answer:

- **Union:** \(S \cup T = \{ x \mid x \in S \text{ or } x \in T \} \)
- **Intersection:** \(S \cap T = \{ x \mid x \in S \text{ and } x \in T \} \)
- **Concatenation:** \(S \circ T = \{ xy \mid x \in S, y \in T \} \)
- **Kleene-star:** \(S^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0, w_i \in S \forall i = 1, 2, \ldots, k \} \)
- **Subtraction:** \(S - T = \{ x \mid x \in S, x \notin T \} \)
- **Complement:** \(\overline{S} = \{ x \in \Omega \mid x \notin S \} = \Omega - S \), where \(\Omega \) is the universe of all elements under consideration.

ii. A set \(S \) is closed under an operation \(f \)

Answer: \(S \) is closed under \(f \) if applying \(f \) to members of \(S \) always returns a member of \(S \).

iii. Regular language

Answer: A regular language is defined by a DFA.

iv. Kleene’s theorem

Answer: A language is regular if and only if it has a regular expression.

v. Context-free language

Answer: A CFL is defined by a context-free grammar (CFG).

vi. Chomsky normal form

Answer: A CFG is in Chomsky normal form if each of its rules has one of 3 forms:

\[A \rightarrow BC, \quad A \rightarrow x, \quad \text{or} \quad S \rightarrow \varepsilon, \]

where \(A, B, C \) are variables, \(B \) and \(C \) are not the start variable, \(x \) is a terminal, and \(S \) is the start variable.

vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).

viii. Turing-decidable language

Answer: A language \(A \) that is **decided** by a Turing machine; i.e., there is a Turing machine \(M \) such that

- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) halts and rejects on input input \(w \notin A \).

Looping cannot happen.

ix. Turing-recognizable language

Answer: A language \(A \) that is **recognized** by a Turing machine; i.e., there is a Turing machine \(M \) such that

- \(M \) halts and accepts on any input \(w \in A \), and
- \(M \) rejects or **loops** on any input \(w \notin A \).
x. co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.

xi. Countable and uncountable sets

Answer:
- A set S is countable if it is finite or we can define a correspondence between the positive integers and S.
- In other words, can create (possibly infinite) list of all elements in S and each specific element will eventually appear in list.
- An uncountable set is a set that is not countable.
- A common approach to prove a set is uncountable is by using a diagonalization argument.

diagram

xii. Language A is mapping reducible to language B, $A \leq_m B$

Answer:
- Suppose A is a language defined over alphabet Σ_1, and B is a language defined over alphabet Σ_2.
- Then $A \leq_m B$ means there is a computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.

\[w \in A \iff f(w) \in B \]

xiii. Function $f(n)$ is $O(g(n))$

Answer: There exist constants c and n_0 such that $|f(n)| \leq c \cdot g(n)$ for all $n \geq n_0$.

xiv. Classes P and NP

Answer:
- P is the class of languages that can be decided by a deterministic Turing machine in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- Equivalently, NP is the class of languages that can be decided by a nondeterministic Turing machine in polynomial time.

xv. Language A is polynomial-time mapping reducible to language B, $A \leq_P B$.

Answer:
- Suppose A is a language defined over alphabet Σ_1, and B is a language defined over alphabet Σ_2.
- Then $A \leq_P B$ means \exists polynomial-time computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.

\[w \in A \iff f(w) \in B \]
xvi. NP-complete

Answer: Language \(B \) is NP-Complete if \(B \in \text{NP} \), and \(B \) is NP-Hard (\(\forall A \in \text{NP}, \text{we have } A \leq_P B \)).

![Diagram of NP-completeness](image)

Typical approach for proving language \(C \) is NP-Complete:

- first show \(C \in \text{NP} \)
- then show a known NP-Complete language \(B \) satisfies \(B \leq_P C \).

xvii. NP-hard

Answer: Lang \(B \) is NP-hard if \(A \leq_P B \) for every lang \(A \in \text{NP} \).

(b) Give the transition functions \(\delta \) (i.e., give domain and range) of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:

- DFA, \(\delta : Q \times \Sigma \rightarrow Q \), where \(Q \) is the set of states and \(\Sigma \) is the alphabet.

- NFA, \(\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q) \), where \(\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\} \) and \(\mathcal{P}(Q) \) is the power set of \(Q \).

- PDA, \(\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma_\varepsilon) \), where \(\Gamma \) is the stack alphabet and \(\Gamma_\varepsilon = \Gamma \cup \{\varepsilon\} \).

- Turing machine, \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \), where \(\Gamma \) is the tape alphabet, \(L \) means move tape head one cell left, and \(R \) means move tape head one cell right.

- Nondeterministic Turing machine, \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \).

Multiple choices when in state \(q_i \) and read \(c \) from tape:

\[\delta(q_i, c) = \{ (q_j, a, L), (q_k, c, R), (q_\ell, a, L), (q_\varepsilon, d, R) \} \]
(c) Explain the “P vs. NP” problem.

Answer:
- P is class of languages that can be solved in deterministic poly time.
- NP is class of languages that can be verified in deterministic poly time (equivalently, solved by poly-time NTM).
- We know that $P \subseteq NP$.
- Each poly-time DTM is also a poly-time NTM.
- But it is currently unknown if $P = NP$ or $P \neq NP$.

![Diagram](https://via.placeholder.com/150)

Detailed Proof:
- Suppose there exists a TM H that decides A_{TM}.
- Consider language $L = \{ \langle M \rangle \mid M$ is a TM that does not accept $\langle M \rangle \}$.
- Now construct a TM D for L using TM H as a subroutine:

 - **D**: “On input $\langle M \rangle$, where M is a TM:
 - 1. Run H on input $\langle M, \langle M \rangle \rangle$.
 - 2. If H accepts, reject. If H rejects, accept.”
- If we run TM D on input $\langle D \rangle$, then D accepts $\langle D \rangle$ if and only if D doesn’t accept $\langle D \rangle$.
- Since this is impossible, TM H must not exist.

(b) Show that A_{TM} is Turing-recognizable.

Answer: Universal TM (UTM) U recognizes A_{TM}:

- $U = \text{"On input } \langle M, w \rangle \in \Omega, \text{ where } M \text{ is a TM and } w \text{ is a string:}\
 \begin{enumerate}
 \item Run M on w.
 \item If M accepts w, accept; if M rejects w, reject.
 \end{enumerate}$

U recognizes A_{TM} but does not decide A_{TM}.

- When we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.

2. Recall that $A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM that accepts string $w \}$.

(a) Prove that A_{TM} is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof:
- Suppose A_{TM} is decided by some TM H, taking input $\langle M, w \rangle \in \Omega = \{ \langle M, w \rangle \mid M$ is a TM and w a string $\}$.

 $\langle M, w \rangle \rightarrow H$

 $\text{accept, if } \langle M, w \rangle \in A_{TM}$

 $\text{reject, if } \langle M, w \rangle \notin A_{TM}$

- Define another TM D using H as a subroutine.

 $\langle M \rangle \rightarrow \langle M, \langle M \rangle \rangle \rightarrow H$

 accept

 reject

- What happens when we run D with input $\langle D \rangle$?
 - D accepts $\langle D \rangle$ iff D doesn’t accept $\langle D \rangle$, which is impossible.
3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.
- If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not regular.
- If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.

\[A = \{ w \in \Sigma^* \mid w = \text{reverse}(w) \text{ and the length of } w \text{ is divisible by } 4 \}, \text{where } \Sigma = \{0, 1\}. \]

Answer: A is of type CFL.

A CFG $G = (V, \Sigma, R, S)$ for A has
- $V = \{S\}$,
- $\Sigma = \{0, 1\}$,
- starting variable S,
- rules $R = \{ S \rightarrow 00S00 | 01S10 | 10S01 | 11S11 | \varepsilon \}$.

Prove $A = \{ w \in \Sigma^* \mid w = w^R, \text{length of } w \text{ is divisible by } 4 \}$ nonregular.

- For a contradiction, suppose that A is regular.
- Pumping Lemma (Theorem 1.1): If L is regular language, then \exists number p where, if $s \in L$ with $|s| \geq p$, then can split $s = xyz$ satisfying conditions
 1. $xy^iz \in L$ for each $i \geq 0$,
 2. $|y| > 0$,
 3. $|xy| \leq p$
- Let $p \geq 1$ be the pumping length of the pumping lemma.
- Consider string $s = 0^p 1^{2p} 0^p \in A$, and note that $|s| = 4p > p$, so conclusions of pumping lemma must hold.
- Since all of the first p symbols of s are 0s, (3) implies that x and y must only consist of 0s. Also, z must consist of rest of 0s at the beginning, followed by $1^{2p} 0^p$.
- Hence, we can write $x = 0^j, y = 0^k, z = 0^m 1^{2p} 0^p$, where $j + k + m = p$ since $s = 0^p 1^{2p} 0^p = xyzz = 0^j 0^k 0^m 1^{2p} 0^p$.
- Moreover, (2) implies that $k > 0$.
- Finally, (1) states that $xyyz$ must belong to A. However, $xyyz = 0^j 0^k 0^k 0^m 1^{2p} 0^p = 0^j 0^k 1^{2p} 0^p$ since $j + k + m = p$.
- But, $k > 0$ implies reverse($xyyz$) $\neq xyyz$, which means $xyyz \notin A$, which contradicts (1).
- Therefore, A is a nonregular language.
(b) \(B = \{ b^n a^n b^n \mid n \geq 0 \} \).

Answer: \(B \) is of type DEC.

Below is a description of a Turing machine that decides \(B \).

\[M = \text{"On input string } w \in \{a, b\}^*: \]

1. Scan input to check if it's in \(b^* a^* b^* \); reject if not.
2. Return tape head to left-hand end of tape.
3. Repeat following until no more \(b \)'s left on tape.
4. Replace the leftmost \(b \) with \(x \).
5. Scan right until \(a \) occurs. If no \(a \)'s, reject.
6. Replace the leftmost \(a \) with \(x \).
7. Scan right until \(b \) occurs. If no \(b \)'s, reject.
8. Replace the leftmost \(b \) (after the \(a \)'s) with \(x \).
9. Return tape head to left end of tape; go to stage 3.
10. If tape contains any \(a \)'s, reject. Else, accept.”

We now prove that \(B \) is not context-free by contradiction.

(c) \(C = \{ w \in \Sigma^* \mid n_a(w) \mod 4 = 1 \} \), where \(\Sigma = \{a, b\} \) and \(n_a(w) \) is the number of \(a \)'s in string \(w \). For example, \(n_a(babaabb) = 3 \). Also, \(3 \mod 4 = 3 \), and \(9 \mod 4 = 1 \).

Answer: \(C \) is of type REG.

A regular expression for \(C \) is

\[(b^* a b^* a b^* a b^*)^* b^* a b^* \]

Suppose that \(B = \{ b^n a^n b^n \mid n \geq 0 \} \) is context-free.

- PL for CFL (Thm 2.D): For every CFL \(L \), \(\exists \) pumping length \(p \) such that \(\forall s \in L \) with \(|s| \geq p \), can split \(s = uv^ixy^iz \in L \) with
 1. \(uv^ixy^iz \in L \forall i \geq 0 \),
 2. \(|vy| \geq 1 \),
 3. \(|vxy| \leq p \).
- Let \(p \) be pumping length of CFL pumping lemma
- Consider string \(s = b^pa^pb^p \in B \).
- Note that \(|s| = 3p > p \), so the pumping lemma will hold.
- Thus, can split \(s = b^pa^pb^p = uv^xyz = \text{satisfying (1)–(3)} \)
- We now consider all of the possible choices for \(v \) and \(y \):
 - Suppose strings \(v \) and \(y \) are both uniform
 (e.g., \(v = b^j \) for some \(j \geq 0 \), and \(y = a^k \) for some \(k \geq 0 \)).
 Then \(|vy| \geq 1 \) implies that \(v \neq \varepsilon \) or \(y \neq \varepsilon \) (or both), so
 \(uv^2xy^2z \) won’t have the correct number of \(b \)'s at the beginning,
 \(a \)'s in the middle, and \(b \)'s at the end. Hence, \(uv^2xy^2z \notin B \).
 - Now suppose strings \(v \) and \(y \) are not both uniform.
 Then \(uv^2xy^2z \) won’t have form \(b \cdots ba \cdots ab \cdots b \), so
 \(uv^2xy^2z \notin B \).
- Every case gives contradiction, so \(B \) is not a CFL.

\[C = \{ w \in \Sigma^* \mid n_a(w) \mod 4 = 1 \} \]

DFA 5-tuple \((Q, \Sigma, \delta, q_1, F) \)

- \(Q = \{ q_1, q_2, q_3, q_4 \} \)
- \(\Sigma = \{a, b\} \)
- \(q_1 \) is start state
- \(F = \{q_2\} \)
- transition fcn \(\delta: Q \times \Sigma \rightarrow Q \)

<table>
<thead>
<tr>
<th>()</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_2, q_1)</td>
<td></td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3, q_2)</td>
<td></td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_4, q_3)</td>
<td></td>
</tr>
<tr>
<td>(q_4)</td>
<td>(q_1, q_4)</td>
<td></td>
</tr>
</tbody>
</table>
(d) \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \).

[Hint: Recall that the class of CFLs is closed under concatenation.]

Answer: \(D \) is of type CFL.

A CFG \(G = (V, \Sigma, R, S) \) for \(D \) has
- \(V = \{ S, X, Y \} \)
- \(\Sigma = \{ a, b, c \} \)
- starting variable \(S \)
- Rules \(R \):

 \[
 S \to XY \\
 X \to bXA \varepsilon \\
 Y \to bYc \varepsilon
 \]

Prove \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \) not regular.

- Suppose that \(D \) is regular. Let \(p \geq 1 \) be pumping length of pumping lemma (Theorem 1.1).
- Consider string \(s = b^p a^p b^p c^p \in D \), and note that \(|s| = 4p > p \), so conclusions of pumping lemma must hold.
- Thus, can split \(s = xyz \) satisfying
 1. \(xy^iz \in D \) for all \(i \geq 0 \),
 2. \(|y| > 0 \),
 3. \(|xy| \leq p \).

- Since all of the first \(p \) symbols of \(s \) are \(b \)'s, (3) implies that \(x \) and \(y \) must consist of only \(b \)'s.
 Also, \(z \) is rest of \(b \)'s at beginning, followed by \(a^p b^p c^p \).
- Hence, we can write \(x = b^j \), \(y = b^k \), \(z = b^m a^p b^p c^p \), where \(j + k + m = p \) since
 \[
 s = b^p a^p b^p c^p = xyz = b^j b^k b^m a^p b^p c^p.
 \]
- Moreover, (2) implies that \(k > 0 \).
- Finally, (1) states that \(xyyz \) must belong to \(D \), but
 \[
 xyyz = b^j b^k b^k b^m a^p b^p c^p = b^p b^p c^p
 \]
 since \(j + k + m = p \). Also \(k > 0 \), so \(xyyz \notin D \), which contradicts (1). Therefore, \(D \) is a nonregular language.

PDA for \(D = \{ b^n a^n b^k c^k \mid n \geq 0, k \geq 0 \} \):

Important: \(q_3 \) to \(q_4 \) pops and pushes \($ \) to make sure stack is empty.

Blank entries are \(\emptyset \).

4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

- **Type DEC.** It is Turing-decidable.
- **Type TMR.** It is Turing-recognizable, but not decidable.
- **Type NTR.** It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language \(L \) is of Type DEC, give a description of a Turing machine that decides \(L \).
- If a language \(L \) is of Type TMR, give a description of a Turing machine that recognizes \(L \). **Also, prove that \(L \) is not decidable.**
- If a language \(L \) is of Type NTR, give a proof that it is not Turing-recognizable.
In each part below, if you need to prove that the given language \(L \) is decidable, undecidable, or not Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that establishes this without a proof. However, if in your proof you need to show another language \(L' \) has a particular property for which there is a theorem that establishes this, then you may simply cite the theorem without proof. However, if in your proof you need to show another language \(L' \) has a particular property for which there is a theorem that establishes this, then you may simply cite the theorem without proof.

(a) \(\overline{A_{TM}} \), where \(A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \} \).

Answer: \(\overline{A_{TM}} \) is of type NTR, which is just Theorem 4.1.

Proof:
- If \(\overline{A_{TM}} \) were Turing-recognizable, then \(A_{TM} \) would be both Turing-recognizable (see slide 4-25) and co-Turing-recognizable.
- But then Theorem 4.1 would imply that \(A_{TM} \) is decidable, which we know is not true by Theorem 4.1.
- Hence, \(\overline{A_{TM}} \) is not Turing-recognizable.

(b) \(EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \} \).

[Hint: show \(\overline{A_{TM}} \leq_m EQ_{TM} \).

Answer: \(EQ_{TM} \) is of type NTR (see Theorem 5.K).

Prove by showing \(A_{TM} \leq_m EQ_{TM} \) and applying Corollary 5.1.
- \(A_{TM} \subseteq \Omega_1 = \{ \langle M, w \rangle \mid M \text{ is a TM, } w \text{ is a string} \} \), \(EQ_{TM} \subseteq \Omega_2 = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \).
- Define reducing function \(f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \), where
 - \(M_1 = \text{ "reject on all inputs.}" \)
 - \(M_2 = \text{ "On input } x:\n 1. \text{ Ignore input } x, \text{ and run } M \text{ on } w. \n 2. \text{ If } M \text{ accepts } w, \text{ accept; if } M \text{ rejects } w, \text{ reject.}" \)
 - \(L(M_1) = \emptyset. \)
 - If \(M \) accepts \(w \) (i.e., \(\langle M, w \rangle \notin \overline{A_{TM}} \)), then \(L(M_2) = \Sigma^* \).
 - If \(M \) doesn't accept \(w \) (i.e., \(\langle M, w \rangle \in \overline{A_{TM}} \)), then \(L(M_2) = \emptyset. \)
- Thus, \(\langle M, w \rangle \in \overline{A_{TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{TM} \), so \(\overline{A_{TM}} \leq_m EQ_{TM}. \)
- But \(\overline{A_{TM}} \) is not TM-recognizable (Corollary 4.1), so \(EQ_{TM} \) is not TM-recognizable by Corollary 5.1.

(c) \(HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \).

[Hint: modify universal TM to show \(HALT_{TM} \) is TM-recognizable.]

Answer: \(HALT_{TM} \) is of type TMR (see Theorem 5.A).

Decision problem: Given TM \(M \) and string \(w \), does \(M \) halt on input \(w \)?

Universe: \(\Omega_H = \{ \langle M, w \rangle \mid TM \ M, \text{ string } w \} \).

Consider following Turing machine \(T \):

- \(T = \text{ "On input } \langle M, w \rangle \in \Omega_H, \text{ where } M \text{ is TM and } w \text{ is string:} \n 1. \text{ Run } M \text{ on } w. \n 2. \text{ If } M \text{ halts (i.e., accepts or rejects) on } w, \text{ accept."} \)

- TM \(T \) recognizes \(HALT_{TM} \)
 - accepts each \(\langle M, w \rangle \in HALT_{TM} \)
 - loops on each \(\langle M, w \rangle \notin HALT_{TM} \)

We now prove that \(HALT_{TM} \) is undecidable, which is Theorem 5.A.

- We will show that \(A_{TM} \) reduces to \(HALT_{TM} \), where
 - \(A_{TM} \subseteq \Omega_A \equiv \{ \langle M, w \rangle \mid TM \ M, \text{ string } w \} \)
 - \(HALT_{TM} \subseteq \Omega_H \equiv \{ \langle M, w \rangle \mid TM \ M, \text{ string } w \} \).
- Suppose \(\exists \) TM \(R \) that decides \(HALT_{TM} \).
- Then could use \(R \) to build a TM \(S \) to decide \(A_{TM} \) by modifying UTM to first use \(R \) to check if it’s safe to run \(M \) on \(w \).

- \(S = \text{ "On input } \langle M, w \rangle \in \Omega_A, \text{ where } M \text{ is TM and } w \text{ is string:} \n 1. \text{ Run } R \text{ on input } \langle M, w \rangle. \n 2. \text{ If } R \text{ rejects, reject.} \n 3. \text{ If } R \text{ accepts, simulate } M \text{ on input } w \text{ until it halts.} \n 4. \text{ If } M \text{ accepts, accept; otherwise, reject."} \)

- Since TM \(R \) is a decider, TM \(S \) always halts and decides \(A_{TM} \).
- However, \(A_{TM} \) is undecidable (Theorem 4.1), so that must mean that \(HALT_{TM} \) is also undecidable.
(d) $\text{EQ}_{\text{DFA}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs with } L(M_1) = L(M_2) \}$.

Answer: EQ_{DFA} is of type DEC (see Theorem 4.E).

Decision problem: For DFAs M_1, M_2, is $L(M_1) = L(M_2)$?

Universe: $\Omega = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs} \}$.

The following TM T decides EQ_{DFA}:

1. Check if $\langle A, B \rangle$ properly encodes 2 DFAs. If not, reject.
2. Construct DFA C such that $L(C) = [L(A) \cap \overline{L(B)}] \cup [L(A) \cap L(B)]$
 using algorithms for DFA union, intersection and complementation.
3. Run TM that decides E_{DFA} (Theorem 4.D) on $\langle C \rangle$.
4. If $\langle C \rangle \in E_{\text{DFA}}$, accept; if $\langle C \rangle \notin E_{\text{DFA}}$, reject.”

Answer: The answer is NO.

- For each $k \geq 1$, let $L_k = \{ a^k b^k \}$, so L_k is a language consisting of just a single string $a^k b^k$.
- Since L_k is finite, it must be a regular language by Theorem 1.F.
- But $L = \bigcup_{k=1}^{\infty} L_k = \{ a^k b^k \mid k \geq 1 \}$, which we know is not regular (see end of Chapter 1).

5. Let L_1, L_2, L_3, \ldots be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ.

- Let $L = \bigcup_{k=1}^{\infty} L_k$ be the infinite union of L_1, L_2, L_3, \ldots.
- Is it always the case that L is a regular language?
- If your answer is YES, give a proof.
- If your answer is NO, give a counterexample.
- Explain your answer.
- Hint: Consider, for each $k \geq 1$, the language $L_k = \{ a^k b^k \}$.

6. Let L_1, L_2, and L_3 be languages defined over the alphabet $\Sigma = \{ a, b \}$, where

- L_1 consists of all possible strings over Σ except the strings $w_1, w_2, \ldots, w_{100}$; i.e.,
 - start with all possible strings over the alphabet
 - take out 100 particular strings
 - the remaining strings form the language L_1;
- L_2 is recognized by an NFA; and
- L_3 is recognized by a PDA.

Prove that $(L_1 \cap L_2)L_3$ is a context-free language.

[Hint: First show that L_1 and L_2 are regular. Also, consider $\overline{L_1}$]
Answer:

- \(L_1 = \{ w_1, w_2, \ldots, w_{100} \} \), so \(|L_1| = 100\). Thus, \(L_1 \) is a regular language since it is finite by Theorem 1.F.
- Then Theorem 1.H implies that the complement of \(L_1 \) must be regular, but the complement of \(L_1 \) is \(L_1 \). Thus, \(L_1 \) is regular.
- Language \(L_2 \) has an NFA, so it also has a DFA by Theorem 1.C. Therefore, \(L_2 \) is regular.
- Since \(L_1 \) and \(L_2 \) are regular, \(L_1 \cap L_2 \) must be regular by Theorem 1.G. Theorem 2.B then implies that \(L_1 \cap L_2 \) is CFL.
- Since \(L_3 \) has a PDA, \(L_3 \) is CFL by Theorem 2.C.
- Hence, since \(L_1 \cap L_2 \) and \(L_3 \) are both CFLs, their concatenation is CFL by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Regular languages</th>
<th>Decidable languages</th>
<th>Turing-recognizable languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union</td>
<td>Y (Thm 1.A)</td>
<td>Y (HW 7, prob 2a)</td>
<td>Y (HW 7, prob 2b)</td>
</tr>
<tr>
<td>Intersection</td>
<td>N (HW 6, prob 2a)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Complement</td>
<td>Y (Thm 1.H)</td>
<td>N (HW 6, prob 2b)</td>
<td>Y (swap acc/rej)</td>
</tr>
</tbody>
</table>

Answer:

- Since \(L_1 \cap L_2 \) and \(L_3 \) are both CFLs, their concatenation is CFL by Theorem 2.F.

8. Consider the following CFG \(G \) in Chomsky normal form:

\[
\begin{align*}
S & \rightarrow a | YZ \\
Z & \rightarrow ZY | a \\
Y & \rightarrow b | ZZ | YY
\end{align*}
\]

Use CYK (dynamic programming) algorithm to fill in following table to determine if \(G \) generates string \(babba \). Does \(G \) generate \(babba \)?

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
Y & S & S & S & Y \\
S, Z & Z & Z & Y \\
Y & Y & S \\
Y & S \\
b & a & b & b & a \\
\end{array}
\]

\(G \) does not generate \(babba \) because \(S \) is not in \((1, 5)\) entry

Answer:

- \(L_1 = \{ w_1, w_2, \ldots, w_{100} \} \), so \(|L_1| = 100\). Thus, \(L_1 \) is a regular language since it is finite by Theorem 1.F.
- Then Theorem 1.H implies that the complement of \(L_1 \) must be regular, but the complement of \(L_1 \) is \(L_1 \). Thus, \(L_1 \) is regular.
- Language \(L_2 \) has an NFA, so it also has a DFA by Theorem 1.C. Therefore, \(L_2 \) is regular.
- Since \(L_1 \) and \(L_2 \) are regular, \(L_1 \cap L_2 \) must be regular by Theorem 1.G. Theorem 2.B then implies that \(L_1 \cap L_2 \) is CFL.
- Since \(L_3 \) has a PDA, \(L_3 \) is CFL by Theorem 2.C.
- Hence, since \(L_1 \cap L_2 \) and \(L_3 \) are both CFLs, their concatenation is CFL by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Regular languages</th>
<th>Decidable languages</th>
<th>Turing-recognizable languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union</td>
<td>Y (Thm 1.A)</td>
<td>Y (HW 7, prob 2a)</td>
<td>Y (HW 7, prob 2b)</td>
</tr>
<tr>
<td>Intersection</td>
<td>N (HW 6, prob 2a)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Complement</td>
<td>Y (Thm 1.H)</td>
<td>N (HW 6, prob 2b)</td>
<td>Y (swap acc/rej)</td>
</tr>
</tbody>
</table>

Answer:

- Since \(L_1 \cap L_2 \) and \(L_3 \) are both CFLs, their concatenation is CFL by Theorem 2.F.

8. Consider the following CFG \(G \) in Chomsky normal form:

\[
\begin{align*}
S & \rightarrow a | YZ \\
Z & \rightarrow ZY | a \\
Y & \rightarrow b | ZZ | YY
\end{align*}
\]

Use CYK (dynamic programming) algorithm to fill in following table to determine if \(G \) generates string \(babba \). Does \(G \) generate \(babba \)?

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
Y & S & S & S & Y \\
S, Z & Z & Z & Y \\
Y & Y & S \\
Y & S \\
b & a & b & b & a \\
\end{array}
\]

\(G \) does not generate \(babba \) because \(S \) is not in \((1, 5)\) entry
9. Recall that
\[
\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is undirected graph with } k\text{-clique} \},
\]
\[
\subseteq \{ \langle G, k \rangle \mid G \text{ is undirected graph, integer } k \} \equiv \Omega_C,
\]
\[
3\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3cnf-function} \}
\]
\[
\subseteq \{ \langle \phi \rangle \mid \phi \text{ is 3cnf-function} \} \equiv \Omega_3.
\]
• Show that \text{CLIQUE} is \text{NP}-Complete by showing that \text{CLIQUE} \in \text{NP} and \text{3SAT} \leq_P \text{CLIQUE}.
• Be sure to prove your reduction works and that it takes polynomial time.
• Also, be sure to provide proofs of these results, and don’t just cite a theorem.

\[\text{Answer:} \]

Prove \text{CLIQUE} \in \text{NP}

- The clique is the certificate \(c\).
- Here is a verifier for \text{CLIQUE}:

\[
V = \text{"On input } \langle \langle G, k \rangle, c \rangle \rangle:\n1. \text{ Test whether } c \text{ is a set of } k \text{ different nodes in } G.
2. \text{ Test whether } G \text{ contains all edges connecting nodes in } c.
3. \text{ If both tests pass, accept; otherwise, reject."
}

- If graph \(G\) has \(m\) nodes, then (when \(G\) is encoded as list of nodes followed by list of edges)

\[
\text{Stage 1 takes } O(k)O(m) = O(km) \text{ time.}
\]
\[
\text{Stage 2 takes } O(k^2)O(m^2) = O(k^2m^2) \text{ time.}
\]

Prove \text{3SAT} \leq_m \text{CLIQUE}

\[\text{Proof Idea:} \]

Convert instance \(\phi\) of \text{3SAT} problem with \(k\) clauses into instance \(\langle G, k \rangle\) of clique problem.

- Reducing fcn \(f : \Omega_3 \rightarrow \Omega_C\)
 - \(\langle \phi \rangle \in \text{3SAT} \iff f(\langle \phi \rangle) = \langle G, k \rangle \in \text{CLIQUE}\)
 - Suppose \(\phi\) is a 3cnf-function with \(k\) clauses, e.g.,
 \[
 \phi = (x_1 \lor x_1 \lor x_2) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_5 \lor x_4) \land (x_2 \lor x_1 \lor x_5)
 \]
 - Convert \(\phi\) into a graph \(G\) as follows:
 - Nodes in \(G\) are organized into \(k\) triples \(t_1, t_2, \ldots, t_k\).
 - Triple \(t_i\) corresponds to the \(i\)th clause in \(\phi\).
 - Each node in a triple corresponds to a literal within the clause.
 - Add edges between each pair of nodes, except
 - within same triple
 - between contradictory literals, e.g., \(x_1\) and \(\overline{x_1}\)
 - Prove \(\langle \phi \rangle \in \text{3SAT} \iff \langle G, k \rangle \in \text{CLIQUE}\).
3SAT \leq_m CLIQUE

- 3cnf-formula with \(k = 3 \) clauses and \(m = 2 \) variables

\[
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2)
\]

is satisfiable by assignment \(x_1 = 0, \ x_2 = 1 \).
- Corresponding graph has \(k \)-clique:

![Graph Diagram]

Claim:

\(\langle \phi \rangle \in 3SAT \) iff \(\langle G, k \rangle \in CLIQUE \).

Proof. Use that \(G \) has edges between every pair of nodes except for

- pairs in same triple
- contradictory literals.

Also, \(\phi \) satisfiable iff each clause has \(\geq 1 \) true literal.

Claim: The mapping \(\phi \rightarrow \langle G, k \rangle \) is polynomial-time computable.

Proof.

- Given 3cnf-function \(\phi \) with \(k \) clauses \(m \) variables.
- Constructing graph \(G \)
 - \(G \) has \(3k \) nodes
 - Adding edges entails considering each pair of nodes in \(G \):
 \[
 \binom{3k}{2} = \frac{3k(3k-1)}{2} = O(k^2)
 \]
 - Time to construct \(G \) is polynomial in size of 3cnf-function \(\phi \).

ILP \in NP

Proof.

- The certificate \(c \) is an integer vector satisfying \(Ay \leq b \).
- Here is a verifier for \(ILP \):
 \[
 V = \text{"On input } \langle A, b \rangle, c \text{:} \langle A, b \rangle, c \text{"}
 \]
 1. Test whether \(c \) is a vector of all integers.
 2. Test whether \(Ay \leq b \).
 3. If both tests pass, accept; otherwise, reject.

- If \(Ay \leq b \) has \(m \) inequalities and \(n \) variables, then
 - Stage 1 takes \(O(n) \) time
 - Stage 2 takes \(O(mn) \) time
 - So verifier \(V \) runs in \(O(mn) \),
 which is polynomial in size of problem instance.

Now prove \(ILP \) is NP-Hard by showing \(3SAT \leq_p ILP \).
3SAT \leq_m ILP

- Reductn $f : \Omega_3 \to \Omega_1$, $\langle \phi \rangle \in 3SAT$ iff $f(\langle \phi \rangle) = \langle A, b \rangle \in ILP$.
- Consider 3cnf-formula with $m = 4$ variables and $k = 3$ clauses:
 $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_2 \lor \neg x_4 \lor \neg x_3)$
- Define integer linear program with
 - 2m = 8 variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - y_i corresponds to x_i
 - y'_i corresponds to $\neg x_i$

 - 3 sets of inequalities for each pair y_i, y'_i:

 $0 \leq y_1 \leq 1, \quad 0 \leq y'_1 \leq 1, \quad y_1 + y'_1 = 1$

 $0 \leq y_2 \leq 1, \quad 0 \leq y'_2 \leq 1, \quad y_2 + y'_2 = 1$

 $0 \leq y_3 \leq 1, \quad 0 \leq y'_3 \leq 1, \quad y_3 + y'_3 = 1$

 $0 \leq y_4 \leq 1, \quad 0 \leq y'_4 \leq 1, \quad y_4 + y'_4 = 1$

 - which guarantee that exactly one of y_i and y'_i is 1, and other is 0.

 $0 \leq y_i \leq 1 \iff -y_i \leq 0 \& y_i \leq 1$

 $y_i + y'_i = 1 \iff y_i + y'_i \leq 1 \& y_i + y'_i \geq 1$

3SAT \leq_m ILP

- Given 3cnf-formula:
 $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_2 \lor \neg x_4 \lor \neg x_3)$
- Constructed ILP:

 $0 \leq y_1 \leq 1, \quad 0 \leq y'_1 \leq 1, \quad y_1 + y'_1 = 1$

 $0 \leq y_2 \leq 1, \quad 0 \leq y'_2 \leq 1, \quad y_2 + y'_2 = 1$

 $0 \leq y_3 \leq 1, \quad 0 \leq y'_3 \leq 1, \quad y_3 + y'_3 = 1$

 $0 \leq y_4 \leq 1, \quad 0 \leq y'_4 \leq 1, \quad y_4 + y'_4 = 1$

 $y_1 + y_2 + y_3 \geq 1$

 $y'_1 + y'_2 + y'_4 \geq 1$

 $y'_2 + y'_4 + y'_3 \geq 1$

 - Note that:

 ϕ satisfiable \iff constructed ILP has solution

 (with values of variables $\in \{0, 1\}$)

Reducing 3SAT to ILP Takes Polynomial Time

- Given 3cnf-formula ϕ with

 - m variables: x_1, x_2, \ldots, x_m

 - k clauses

 - Constructed ILP has

 - 2m variables: $y_1, y'_1, y_2, y'_2, \ldots, y_m, y'_m$

 - 6m + k inequalities:

 - 3 sets of inequalities for each pair y_i, y'_i:

 $0 \leq y_i \leq 1, \quad 0 \leq y'_i \leq 1, \quad y_i + y'_i = 1$

 so total of 6m inequalities of this type.

 - For each clause in ϕ, ILP has corresponding inequality, e.g.,

 $(x_1 \lor x_2 \lor \neg x_3) \iff y_1 + y_2 + y'_3 \geq 1$

 so total of k inequalities of this type.

 - Thus, size of ILP is polynomial in m and k.