
CS 341: Foundations of Computer Science II
Prof. Marvin Nakayama

Project 1
Section 010: Due 2/15/2024, 11:30am NJ local time

Be sure to read this entire document before starting the assignment.

Academic Integrity
Any student caught cheating on any assignment will be reported to the dean of students.
Cheating includes, but is not limited to, getting solutions (including code) from or giving
solutions to someone else. You may discuss the assignment with others, but ultimately
you must do and turn in your own work.

1 Overview
We define the language L to consist of strings that represent certain email addresses
(specified below). For this assignment you are to submit a drawing of a state diagram of
a DFA that recognizes this language, a program that implements your DFA, and your
code’s output (following a specified format) on the provided test cases.

2 The Language L

To precisely specify L, first define Ψ = {a, b, c, . . . , z} as the set of lower-case Roman
letters. Also, define Π = {.} and Φ = {@}, and let Σ = Ψ∪Π∪Φ; i.e., Σ is the set
consisting of all the lower-case Roman letters, the dot (or period), and the @ symbol.
(The symbols Ψ, Π, and Φ are the capital Greek letters Psi, Pi, and Phi, respectively.)
Define the following sets of strings:

• S1 = ΨΨ∗, which consists of strings over Ψ of length one or more

• S2 = ΠΨΨ∗, which consists of strings starting with a dot and followed by one or
more symbols from Ψ

• S3 = {.gov}

• S4 = {.gr}

Then we define the following sets of strings over Σ:

• L1 = S1ΦS1S3

1



• L2 = S1S∗
2ΦS1S∗

2(S3 ∪ S4)

• L = L1 ∪ L2

The sets L1 and L2 include (some but not all) email addresses. For example,
the strings abc@njit.gov and a@gov.gov belong to L1. The strings abc@njit.gov,
abc@njit.gr, abc.def@cs.njit.gov, and abc.def.g@a.b.cs.njit.gov.gr are in L2.

The specification of L does not include all valid email addresses because we included
several restrictions to simplify the assignment. For example, only lower-case Roman
letters, dots, and the @ symbol are allowed, strings in L must end with .gov or .gr,
etc.

3 DFA for L

First construct a DFA M = (Q,Σ, δ, q1, F ) that recognizes L. The DFA must satisfy
each of the following properties:

• The DFA must be defined with the above alphabet Σ. Your DFA does not have
to handle symbols that are not in Σ.

• The states in the DFA must be labeled q1, q2, q3, . . . , qn, where q1 is the start
state and n is the number of states in the DFA. (It is also acceptable for the states
to be labeled q0, q1, . . . , qn−1, with q0 the start state.)

To simplify your DFA drawing, you should omit any edges going from any state q
to a “trap state” (i.e., a non-accepting state from which the DFA can never leave). All
other edges must be included in your drawing. Clearly identify which state is the trap
state in the drawing of your DFA, and your drawing should include a note stating that
all edges not specified go to a trap state. Also, to simplify your drawing, you may define
the set Ψ−` = Ψ − {`} for any symbol ` ∈ Ψ; i.e., Ψ−` is the set of all lower-case
Roman letters except for `. For example, Ψ−g = {a, b, . . . , f, h, i, . . . , z} is the set of
lower-case letters except for g, so your DFA might include something like the following:

qi

qj

qk

g

Ψ−g

There may be other transitions out of qi corresponding to reading symbols from Σ−Ψ,
but no other transitions out of qi corresponding to reading any symbol from Ψ. Thus,
if the DFA is currently in state qi, then it moves to qj on reading the letter g, and it
moves to state qk on reading any other lower-case Roman letter. You could also define
the notation Ψ−a,b = Ψ− {a, b}. You can use any notation you like, as long as you
define it appropriately.

2



Because a DFA must be deterministic, for each state qi ∈ Q and for each symbol
a ∈ Σ, there must be exactly one edge leaving state qi corresponding to reading a. For
example, in the above figure, if the DFA is in state qi and reads g, there is exactly one
choice of where to move: state qj. Similarly, if the DFA is in state qi and reads h, there
is exactly one choice of where to move: state qk. Moreover, taking a transition must
read exactly one symbol (no more and no less).

4 Program Specifications
You must write your program in either C, C++, Java, or Python. All input/output
must be through standard input/output, and your program is to work as follows:

1. Your program first prints:

Project 1 for CS 341
Section number: the section number you are enrolled in
Semester: Spring 2024
Written by: your first and last name, your NJIT UCID
Instructor: Marvin Nakayama, marvin@njit.edu

where your NJIT UCID is typically your initials followed by some digits.

2. Your program asks the user to enter an integer n ≥ 0 specifying the number of
input strings to be processed, and your program prints out the value of n. If
n = 0, the program terminates. If the user specified n ≥ 1, your program enters
a loop indexed by i = 1,2, . . . , n.

3. In the ith iteration of the loop, your program prompts the user, “Enter string i of
n”, where i is the iteration number and n is the total number of strings to enter,
and your program then reads in the string. You may assume that the user will
only enter a string over Σ. After reading in the string, your program prints it.
Then your program processes the string on your DFA in the following manner.

• Your program must begin in the start state of the DFA and print out the
name of that state (q1 or q0).

• After each character from the string is processed on the DFA, your program
must print out the character and the name of the current state of the DFA.
Even if your DFA is in a trap state, your program must do this for each
character in the string until it reaches the end of the string.

4. After processing the nth string, your program terminates.

5. For all functions, subroutines, and classes you define in your code, their names
must end with the last 3 digits of your NJIT UCID.

3



5 Test Cases
Test your program on each of the following input strings:

1. njit@njit.gov

2. b@d.gov

3. tuv@wxyz.gr

4. opqr@.gov

5. web.rstuv.b.gov.cdef@z.gr.go.stanford.gov

6. gg@ggg.gov..gov

7. zyxw.@phone.gov

8. gov@govern.gov.

9. yellow@abc.gov.green

10. random@gov

11. rewq@g.gov.gr.gor

12. www@gov.govr

13. wwwc@gov.gr

14. .five@six.gov

15. governess@go.gov@

16. govern@government.gr.govt

17. govern@government.gov.gr

18. @mnop.gov

19. xyzz.bcde.grow@.gov

20. abcd..efg@fort.gov

You must create an output file containing your program’s output from each test case
in the order above.

4



6 Deliverables
The due date/time for the assignment specified in the syllabus and at the beginning
of this document. You must submit all of the following through Canvas by the due
date/time:

1. A Microsoft Word document stating, “I certify that I have not violated the Uni-
versity Policy on Academic Integrity”, followed by your first and last name, NJIT
student ID, and UCID. If you do not include this pledge, then you will receive a
0 on the assignment. Anyone caught violating the University Policy on Academic
Integrity will be immediately reported to the dean of students.

2. A drawing of the DFA for L that your program implements. This format of the
file must be either Microsoft Word, pdf, or jpeg (e.g., a photo from your phone’s
camera, but make sure it’s not blurry). The file must be smaller than 5MB in size.

3. A Microsoft Word document giving the 5-tuple specification for your DFA as

M = (Q,Σ, δ, q0, F ) or M = (Q,Σ, δ, q1, F ),

depending on whether your DFA’s start state is q0 or q1. You must explicitly give
each of the elements in the 5-tuple, e.g., Q must be a set with all of the states
in your DFA. Give the transition function δ : Q × Σ → Q as a table; e.g., see
slide 1-8 of the lecture notes. Some transitions of your DFA will be taken on
reading many different symbols, so you can simplify the table by combining these
possibilities into a single column of the table. For example, in any state, your DFA
on reading y or z should always make the same transition, so you can combine
these columns in your table into a single column.

4. A single file of your source code, of type .c, .cpp, .java, or .py. Only submit
the source code; do not include any class files. You must name your file

p1_24s_xyz_ucid.ext

where xyz is the section number in which you are enrolled, ucid is replaced by
your NJIT UCID, and .ext is the appropriate file extension for the programming
language you used, e.g., .java. The first few lines of your source code must be
comments that include your full name, UCID, section number, and semester/year.

5. A single file containing the output (in the format specified in Section 4) from
running your program on all of the test cases, in the order given in Section 5 of
this document. The output file must be either .txt or in Microsoft Word.

The files must not be compressed. You will not receive any credit if you do not
complete all of the above. Late projects will be penalized as follows:

Lateness (Hours) Penalty
0.0 < Lateness ≤ 24 10
24 < Lateness ≤ 48 30
48 < Lateness ≤ 72 60
72 < Lateness 100

5



where “Hours” includes any partial hours, e.g., 0.0000001 hours late incurs a 10-point
lateness penalty. A project is considered to be late if all of the above are not completed
by the due date/time, and the lateness penalty will continue to accumulate until all of
the above have been completed. Any submissions completed more than 72 hours after
the due date/time will receive no credit.

7 Grading Criteria
The criteria for grading are as follows:

• correctness of your DFA for L (30 points; you will lose points if your DFA has
more states than necessary or is overly complicated)

• 10 points: correctness of the 5-tuple specification of your DFA for L

• the program follows the specifications given in Section 4, matches your DFA for
L, and follows the directions in Section 6 (15 points)

• your program is properly documented (each block of code should include com-
ments) (5 points)

• your output is correct for the test cases and in the proper format specified in
Section 4 (40 points).

Your grade will mainly be determined by examining the source code, the drawing of
the DFA, and the output that you turn in; the source code will only be tested if there
are questions about your code.

To receive any credit for this assignment, you must turn in a drawing of your DFA
for L and a minimally working program. For a program to be minimally working, it
must satisfy all of the following:

• compile without syntax errors;

• properly accept strings in L1; and

• implement the drawing of your DFA for L.

If you do not hand in a minimally working program, then you will receive
a 0 for the assignment and your grade in the course will be lowered by one
step, e.g., from B to C+, or from C to D.

8 Hints
To design a DFA for L, start by drawing a DFA to handle only L1, which includes the
first two test cases. Initially include only the transitions that will eventually lead to
acceptance. Then modify your DFA to handle the rest of L and the other test cases.

6


	Overview
	The Language L
	DFA for L
	Program Specifications
	Test Cases
	Deliverables
	Grading Criteria
	Hints

