
CS 341: Foundations of Computer Science II
Prof. Marvin Nakayama

Project 2

Section 010: Due 3/21/2024, 11:30am NJ local time

Be sure to read this entire document before starting the assignment.

Academic Integrity

Any student caught cheating on any assignment will be reported to the dean of students.
Cheating includes, but is not limited to, getting solutions (including code) from or giving
solutions to someone else. You may discuss the assignment with others, but ultimately
you must do and turn in your own work.

1 Overview

The language A is a particular set of strings (defined below) that represent valid arith-
metic expressions operating on floating-point numbers, with the entire expression con-
tained between two strings of symbols of a specified form. For this assignment you are
to submit a drawing of a state diagram of a deterministic PDA that recognizes this
language, a program that implements your PDA, and your code’s output (following a
specified format) on the provided test cases.

2 The Language A

To precisely define the language A, we first define the context-free grammar G =
(V,Σ, R, S), where V = {S, T, C,H, Y,N} is the set of variables; the alphabet is

Σ = { ., 0, 1, 2, . . . , 9, +, -, *, /, (,), a, b }, (1)

which includes a dot for float-point numbers; the starting variable is S; and the rules
are

S → aTa

T → bTb | aCa

C → C+C | C-C | C*C | C/C | (C) | H
H → Y.Y | Y. | .Y
Y → NY | N
N → 0 | 1 | 2 | · · · | 9

1

Then we define the language A = L(G), where each string in A is of the form
abkaEabka for any k ≥ 0, where E is an arithmetic expression over floating-point num-
bers, as defined by the rules. For example, the string “abbba(15.-(6.312*.7))abbba”
belongs to A, which we can show by using the derivation with G:

S ⇒ aTa ⇒ abTba ⇒ abbTbba ⇒ abbbTbbba ⇒ abbbaCabba

⇒ abbba(C)abbba ⇒ abbba(C-C)abbba

⇒ abbba(C-(C))abbba ⇒ abbba(C-(C*C))abbba

⇒ abbba(H-(C*C))abbba ⇒ abbba(Y .-(C*C))abbba

⇒ abbba(NY .-(C*C))abbba ⇒ abbba(NN.-(C*C))abbba

⇒ abbba(1N.-(C*C))abbba ⇒ abbba(15.-(C*C))abbba

⇒ abbba(15.-(H*C))abbba ⇒ abbba(15.-(Y .Y *C))abbba

⇒ abbba(15.-(N.Y *C))abbba ⇒ abbba(15.-(6.Y *C))abbba

⇒ abbba(15.-(6.NY *C))abbba ⇒ abbba(15.-(6.NNY *C))abbba

⇒ abbba(15.-(6.NNN*C))abbba ⇒ abbba(15.-(6.3NN*C))abbba

⇒ abbba(15.-(6.31N*C))abbba ⇒ abbba(15.-(6.312*C))abbba

⇒ abbba(15.-(6.312*H))abbba ⇒ abbba(15.-(6.312*.Y))abbba

⇒ abbba(15.-(6.312*.N))abbba ⇒ abbba(15.-(6.312*.7))abbba

The above derivation is given so that you can get a better understanding of the language
A, but the derivation cannot be directly used to design a PDA for A. The grammar G
does not include the rule C → -C nor the rule C → ε, so the strings “aba-45.0aba”
and “abba.8+-9.abba” do not belong to A. Also, note that operands must be floating-
point numbers, so integers (numbers without a dot) are not allowed; e.g., “aba45+3aba”
does not belong to A. The grammar G is ambiguous; e.g., the string aa1.+2.*3.aa ∈ A
has two different parse trees.

3 PDA for A

First you are to construct a deterministic PDA M = (Q,Σ,Γ, δ, q1, F) that recog-
nizes A, where Σ is defined in equation (1). The PDA M must satisfy the following
conditions:

� The PDA must be defined with the alphabet Σ defined in equation (1). In other
words, the PDA must be able to handle any string of symbols from Σ. The PDA
can handle certain strings not in A by crashing, i.e., the drawing does not have an
edge leaving a state corresponding to particular symbols read and popped.

� The PDA must have exactly one accept state.

� The states in the PDA must be labeled q1, q2, q3, . . . , qn, where q1 is the start
state and n is the number of states in the PDA. (It is also acceptable for the states
to be labeled q0, q1, . . . , qn−1, with q0 the start state.)

2

� Other than possibly edges directly out of the start state or directly into the accept
state, each other edge in the PDA must correspond to reading a symbol from Σ;
i.e., no other edge can correspond to reading ε. There is no restriction on pushing
or popping ε on transitions.

� Your PDA must be deterministic; i.e., there must be exactly one way of processing
each input string, which could be by crashing.

You will not be able to use the algorithm in Lemma 2.21 to convert the
CFG G into a PDA for A since the resulting PDA will not be deterministic,
violating the assignment’s requirements. Implementing a deterministic PDA as a
program should be straightforward. (Implementing a nondeterministic machine is more
difficult since the program would need to check every branch in a tree of computation.)

The drawing of your PDA must include all edges that are ever used in accepting a
string in A. But to simplify your drawing, those edges that will always lead to a string
being rejected should be omitted. Specifically, when processing a string on your PDA,
it might become clear at some point that the string will be rejected before reaching the
end of the input. For example, if the input string is “aa34.5+*6.29aa”, then it is clear
on reading the * that the string will not be accepted. Moreover, if an input string ever
contains the substring +*, then the input string will be rejected. Thus, your drawing
should omit the transition corresponding to reading the operator * in this case, so the
PDA drawing will crash at this point.

In this project, the machine you design needs to only recognize the language A,
not to evaluate the arithmetic expression. Because of this, your PDA does not need
to distinguish between different Arabic numerals; e.g., there should be no difference in
reading the symbol 3 or the symbol 6 in the input. Thus, you can define notation such
as ΣN = { 0, 1, 2, . . . , 9 } to denote the set of digits (Arabic numerals), and you can
use this notation in labeling certain transitions. Also, all operators (+, -, *, /) can be
handled similarly.

4 Program Specifications

You must write your program in C, C++, Java, or Python. All input/output must be
through standard input/output, and your program is to work as follows:

1. Your program first prints:

Project 2 for CS 341

Section number: the section number you are enrolled in

Semester: Spring 2024

Written by: your first and last name, your NJIT UCID

Instructor: Marvin Nakayama, marvin@njit.edu

where your NJIT UCID is typically your initials followed by some digits.

3

2. Your program asks the user to enter an integer n ≥ 0 specifying the number of
input strings to be processed, and your program prints out the value of n. If
n = 0, the program terminates. If the user specified n ≥ 1, your program enters
a loop indexed by i = 1,2, . . . , n.

3. In the ith iteration of the loop, your program prompts the user, “Enter string i of
n”, where i is the iteration number and n is the total number of strings to enter,
and your program then reads in the string. You may assume that the user will
only enter a string over Σ. After reading in the string, your program prints it.
Then your program processes the string on your PDA in the following manner.

� Your program must begin in the start state of the PDA and print out the
name of that state (q1 or q0).

� After each transition of the PDA, your program must print out

– the state of the PDA before taking the transition,

– the symbol from Σ that was read,

– the symbol from Γε that was popped from the stack,

– the symbol from Γε that was pushed onto the stack, and

– the state of the PDA after completing the transition.

� If the PDA crashes before reaching the end of the input string, your program
should output this fact.

� After completing the processing of the current string on the PDA (possibly
by crashing), your program must indicate if the string is accepted or rejected
based on how the string was processed on the PDA.

4. After processing the nth string, your program terminates.

5. For all functions, subroutines, and classes you define in your code, their names
must end with the last 3 digits of your UCID.

5 Test Cases

Test your program on each of the following input strings:

1. abbba43.51386abbba

2. aa.78+27.-3.013/837.842+aa

3. aa48622.+.41*1.2/00.1/521.23-.9+.53/7.aa

4. abba382.89*14.2aba

5. aba4.91-.*17.9aba

6. aa44.88.6+3.208aa

4

7. aba(1.2+(3.5-.9)/19).3aba

8. abba(.4)64abba

9. aba((824.23+(9.22-00.0)*21.2))+((.2/7.))abba

10. aba(())aba

11. abba((14.252+(692.211*(.39+492.1))/49.235)abba

12. abba+6.5abba

13. aa26.0*(.87/((4.+.2)/(23.1)-2.9)+6.)/(((823.*.333-57.*8.0)/.33))+.76aa

14. abba.0*(32.922+.7-*9.))abba

15. aba(4.+(.8-9.))/2.)*3.4+(5.21/34.2aba

You must create an output file containing your program’s output from each test case
in the order above.

6 Deliverables

You must submit all of the following through Canvas by the due date/time given on
the first page and syllabus:

1. A Microsoft Word document stating, “I certify that I have not violated the Uni-
versity Policy on Academic Integrity”, followed by your first and last name, NJIT
student ID, and UCID. If you do not include this pledge, then you will receive a
0 on the assignment. Anyone caught violating the University Policy on Academic
Integrity will be reported to the dean of students.

2. A drawing of the PDA for A that your program implements. This format of the
file must be either Microsoft Word, pdf, or jpeg (e.g., a photo from your phone’s
camera, but make sure it’s not blurry). The file must be smaller than 5MB in size.

3. A single file of your source code, of type .c, .cpp, .java, or .py. Only submit
the source code; do not include any class files. You must name your file

p2 24s xyz ucid.ext

where xyz is the section number in which you are enrolled, ucid is replaced by your
NJIT UCID (which is typically your initials followed by some digits), and .ext is
the appropriate file extension for the programming language you used, e.g., .java.
The first few lines of your source code must be comments that include your full
name, UCID, section number, and semester/year.

4. A single file containing the output (in the format specified in Section 4) from
running your program on all of the test cases, in the order given in Section 5 of
this document. The output file must be either .txt or in Microsoft Word.

5

The files must not be compressed. You will not receive any credit if you do not
complete all of the above. Late projects will be penalized as follows:

Lateness (Hours) Penalty
0.0 < Lateness ≤ 24 10
24 < Lateness ≤ 48 30
48 < Lateness ≤ 72 60
72 < Lateness 100

where “Hours” includes any partial hours, e.g., 0.0000001 hours late incurs a 10-point
lateness penalty. A project is considered to be late if all of the above are not completed
by the due date/time, and the lateness penalty will continue to accumulate until all of
the above have been completed. Any submissions completed more than 72 hours after
the due date/time will receive no credit.

7 Grading Criteria

The criteria for grading are as follows:

� the correctness of the drawing of your PDA for A (30 points; you will lose points
if your PDA has significantly more states than necessary or is overly complicated)

� your program follows the specifications given in Section 4, matches your PDA for
A, and follows the directions in Section 6 (20 points)

� your program is properly documented with comments explaining how each block
of your code works (5 points)

� your output is correct for the test cases and in the proper format specified in
Section 4 (45 points).

Your grade will mainly be determined by examining the source code, the drawing of
the PDA, and the output that you turn in; the source code will only be tested if there
are questions about your code.

To receive any credit for this assignment, you must turn in a drawing of the PDA your
program implements and a minimally working program. For a program to be minimally
working, it must

� compile without syntax errors;

� properly process all strings in A0, where A0 is the set of strings in A that do not
have parentheses; and

� implement the drawing of your PDA for A.

If you do not hand in a minimally working program, then you will receive
a 0 for the assignment and your grade in the course will be lowered by one
step, e.g., from B to C+, or from C to D.

6

8 Hints

You should design your PDA incrementally. First consider a subset A′
0 of A0, where

A′
0 has arithmetic expressions with no parentheses (as in A0) but also operands are

only integers (i.e., not floating-point numbers), and strings in A′
0 do not include the

symbols before and after the arithmetic expression. (Actually, A′
0 is a regular language,

so you could start by designing a DFA for A′
0, which can be converted into a PDA by

popping and pushing ε on each transition.) Once you figure out a PDA for A′
0, then

modify it to have operands that are floating-point numbers rather than integers (hint:
HW 3, problem 6). Then modify the PDA to handle the symbols before and after the
arithmetic expression (hint: HW 6, problem 1(h)), so that your PDA recognizes A0.
Once you have figured out a PDA for A0, then enhance your PDA to also accept the
rest of the strings in strings in A.

To develop a PDA for A′
0, start by partitioning Σ into subsets, where each subset

contains one type of symbol. For example, one subset contains the symbols that are
operators (+, -, *, /). Then draw a state for each subset, and also add a start state
and an accepting state. If the PDA is currently in a state corresponding to one subset,
then the last symbol read was a symbol from that subset. Then figure out what are the
valid choices for the next type of symbol, and draw a transition from the current state
to each of those states.

7

	Overview
	The Language A
	PDA for A
	Program Specifications
	Test Cases
	Deliverables
	Grading Criteria
	Hints

