
On finite exponential moments for branching processes and busy

periods for queues

Marvin K. Nakayama

Department of Computer Science, New Jersey Institute of Technology

Newark, NJ 07102, USA

Perwez Shahabuddin

Department of Industrial Engineering and Operations Research, Columbia University

500 West 120th Street, New York, NY 10027-6699, USA

Karl Sigman

Department of Industrial Engineering and Operations Research, Columbia University

500 West 120th Street, New York, NY 10027-6699, USA

Abstract

Using a known fact that a Galton–Watson branching process can be represented

as an embedded random walk, together with a result from Heyde [1964], we first

derive finite exponential moment results for the total number of descendents of an

individual. We use this basic and simple result to prove analogous results for the

population size at time t and the total number of descendents by time t in an age-

dependent branching process. This has applications in justifying the interchange of

1



expectation and derivative operators in simulation-based derivative estimation for

generalized semi-Markov processes. Next, using the result from Heyde [1964], we

show that in a stable GI/GI/1 queue, the length of a busy period and the number

of customers served in a busy period have finite exponential moments if and only if

the service time does.

Keywords Branching process, busy period, decoupling, random walk,

single-server queue
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1 Introduction

Consider a Markov chain that has the form

Xn+1 =
Xn∑
j=1

Zn,j, X0 = 1 (1)

with {Zn,j : n ≥ 0, j ≥ 1} i.i.d. (generically denoted by Z), non-negative and discrete. For

non-triviality we assume that E(Zn,j) > 0. This is usually called the Galton–Watson (GW)

process (or Bienayme–Galton–Watson process). Zn,j denotes the number of progeny of the jth

individual from the nth generation. Let

Kn
def=

n∑
i=0

Xi

and

K
def=

∞∑
i=0

Xn.

Then Kn − 1 (resp., K − 1) may be interpreted as the total number of descendents of an

individual by time n (resp., ∞). It is well known that if E(Z) < 1 then P (K < ∞) = 1 (this

also holds when E(Z) = 1 and V ar(Z) > 0).

In the GW model, each individual lives for exactly 1 unit of time, but by allowing a general

random lifetime Y , one obtains a more general age-dependent branching process (see, e.g.,

Athreya and Ney [1972]). Let W (t) denote the total number of living individuals at time t, and

V (t)− 1 the total number of descendents by time t.

It is of intrinsic interest to determine conditions under which K, Xn, Kn, W (t) and V (t)

have finite moment generating functions in neighborhoods of the origin. In particular, necessary

and sufficient conditions ensuring that there exists an s0 > 0 such that E(esK) < ∞, 0 < s ≤ s0,

are developed (similarly for Kn, Xn, W (t) and V (t)).

In Section 2 we first focus on K. By using a known embedded Markov chain technique (e.g.,

Quine and Szczotka [1994]), together with a result of Heyde [1964], we show that if E(Z) < 1
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then K has finite moment generating function in a neighborhood of the origin if and only if

Z does. (We assume this preliminary result to be known, but have not seen it stated in the

literature.)

A simple result that seems intuitive, but for which we have not found any formal proof in

the literature, is the following: if E(Z) < ∞ then for any n ≥ 0, Xn and Kn have finite moment

generating functions in neighborhoods of the origin if and only if Z does. We do not claim any

originality for this result, but for the sake of completeness we give a simple formal proof here.

In Section 3, we use the results about the GW process, to show similar results for the age-

dependent processesW (t) and V (t). This work on finite exponential moments of age-dependent

branching processes is motivated by the problem considered in Nakayama and Shahabuddin

(1998). To justify the interchange of derivative and expectation in estimating via simulation

the derivative of a performance measure in generalized semi-Markov processes (GSMPs), one

needs a condition of the type: E(esN(t)) < ∞ for all s in some neighborhood of zero, where

N(t) is the number of transitions of the GSMP in [0, t]. This kind of condition is proved by first

constructing an age-dependent branching process V (t) that provides upper bounds for N(t)

(and then referring to the results in the present paper).

In our final section, we investigate finiteness of moments in another setting. Using the result

from Heyde [1964] alluded to earlier, together with a decoupling inequality of De La Peña [1994],

we show that the number of customers served in a busy period and the length of a busy period

in a stable GI/GI/1 queue have finite moment generating functions in neighborhoods of zero

if and only if the service-time distribution does.

2 The case of the Galton–Watson Process

Consider the branching process (1) described in the Introduction.
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Theorem 2.1 If E(Z) < 1, then there exists an s0 > 0 such that E(esK) < ∞, 0 < s ≤ s0 if

and only if there exists an s1 > 0 such that E(esZ) < ∞, 0 < s ≤ s1.

To prove the Theorem, we utilize an embedded random-walk technique used previously by

Quine and Szczotka [1994] (the essential idea going back to Section 6 in Harris [1952], and also

used by Lindvall [1976]). An equivalent representation of (1) is X0 = 1, X1 = Z1, and

Xn+1 =
Kn−1+Xn∑
j=Kn−1+1

Zj1{Xn≥1} n = 1, 2, . . . , (2)

where 1A is the indicator random variable of event A and the Zi’s, i ≥ 1, are i.i.d. and have

the same distribution as Z. Then, as is shown in Quine and Szczotka [1994] for example, K is

the first strictly descending ladder epoch of a random walk with increments ∆n ≡ Zn − 1:

K = min{m ≥ 1 : Z1 − 1 + · · ·+ Zm − 1 < 0}.

(Note further that if we denote the ∆n’s generically by ∆, then E(∆) < 0 because E(Z) < 1

by assumption. Thus the random walk has negative drift which is why P (K < ∞) = 1.)

The proof of Theorem 2.1 then follows by letting τ = K in the following Theorem 2.2 due

to Heyde [1964] and noting that E(es{Z−1}+

) < ∞ if and only if E(esZ) < ∞.

Theorem 2.2 [Heyde [1964], Theorem 1] Let {∆n : n ≥ 1} (generically denoted by ∆) be

i.i.d. with E(∆) < 0. Define the first strictly descending ladder epoch, τ , by

τ
def= min{m ≥ 1 : ∆1 + · · · +∆m < 0}. (3)

Then there exists an s0 > 0 such that E(esτ ) < ∞, 0 < s ≤ s0 if and only if there exists an

s1 > 0 such that E(es{∆}+
) < ∞, 0 < s ≤ s1.

(In Heyde [1964] results are stated in terms of positive drift and strictly ascending ladder

epochs. Theorem 2.2 is also stated as Theorem III.3.2 in Gut [1988].) That the result does not
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hold in general when E(Z) = 1 can be seen by considering the simple symetric random walk

with P (Z = 2) = P (Z = 0) = 0.5, for which the first ladder height has infinite mean.

In the next section we will be using similar finite moment generating function results for

Xn and Kn, n ≥ 1. These are stated in Lemma 2.1. Note that this lemma does not need the

condition that E(Z) < 1. Although this result seems intuitively obvious, and has been alluded

to in the literature (see, e.g., Selivanov [1969]) nowhere did we find a formal proof. For the sake

of completeness we give a simple proof.

Lemma 2.1 For all n ≥ 2, there exists an sn > 0 (resp., s̃n) such that E(esXn) < ∞, 0 <

s ≤ sn (resp., E(esKn) < ∞, 0 < s ≤ s̃n ) if and only if there exists an s1 > 0 such that

E(esZ) ≡ E(esX1) ≡ E(es(K1−1)) < ∞, 0 < s ≤ s1.

Proof : We work in terms of generating functions for discrete random variables. Let φ(s) =

E(sZ) and φn(s) = E(sXn) for s ≥ 0 (note that for the case of defining φ(0) and φn(0) we

define 00 ≡ 1 ). Then the above lemma is equivalent to the following: for all n ≥ 2, there exists

s′n > 1 (resp., s̃′n) such that φn(s) < ∞, 1 < s ≤ s′n, (resp., E(sKn) < ∞, 1 < s ≤ s̃′n) if and

only if there exists an s′1 > 1 such that φ(s) < ∞, 1 < s ≤ s′1, (i.e., the above Lemma will hold

with sn = ln(s′n) for n ≥ 1).

We will use a well known fact from branching process theory that φn(s) = φ(n)(s) for s > 0

(see e.g., Athreya and Ney (1972), Pg 2), where the φ(n)(s) is the n-fold composition of the

function φ(s), i.e., φ(1)(s) ≡ φ(s), φ(2)(s) ≡ φ(φ(s)) and so on.

First we prove the sufficiency using induction. Note that since Z ≥ 0, φ(s) is continuous

and non-decreasing for 1 ≤ s ≤ s′1 with φ(1) = 1. Assume that there exists s′n−1 > 1, such that

φn−1(s) < ∞ for 1 < s ≤ s′n−1. Since Xn−1 ≥ 0, φn−1(s) is continuous and non-decreasing for

1 < s < s′n−1 with φn−1(1) = 1. Hence there exists a s′n > 1 such that φn−1(s′n) ≤ s′1, and

therefore φn(s′n) = φ(φn−1(s′n)) ≤ φ(s′1) < ∞. Then the non-decreasing nature of φn(s) over

the interval 1 < s ≤ s′n implies that φn(s) < ∞, for s in that interval.
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We use induction to show finiteness of E(sKn), knowing that E(sK1) < ∞ for 1 < s ≤ s′1.

Assuming the existence of s̃′n−1 such that E(s
Kn−1) < ∞ for 1 < s ≤ s̃′n−1 and n ≥ 2, it follows

from the Schwarz Inequality (see, e.g., Billingsley [1986], Pg 283) that for s > 1,

E(sKn) = E(sKn−1+Xn) ≤
√

E(s2Kn−1)E(s2Xn).

Therefore choosing s̃′n =
√
min{s̃′n−1, s

′
n} we are done.

The necessity of the condition for the case of Kn follows immediately from the fact that

Kn ≥ X1 a.s. For Xn, we start by noting that if φ(s) =∞ for all s > 1, then φ2(s) = φ(φ(s)) =

φ(∞) =∞ for all s > 1, and the same is true for φn(s) by induction.

3 Age-Dependent Branching Process

An age-dependent branching process starts with one individual at time t = 0. After a random

lifetime Y ≥ 0, with cumulative distribution function (cdf) G(x) = P (Y ≤ x), the individual

gives birth to R individuals and then dies at that instant. Here R is a non-negative discrete

random variable with a general distribution (playing the role of Z in the GW model). Each

individual thus generated then behaves identically to the first one, with the lifetimes of the

individuals and number of progeny generated by the individuals, constituting i.i.d. sequences,

each sequence being independent of the other. The whole process proceeds similarly producing

future generations. Note that a Galton-Watson process is the special case when P (Y = c) = 1,

for some constant c > 0. Let W (t) be the (left-continuous) stochastic process denoting the

number of individuals alive at time t−, and V (t) be the (left-continuous) stochastic process

denoting the total number of individuals that have been alive (even for a time duration of 0)

during [0, t). As convention, we take W (0−) = V (0−) = 1. Note that since we allow G(0) > 0,

there may be instantaneous, multiple transitions at a given time t.

We will use the results of the last section to prove the following theorem:
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Theorem 3.1 For non-triviality, assume that E(Y ) > 0 and E(R) > 0. If G(0)E(R) < 1 and

there exists an s1 > 0 such that E(esR) < ∞, 0 < s ≤ s1, then for all t > 0 there exists an

s0 > 0 such that E(esW (t)) ≤ E(esV (t)) < ∞, 0 < s ≤ s0.

To the best of the authors’ knowledge, no results of this type have been shown in the existing

branching process literature. There are some results for finiteness of E(φ(W (t))) for a class of

functions φ(·) (Athreya and Ney (1972), Pg 153). However the exponential function does not

belong to this class of functions and the methods of proof used there are not applicable here.

Proof : Note that for E(R) < 1 this result is immediate from Theorem 2.1: In this case,

V (t) ≤ V (∞), the total number of individuals generated until extinction, which would be the

same as when P (Y = c) = 1, namely the GW process. We are thus concerned with the case

where E(R) ≥ 1. Since G(0) < 1/E(R), there exists a δ > 0, such that G(δ) < 1/E(R).

The main idea of the proof is to construct a new age-dependent branching process, such that

the (V (t) : t ≥ 0) component of the original process, is bounded by that of the new process. The

new age-dependent branching process is constructed such that it has death/birth transitions

only at discrete times, and is thus more tractable using GW branching process theory.

Construction of the bounding, age-dependent branching process: Let Y1, Y2, . . . be the i.i.d.

sequence of lifetimes used in the original process. Consider a modified age-dependent branching

process where the Yj’s in the original process are now changed to Ỹj’s defined as follows:

Ỹj = 0 if 0 ≤ Yj ≤ δ and Ỹj = δ otherwise. Let W̃ (t) be the total number of individuals in

this modified branching process at time t− and Ṽ (t) be the total number of individuals that

have been alive (even for a time duration 0) in time interval [0, t). Since W (t) ≤ V (t) ≤ Ṽ (t)

w.p. 1, we only need to show finiteness of exponential moments for Ṽ (t).

We will now cast this in the GW process framework of Section 1. Clearly W̃ (t) only changes

at times nδ, n = 1, 2, . . .. In fact, the process (W̃ (t), Ṽ (t)) is almost like a GW process, except

for the instantaneous transitions at time nδ. In particular the Ṽ (t) process also has to keep
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track of the generations with zero lifetimes. To see this more clearly, defineXn ≡ W̃ (nδ), n ≥ 0,

i.e., the total number of individuals at time nδ that have been alive for time δ (recall that W̃n

is left-continuous). Then Xn is a GW process defined in Section 1 with the progeny random

variable Z defined in the following way: Z is the total number of individuals with lifetime δ,

that an individual with lifetime δ generates.

Let us now take a closer look at this progeny random variable Z. The attempt will be to see

whether Z has finite exponential moments, so that the Kn corresponding to the GW process

Xn has finite exponential moment for any n. By letting n = 	t/δ
 for any given t, this would

have implied that the process Ṽ (t) has finite exponential moments, had Ṽ (t) not taken into

account the generations with zero lifetimes. Obviously, this is not the case. Nevertheless, we

will first proceed with proving that Kn has finite exponential moments, and deal with Ṽ (t)

later.

Consider the sequence of instantaneous descendants arising from an individual, say P , that

has been alive for time δ in the modified age-dependent branching process. First this individual

will generate R individuals. These are termed as instantaneous first-generation descendants

arising from P (these are not actually instantaneous, since P has been alive for time δ, but

we will just call it so for simplicity of notation). Each of these individuals will either have a

lifetime of zero or have a lifetime of δ. The ones with a lifetime of zero will generate more

individuals at that very instant. These generated individuals are termed instantaneous second-

generation descendants arising from P . Define X ′
0 = 1, and for l ≥ 1, define X ′

l to be the

number of instantaneous lth-generation descendants arising from P . The {X ′
l : l ≥ 0} is itself a

slightly modified GW process given by X ′
0 = 1, X

′
1

D= R (the symbol “ D= ” means “has the same

probability distribution as”), and X ′
l+1 =

∑X′
l

j=1 R
′
l,j, for l ≥ 1 where {R′

l,j} (generically denoted

by R′) are i.i.d., non-negative and discrete and given by the following: R′ D= R with probability

G(δ) and R′ = 0 with probability 1 − G(δ). Clearly E(esR) < ∞ if and only if E(esR′
) < ∞.
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Let K ′ =
∑∞

l=0 X
′
l be the total number of instantaneous descendants arising from P . Since

E(R′) = G(δ)E(R) < 1, using Theorem 2.1 (it is trivial to show that this theorem will hold

for the slightly modified GW process described above, where individuals of the first generation

are generated differently from the individuals of other generations; one can just neglect the

distribution of X ′
1) we get that there exists s0 such that E(esK ′

) < ∞ for 0 < s ≤ s0.

Note that the Z corresponding to Xn is the total number of instantaneous descendants

(arising from an individual with life time δ) that ended up having a lifetime greater than 0.

Hence Z is bounded by K ′ and so E(esZ) < ∞ for 0 < s ≤ s0. From Lemma 2.1, there exists

s̃n, such that E(esKn) < ∞ for 0 < s ≤ s̃n.

However, as mentioned before, this does not suffice for proving that Ṽ (t) has finite expo-

nential moments. To prove this, construct a modified GW process X̃n by adding some more

branches to Xn in the following manner. Recall that in Xn a typical individual has Z progeny

where the random variable Z has been defined before. In the GW process X̃n, we increase

the number of progeny of this individual from Z to K ′; recall that K ′ is the total number

of instantaneous descendants arising from an individual who has been alive for time δ, in the

modified age-dependent branching process. We do this for all individuals in Xn. Each new

progeny thus generated starts a branching process with the progeny distribution being that of

K ′. Hence the X̃n is a GW process with progeny random variable Z̃ = K ′. Note that

Ṽ (t) ≤
n∑

i=0

X̃i ≡ K̃n, (4)

where n = 	t/δ
. This is because the X̃i now includes individuals produced in the modified

age-dependent branching process that have zero lifetimes. Using Lemma 2.1 and the fact shown

before that E(esK ′
) < ∞ for 0 < s ≤ s0, we get that K̃n has finite exponential moments. Using

(4) we get that Ṽ (t) has finite exponential moments.

The following theorem is a partial converse to Theorem 3.1.
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Theorem 3.2 Let t > 0 be such that P (Y ≤ t) > 0. If E(esR) = ∞ for some s > 0, then

E(esV (t)) ≥ E(esW (t)) =∞.

The proof is detailed, but the main idea of the proof is as follows. The first step is to find

a positive constant b so that Y lies in an appropriately chosen, small neighborhood of b with

positive probability p. Then one lower bounds the probability of a death, or equivalently a birth

of size R, happening within the interval (t− b, t]. Out of these R births, let R̃ denote those who

have lifetimes in the above mentioned neighborhood of b, and thus will be alive at time t. It is

easy to see that R̃ is a Binomial(R, p), and that it has infinite exponential moments if R has

the same. However, R̃ is also a lower bound for W (t) conditional on the death happening in

the interval (t− b, t], and so the infinite exponential moment property is also imparted to this

W (t).

Proof : Since E(Y ) > 0, there exists a b > 0 such that for all small enough δ > 0, P (b − δ <

Y ≤ b) > 0. For any t, define nt = �t/b�. Choose δ such that

t < (nt + 1)b− (nt + 1)δ, (5)

and define

p ≡ P (b− δ < Y ≤ b) > 0. (6)

We consider first the case that nt > 0. Let A be the event of at least one death (and

corresponding progeny generation) in the interval (ntb − ntδ, ntb]. We first determine a lower

bound on P (A). LetA′ be the event that the branching process is alive for at least nt generations

(the starting individual is defined as the first generation; even if an individual is alive for only

time 0, it is still counted as one generation). Event A′ occurs if and only if a successive sequence

of nt − 1 individuals, that includes the starting individual, produce non-zero progeny. Hence

P (A′) = (P (R > 0))nt−1. Let Y1, Y2, . . .Ynt be the sequence of lifetimes in one of the branches

of the sample tree which is alive for at least nt generations. Then ∩nt
i=1{b−δ < Yi ≤ b}∩A′ ⊂ A.
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Since the Yi’s are independent of one another, and of any other random variable in the system,

we obtain P (A) ≥ pnt(P (R > 0))nt−1 > 0.

Let R be the number of progeny corresponding to a death in the interval (ntb−ntδ, ntb] and

let R̃ be the number of these that have a lifetime in the interval (b− δ, b]. From (5) we see that

all these R̃ will be alive at time t, and thus W (t) ≥ R̃, conditional on the event A happening.

Also, R̃ is Binomial(R, p) and independent of A, since R is independent of A. Now

E(esW (t)) ≥ E(esW (t)|A)P (A)

≥ E(esR̃|A)P (A)

= E(esR̃)P (A)

= E((pes + (1− p))R)P (A)

≥ pE(esR)P (A) (7)

The result for W (t) follows from the fact that p and P (A) are positive and E(esR) =∞.

Now consider the case that nt = 0. From (5), the δ in this case is chosen such that t < b−δ.

Since we assume that P (Y ≤ t) > 0, there is a positive probability that the first death happens

in the interval [0, t]. Again, letting R to be the number of progeny corresponding to this death

and R̃ to be the number of these that have lifetimes in the interval (b − δ, b], we get that

W (t) ≥ R̃. We can then use the same argument as (7) where the event A is replaced by the

event that the first death happens in the time interval [0, t].

Finally, since V (t) ≥ W (t), we conclude that E(esV (t)) ≥ E(esW (t)) =∞.
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4 Busy Periods in GI/GI/1 Queues

It is known that for the M/GI/1 queue, the length of a busy period has finite kth moment if

and only if the service time does (see, e.g., Wolff [1989]) 1. In this section, we prove further

results in this direction. In particular, we show that for the steady-state GI/GI/1 queue, the

length of a busy period and the number of customers served in a busy period have finite moment

generating functions in neighborhoods of zero if and only if the service-time distribution does.

A GI/GI/1 queue has by definition an i.i.d. sequence of interarrival times {Tn : n ≥ 0}

and i.i.d. service times {Sn : n ≥ 0} with the two sequences independent. Tn, n ≥ 0, is the

length of time between the nth and (n+ 1)th customer. We assume that the system is empty

at time t = 0, at which point the initial customer arrives bringing service time S0. The busy

period B is then defined as the length of time until the system becomes idle again, and we

let K denote the number of customers served in the busy period. B is of length at least S0

and K is of length at least 1. With ∆n = Sn−1 − Tn−1, n ≥ 1, and ∆ = S − T denoting a

generic such difference, it is well known that K is the first strictly descending ladder epoch in

a random walk with increments ∆n (see, e.g., Chapter 9 in Wolff [1989]). Noting then that

E(es{S−T}+
) < ∞ if and only if E(esS) < ∞ (because S and T are assumed independent), an

application of Theorem 2.2 yields:

Proposition 4.1 For a GI/GI/1 queue with generic interarrival time T and generic service

time S: If E(S − T ) < 0 then there exists an s0 > 0 such that E(esK) < ∞, 0 < s ≤ s0 if and

only if there exists an s1 > 0 such that E(esS) < ∞, 0 < s ≤ s1.

Let the random variable B denote the duration of a generic busy period in a GI/GI/1

queue. We next prove:
1This is different from finite moment results for the steady-state delay, where finiteness of one higher moment

of the service time is needed (Kiefer and Wolfowitz [1956]).
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Proposition 4.2 For a GI/GI/1 queue with generic interarrival time T and generic service

time S, if E(S − T ) < 0 then there exists an s0 > 0 such that E(esB) < ∞, 0 < s ≤ s0 if and

only if there exists an s1 > 0 such that E(esS) < ∞, 0 < s ≤ s1.

Proof : Since

B =
K∑

j=1

Sj , (8)

B ≥ S1 and necessity follows. To prove sufficiency, observe that K is a stopping time w.r.t.

{(Sn, Tn)}. A decoupling inequality of De La Peña [1994], p.201, allows us to compare
∑K

j=1 Sj

with
∑K

j=1 S̃j, where {S̃n} has the same distribution as {Sn} but is taken as independent of K,

yielding

E

(
e
s
∑n

j=1
SjI{K≥j}

)
≤

√
E

(
e
2s

∑n

j=1
S̃jI{K≥j}

)
.

Since in each expectation above, the argument is nonnegative and nondecreasing in n, we can

apply the monotone convergence theorem (as n−→∞) to each side and conclude that

E(esB) ≤
√

E

(
e
2s

∑K

j=1
S̃j

)
=

√
E ({E(e2sS)}K),

where the equality comes from the independence of K and S̃j . By assumption, E(esS) < ∞

for all s in some interval 0 ≤ s ≤ s1 with s1 positive, and then it follows from basic properties

of moment generating functions that E(esS) is increasing and continuous on that interval.

Writing E(xK) = E(e(ln x)K), and appealing to Proposition 4.1 and the continuity of lnx in a

neighbourhood of x = 1, shows the existence of some sufficiently small positive s0 such that

E(esB) ≤
√

E ({E(e2sS)}K) < ∞, 0 < s ≤ s0.

Comments for Section 4

1. The special case of the M/GI/1 queue can also be handled by using a different approach,

i.e., the theory developed in Pakes [1996].
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2. Using the Cauchy-Schwarz inequality together with Equation (8) and Proposition 4.1,

one can obtain Proposition 4.2 more directly; however, the proof of the inequality of De

La Peña [1994] uses the Cauchy-Schwarz inequality anyway. Alternatively one can avoid

using Cauchy-Schwarz to prove Proposition 4.2 by taking advantage of the well-known

fact that

(ψ(t))−net
∑n

k=1
Sk , n ≥ 1,

forms a martingale, where ψ(t) def= E(etS) is the moment generating function of S.
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