
1

Efficient Algorithms for Analyzing Cascading
Failures in a Markovian Dependability Model

Mihir Sanghavi, Sashank Tadepalli, Timothy J. Boyle Jr., Matthew Downey and Marvin K. Nakayama

Abstract—We devise efficient algorithms to construct, evaluate, and approximate a Markovian dependability system with cascading
failures. The model, which was previously considered in [22], represents a cascading failure as a tree of components that
instantaneously and probabilistically fail. Constructing the Markov chain presents significant computational challenges because it
requires generating and evaluating all such possible trees, but the number of trees can grow exponentially in the size of the model. Our
new algorithm reduces runtimes by orders of magnitude compared to a previous method in [22]. Moreover, we propose some efficient
approximations based on the idea of most likely paths to failure to further substantially reduce the computation time by instead
constructing a model that uses only a subset of the trees. We also derive two new dependability measures related to the distribution of
the size of a cascade. We present numerical results demonstrating the effectiveness of our approaches. For a model of a large
cloud-computing system, our approximations reduce computation times by orders of magnitude with only a few percent error in the
computed dependability measures.

Index Terms—Availability, reliability modeling, Markov processes, trees, cascading failures.

F

Acronyms

BFH breadth-first-history data structure for
computing tree rate

CTMC continuous-time Markov chain
DCSUF distribution of cascade size until failure
DECaF Dependability Evaluator of Cascading Failures
DMT dependability-measure (computation) time
DTMC discrete-time Markov chain
FTT failure-transition (computation) time
MTTF mean time to failure
MTTFT MTTF (computation) time
NFTT non-failure-transition (computation) time
RTT rate threshold (computation) time
SSDCS steady-state distribution of cascade size
SSU steady-state unavailability

Notation

Q (infinitesimal) generator matrix of
complete CTMC including all trees

Ω set t1, 2, . . . , Nu of component types
N number of component types
ri redundancy of component type i P Ω
E set t0, 1, . . . , Lu of environments
νe (exponential) rate of leaving environment e P E
δe,e1 transition probability of moving from

environment e to e1

λi,e, µi,e failure and repair rates, resp., of a component
of type i in environment e

Γi (ordered) set of component types that can be
caused to fail immediately when a type-i

 The authors are affiliated with the Department of Computer
Science, New Jersey Institute of Technology, Newark, NJ, 07102.
E-mail: marvin@njit.edu

component fails
φi,j probability that a failure of a component

of type i causes a component of type j P Γi
to immediately fail.

Z CTMC of dependability system
S state space of CTMC Z
x� state with no comps failed and environment 0
Ψe,Ψr,Ψf sets of environment, repair, and failure

transitions, resp.
RpT q rate of tree T
ρ product of component-affected probabilities φi,j

of failed components in a tree
η product of complements of component-affected

probabilities of non-failing components in a tree
ui current number of up components of type i
U , F sets of up and failed states, resp., in S
Y embedded DTMC
P transition probability matrix of DTMC
PU submatrix of P corresponding to U
apx, yq number of components failing in transition px, yq
b sum of redundancies of all component types
θ steady-state distribution of cascade size (SSDCS)
χ distribution of cascade size until failure (DCSUF)
Q1 CTMC generator matrix when trees omitted
R1pT q approximate rate of tree T
λ̄i max failure rate of type i over all environments
di minimum number of components failed of

type i needed for system to be down
τh, τn, τr height, node, and rate thresholds, resp.
α one factor in rate threshold
β second factor in rate threshold
fi number of type-i comps failing in a transition

on approximate most likely path to failure
G weighted graph pV,E,W q used to build tree

to approximate most likely path to failure

2

P 1 approximate transition probability matrix
Q2 CTMC generator matrix when trees omitted

and corrected diagonal entries
εx difference in diagonal entry px, xq for Q and Q1

FS, MS front-end and middle-end servers, resp.
BS, LB back-end server and load balancer, resp.
HV hypervisor

1 INTRODUCTION

Modern society relies on complex stochastic systems
that operate in uncertain environments. These sys-

tems can suffer from cascading failures, in which the
failure of one part of the system causes other parts to
also fail. Examples include networks [13], electric power
grids [12], national infrastructures [27], and transportation
and communication systems [43]. Cascading failures in
these systems can be catastrophic, causing widespread
disruptions and damage.

Cascading failures occur in quite varied and compli-
cated ways. For example, complex interdependencies have
led to propagating failures in telecommunications networks
initiated by disasters [31] and across infrastructure systems
due to blackouts [29]. In a large study of cloud-system
outages, [19] determines that cascades often arise from
both hardware (e.g., failures corrupting data) and software
issues (“killer bugs . . . that simultaneously affect multiple
nodes or the entire cluster”). Moreover, [20] conducts an-
other analysis of many recent large-scale service outages in
cloud systems, and provides statistics on the frequency and
durations of the outages; [20] further identifies prominent
causes of cascades, including “cascading bugs” (“one bug
simultaneously affects many or all of the redundancies,
hence impossibility of failover”) and redirected traffic from
failed nodes overwhelming healthy ones. In addition, [18]
also discusses several major cloud outages, where 25-30%
of the machines went down.

In this paper we devise methods for analyzing and
approximating a dependability system with cascading fail-
ures. We model such a system as a continuous-time Markov
chain (CTMC; e.g., Chapter 5 of [35]), where the system
is a collection of components operating in a randomly
changing environment, and each component can fail and
be repaired with specified failure and repair rates. We
represent a cascading failure as a tree of probabilistically
failing components that fail instantaneously, where the
root of the tree is the failing component that triggers the
cascade. The root probabilistically causes components from
a specified set to fail immediately, with each component
in the set having its own component-affected probability.
Each of these secondary failures subsequently cause other
components to probabilistically fail immediately, and so on.
The rate of the resulting tree depends on the failure rate
of the root and the component-affected probabilities of the
failing and non-failing components in the cascade.

Analyzing such a Markovian dependability model with
cascading failures presents significant computational chal-
lenges. Even simply building the (infinitesimal) generator
matrix Q of the CTMC can be extremely time consum-
ing, and indeed, the amount of work required can grow
exponentially in the number of components in the system.

For example, consider a simple system with components
A, B and C, where the failure of any one component
can cause each of the others to fail immediately with
certain probabilities. For a CTMC transition px, yq in
which all three components fail instantaneously, there are
9 corresponding cascading-failure trees: A causing B to
fail, and then B causes C to fail; A causing B and C to
immediately fail;B causingA causingC to fail; and so on. If
the different components’ failure rates and the component-
affected probabilities differ, then each of the 9 trees has a
different rate, and computing the px, yq-entry in Q requires
summing the rates of all 9 trees. In general, the number
of trees corresponding to a single collection of components
instantaneously failing can grow exponentially in the size of
the set, with up to mm�1 different trees corresponding to a
collection of m components failing in a cascade in the worst
case [22]. Moreover, we need to examine each possible set of
components that can immediately fail, and the number of
such sets is exponential in the number of components in the
system. Thus, merely constructing the generator matrix Q
for the CTMC presents significant computational hurdles.

The paper [22] considers the same dependability model
and provides an algorithm to build Q, but that algorithm
often requires enormous runtimes to generate and solve
larger models. We now devise new algorithms, which are
significantly more efficient and can decrease the computa-
tional effort by orders of magnitude. We have developed
software implementing our techniques in Java, and we
call the package the Dependability Evaluator of Cascading
Failures (DECaF). DECaF reads in a user-created input file
specifying a model’s basic building blocks (e.g., component
types, redundancies, failure and repair rates, component-
affected probabilities), from which DECaF builds the
CTMC and solves it analytically for various dependability
measures.

Previous tree-generation algorithms exist (e.g., Section
2.3.4.4 of [24]) for enumerating all possible trees in which
there are no limitations on a node’s possible children. But
in our model, we restrict the children a particular node can
have, which is why [22] and the current paper needed to
develop new tree-generation algorithms.

In addition, because the time to construct Q inher-
ently grows exponentially because of the trees to build,
we also propose efficient approximations to reduce the
computational effort by generating only a subset of the
trees. Our method exploits the idea of the most likely
paths to failure, which has been previously utilized to
design provably effective quick simulation methods based
on importance sampling for analyzing systems with highly
reliable components, i.e., failure rates are much smaller
than repair rates [23], [33]. We apply the concept to try to
generate only the cascading-failure trees that arise on the
most likely paths to failure, because these paths typically
contribute most to the dependability measures computed,
and leave out those trees on significantly less likely paths.
The omission leads to an approximate generator matrix,
which incurs errors in the resulting dependability measures.
We explore the trade-off of the time savings from skipping
trees with the error in the dependability measures. We
also present numerical results demonstrating that for a
large model with significant amounts of cascading possible,

3

our techniques can reduce computation time by orders of
magnitude while incurring only small error.

The rest of the paper has the following layout. Section 2
reviews related work on dependability models, with a
particular focus on cascading failures and other component
interactions. We describe the mathematical model in Sec-
tion 3. Section 4 contains our new algorithms to build the
CTMC’s generator matrix and presents numerical results
comparing its runtime to that of the implementation in [22].
Section 4.1 discusses dependability measures, including two
new ones related to the cascade-size distribution. In Sec-
tion 5 we develop the approximations that reduce runtime
by instead building a model based on only a subset of the
trees, which introduces inaccuracies in the dependability
measures, and we explore the trade-off through experi-
ments. We apply our methods to a large cloud-computing
model in Section 6, and Section 7 provides some concluding
remarks. An appendix gives a detailed example showing
how our algorithms compute the rate of a tree.

2 RELATED WORK

As mentioned in Section 1, the model we analyze was
previously studied in [22], but our new algorithms can
solve large models with orders-of-magnitude reductions in
runtime. In addition, the current paper devises approxi-
mations to further substantially reduce computation times
while incurring only small error; [22] does not consider
such approximations. The SAVE (System Availability Es-
timator) package [4], developed at IBM, analyzes a similar
Markovian dependability model with cascading failures
having the restriction that there is only one level of cas-
cading; i.e., the root of a tree can cause other components
to immediately fail, but those subsequent failures cannot
cause further instantaneous failures. Allowing for more
than a single level of cascading makes the CTMC model
we consider tremendously more difficult to construct.

Other modeling techniques, such as fault trees, relia-
bility block diagrams (RBDs), and reliability graphs, have
also been applied to study dependability systems, but these
approaches do not allow for the level of details that are
possible with CTMCs [32]. However, a notable drawback of
CTMCs is the explosive growth in the size of the state
space, which increases exponentially in the number of
components in the system. Other packages for analyzing
Markovian dependability models include SHARPE [36],
SURF [11], SURF-2 [2], TANGRAM [3], and HIMAP [25].

Instead of assuming a CTMC model, some packages
work with other mathematical models, such as stochastic
Petri nets (SPNs), which are analyzed by SNPN [21].
OpenSESAME [39] also solves SPNs described via a high-
level modeling language, which allows for cascading failures
through failure dependency diagrams, but the complexity
of the cascades that can be handled is not as great as in our
model. The Galileo package [37] examines dynamic fault
trees (DFTs), which can model certain types of cascading
failures via functional dependency (FDEP) gates. One
limitation of the FDEP gate is that it appears to allow
for only deterministic cascading; i.e., the failure of one
component deterministically causes other components to
fail. Our framework permits probabilistic cascading, where

the failure of one component causes other components to
fail, each with a given probability. Moreover, modeling
a cascading failure with a DFT FDEP gate can lead to
an ambiguity in how a cascade progresses, complicating
the construction of a CTMC model of the dependability
system. For example, consider a system with components A
and B. Suppose that the failure of A can immediately cause
B to fail, and also that the failure of B can immediately
cause A to fail. Then in moving from a state with both
A and B up to a state with both failed, there are two
possible ways in which this can occur: A first fails, causing
B to fail immediately; and B first fails, causing A to fail
immediately. A CTMC model needs to explicitly consider
both possibilities, as is done in [22] and as we do in our
development, but the DFT does not. The paper [6] instead
uses an input/output interactive Markov chain (I/O-IMC)
to formalize DFT, producing a continuous-time Markov
decision process (CTMDP). An advantage of the approach
in [6] is that the resulting I/O-IMC may be smaller than the
corresponding CTMC. But analysis of a CTMDP provides
only bounds for dependability measures rather than their
exact values, as one can get by solving a CTMC.

The paper [26] considers Bayesian networks for studying
reliability systems. The software tool RADYBAN [30]
includes a generalization of the DFT FDEP gate called
a probabilistic dependency (PDEP) gate, which allows for
a type of probabilistic cascading failure that seems to differ
from ours. Specifically, suppose that when a component of
type A fails, it can cause a component of type B and a
component of type C to fail instantaneously. In the PDEP
gate, A causes B and C to both fail with a single specified
probability. In our framework, if A fails, the immediate
failures of B and C are independent events, each occurring
with its own probability. Also, RADYBAN converts a DFT
into a dynamic Bayesian network to compute reliability
measures.

Other mathematical modeling techniques that allow
some forms of cascading failures or component interactions
include Boolean driven Markov processes (BDMP) [7],
common-cause and common-mode failures [1], [8], and
coverage [15]. DRBD [41] uses dynamic reliability block
diagrams, which extend traditional RBDs to allow for
certain component interactions.

3 MODEL

We now describe the mathematical model. We work with
the stochastic model of [22], which considers the evolution
over time of a repairable dependability system operating in
a randomly changing environment. We start by explaining
the basic building blocks of the model, which we then use
to define a CTMC. The system consists of a collection
Ω � t1, 2, . . . , Nu of N 8 component types. Each
component type i P Ω has a redundancy 1 ¤ ri 8, and
the ri components of type i are assumed to be identical. A
component can be either operational (up) or failed (down).

Environments
The environment changes randomly within a set E �
t0, 1, 2, . . . , Lu. For example, the environment might rep-
resent the current load on the system, and if there are

4

two possible environments, 0 and 1, then 0 (resp., 1) may
represent a low (resp., high) load. Once the environment
enters e P E , it remains there for an exponentially dis-
tributed amount of time with rate νe ¡ 0, after which
the environment changes to e1 with probability δe,e1 ¥ 0,
where δe,e � 0 and

°
e1PE δe,e1 � 1. We assume the matrix

δ � pδe,e1 : e, e1 P Eq is irreducible; i.e., for each e, e1 P E ,
there exists k ¥ 1 and a sequence e0 � e, e1, e2, . . . , ek � e1

with each ei P E such that
±k�1
i�0 δei,ei�1

¡ 0. In other
words, it is possible to eventually move from environment
e to environment e1.

Failure and Repair Rates
The components in the system can randomly fail and then
be repaired. When the environment is e P E , the failure rate
and repair rate of each component of type i are λi,e ¡ 0
and µi,e ¡ 0, respectively. If there is only one environment
e, i.e., |E | � 1, then the lifetimes and repair times of
components of type i are exponentially distributed with
rates λi,0 and µi,0, respectively. Exponential distributions
are frequently used to model lifetimes of hardware and
software components; e.g., see [40]. We assume that all
operating components of a type i have the same failure rate
λi,e in environment e. Thus, in a system with redundancies
for which not all components of a type are needed for
operation of the system, the extras are “hot spares” because
they fail at the same rate as the main components.

Cascading Failures
Our model includes probabilistic, instantaneous cascading
failures occurring as follows. The ordered set Γi specifies the
types of components that a failure of a type-i component
can cause to immediately fail. When a component of type
i fails, it directly causes a single component of type j P Γi
to fail immediately with probability φi,j ¡ 0 (if there is
at least one component of type j up), and we call φi,j
a “component-affected probability”. The events that the
individual components of types j P Γi fail immediately are
statistically independent. Thus, when a component of type
i fails, there are statistically independent “coin flips” to
determine which components in Γi fail, where the coin flip
for j P Γi comes up heads (one component of type j fails)
with probability φi,j and tails (no component of type j
fails) with probability 1� φi,j .

A cascading failure can continue as long as there are
still components operational in the system. For example,
the failure of a component of type imay cause a component
of type j to fail (with probability φi,j), which in turn makes
a component of type k fail (with probability φj,k), and so
on. As noted in [22], the SAVE package [4] allows for only
one level of cascading, but the unlimited cascading in our
model makes it significantly more difficult to analyze.

We can think of a cascading failure as a tree of instanta-
neously failing components. The root is the component,
say of type i, whose failure triggers the cascade. The
root’s children, which are from Γi, are those components
whose immediate failures were directly caused by the root’s
failure. At any non-root level of the tree, these components’
failures were directly caused by the failures of their parents
at the previous level. Although all the failing components in
a cascade fail at the same time, we need to specify an order

in which they fail for our problem to be well-defined, as we
explain later in Section 3.2. We assume the components in
a tree fail in breadth-first order.

Repair Discipline
There is a single repairman who fixes failed components
using a processor-sharing discipline. Specifically, if the
current environment is e and there is only one failed
component, which is of type i, then the repairman fixes that
component at rate µi,e. If there are b components currently
failed, then the repairman allocates 1{b of his effort to
each failed component, so a failed component of type i is
repaired at rate µi,e{b. (While our model assumes a single
repairman, we can easily extend the model to allow for
multiple repairmen. On the other hand, instead assuming
a first-come-first-served repair discipline would require the
Markov chain (see Section 3.1) to keep track of the order
in which components fail, leading to a much larger state
space.)

3.1 Markov Chain
We want to analyze the behavior of the system as it
evolves over time. Because of the processor-sharing repair
discipline and the exponential rates for the event lifetimes,
it will suffice to define the state of the system as a
vector containing the number of failed components of each
type and the current environment. Thus, let S � tx �
px1, x2, . . . , xN , xN�1q : 0 ¤ xi ¤ ri @i P Ω, xN�1 P Eu
be the state space, where xi is the number of failed com-
ponents of type i in state x and xN�1 is the environment.
Let Z � rZptq : t ¥ 0s be the CTMC living on S keeping
track of the current state of the system. (If we had instead
assumed a first-come-first-served repair discipline, then the
state space would need to be augmented to keep track of the
order in which the current set of down components failed.)
We assume that Z starts in environment 0 P E with no
components failed, i.e., state x� � p0, 0, . . . , 0q. As noted
in [22] the CTMC is irreducible and positive recurrent.

Generator Matrix
We now describe the CTMC’s (infinitesimal) generator
matrix Q � pQpx, yq : x, y P Sq, where Qpx, yq is the rate
that the CTMCZ moves from state x � px1, . . . , xN , xN�1q
to state y � py1, . . . , yN , yN�1q. If yi � xi for each i P Ω and
yN�1 � xN�1, then px, yq is an “environment transition”
with Qpx, yq � νxN�1

δxN�1,yN�1
. If yi � xi � 1 for one

i P Ω, yj � xj for each j P Ω�tiu, and yN�1 � xN�1, then
px, yq is a “repair transition” corresponding to the repair of
a component of type i, and Qpx, yq � xiµi,xN�1

{p
°
jPΩ xjq.

If yi ¥ xi for all i P Ω with yj ¡ xj for some j P Ω and
yN�1 � xN�1, then px, yq is a “failure transition” in which
yi � xi components of type i fail, i P Ω. Any other px, yq
with x � y not falling into one of the above three categories
is not possible, soQpx, yq � 0. Let Ψe, Ψr and Ψf be the sets
of environment, repair, and failure transitions, respectively.
Each diagonal entry satisfies Qpx, xq � �

°
y�xQpx, yq, as

required for a CTMC; e.g., see Chapter 5 of [35].
We now determine the rateQpx, yq of a failure transition

px, yq. First consider the case when cascading failures are
not possible, i.e., Γi � H for each type i. Then the only

5

possible failure transitions px, yq have yi � xi � 1 for one
i P Ω, yj � xj for each j P Ω� tiu, and yN�1 � xN�1, and
this transition corresponds to a single component of type i
failing. Then Qpx, yq � pri � xiqλi,xN�1

.

Generator Matrix When Cascading Failures Possible
Cascading failures complicate the computation of Qpx, yq
for a failure transition px, yq. As mentioned before, we
model a cascading failure as a tree T built from the multiset
B of instantaneously failing components, where B has
y` � x` ¥ 0 failing components of type `, ` P Ω. A tree
T in a transition starting from a state x has a rate

RpT q � RpT, xq � pri � xiqλi,xN�1
ρ η, (1)

where

 pri � xiqλi,xN�1
is the failure rate of the root (as-

sumed here to be of type i),

 ρ � ρpT q is the product of the φj,k terms for a parent

node of type j immediately causing a child of type
k P Γj to fail in the tree T , and

 η � ηpT, xq is the product of 1 � φj,k terms from
a node of type j not causing a component of type
k P Γj to fail when there are type-k components up.

We provide more details in Section 3.2.
A difficulty arises because there can be many such trees

corresponding to the multiset B of components failing in
px, yq, and calculating Qpx, yq requires summing RpT q over
all possible trees T that can be constructed from B. The
number of such trees grows exponentially in the number of
failing components in the cascade; see [22].

Our model assumes that the component-affected sets
Γi and the component-affected probabilities φi,j do not
depend on the current state x of the system. This may limit
our model’s appropriateness for certain application do-
mains. But the assumption can greatly reduce the amount
of information that the user needs to specify in building a
model. Because the state space S may be enormous, requir-
ing the user to instead specify state-dependent Γipxq and
φi,jpxq for each state x P S quickly becomes intractable. A
simplification may be to specify particular functional forms
for Γipxq and φi,jpxq as a function of the state x, but this
may also be difficult to do.

3.2 Example of Computing a Tree’s Rate
We now provide an example of computing the rate RpT q of
a tree T . Let Ω � tA,B,Cu, with redundancies rA � rB �
rC � 4. Also, define the component-affected sets ΓA �
tB,Cu, ΓB � tA,Cu, and ΓC � tA,Bu. Suppose that the
set of environments is E � t0u, and consider the failure
transition px, yq with x � p2, 2, 3, 0q and y � p4, 4, 4, 0q.
Thus, px, yq corresponds to 2 components each of types A
and B failing and a single component of type C failing. One
possible tree T corresponding to px, yq is shown in Figure 1.
We assume the nodes in T fail in breadth-first order.

The nodes depicted as double circles form the tree
of failing components. The dashed circles correspond to
components in some Γi but did not fail. A component type
j in some Γi could have not failed because either there
are components of type j up at this point but its coin flip

CS 341: Foundations of Computer Science II
Prof. Marvin Nakayama

Homework 2 Solutions

A-1

B-2 C-3

A-4 C-5

A-6 B-7

B-8 C-9 A-10 C-11

There are simpler DFAs that recognize this language. Can you come up with one with
only 4 states?

A DFA that recognizes the language B = {w ∈ Σ∗ | na(w) mod 3 = 1 } is

q1

q2

q3

a

a

a

b

b

b

1

Fig. 1: An example of a supertree.

came up tails (with probability 1 � φi,j), or there were no
more components of type j up at this point. Each node has
a label of the form i-ID, where i denotes the type of the
component for that node, and ID is the position of the node
in a breadth-first ordering of all the nodes (dashed circles
and double circles). We include the IDs to simplify the
discussion here. We call the tree of all nodes the “supertree”
corresponding to the tree T of failing nodes.

The supertree is used to compute RpT q of T as follows.
Let ui be the number of components of type i currently up
in the system. Because the root is a component of type A
and there are uA � rA � xA � 2 components of type A at
the start of the transition px, yq, the rate of the trigger of
the cascade is 2λA,0. The root then causes a component of
type B to fail at node ID 2, and this failure occurs with
probability φA,B . (The failure of A at ID 1 can cause only
zero or one B to fail, with respective probabilities 1�φA,B
and φA,B , even if there is more than one B up at that
point.) The node at ID 3 did not fail, and at this point
there are uC � rC�xC � 1 ¡ 0 components of type C still
up, so this non-failure occurs with probability 1 � φA,C .
Instead of stepping through the rest of the supertree one
node at a time, we note that RpT q includes the product of
all the φi,j terms for a type-i parent with a type-j child
when both are double circles. Thus, in (1) we have ρ �
φA,B φB,C φC,A φC,B from IDs 2, 5, 6, and 7, respectively.

We observe the following when calculating the product
η in (1):

 1 � φi,j factors are included if and only if there are
still components of type j up at that point in the
breadth-first traversal through the tree.

 Each time we encounter a node of type j that
has failed in the breadth-first traversal of T , we
decrement uj by 1.

Keeping these observations in mind, we now calculate η.
For component type A, we have uA � 2 before the cascade
begins. As we do a breadth-first traversal through T , at
ID 1, it decrements to uA � 1. We see that uA ¡ 0 until
ID 6, so η includes factor 1 � φB,A from ID 4, but η does
not include the factor 1 � φB,A at ID 10 as type A has
been exhausted before that point. For component type B,
we have uB � rB � xB � 2 before we traverse through T .
Because components of typeB are exhausted at ID 7, we do
not include the factor 1�φA,B at ID 8 in η. For component
type C, we see that uC � 1 before we traverse through

6

T , and uC � 0 at ID 5. Hence, the only contribution to η
from a component of type C not failing is 1 � φA,C from
ID 3; we do not include the factors 1 � φA,C and 1 � φB,C
from IDs 9 and 11, respectively. Taking the product over all
component types yields η � p1�φA,Cq p1�φB,Aq from IDs 3
and 4. Therefore, RpT q is 2λA,0 ρ η. In our implementation,
we calculate η through a data structure called the breadth-
first history (BFH), which is described later in Section 4.

We previously stated that the order in which the com-
ponents fail in a tree must be specified for the tree’s rate
to be well defined. To see why, suppose instead that the
components in Figure 1 fail in depth-first order. The depth-
first traversal of T is A-1, B-2, A-4, C-5, A-6, B-8, C-9,
B-7, A-10, C-11, C-3. Zero time elapses for the entire tree
to occur, but the depth-first traversal specifies the ordering
of the nodes. Initially, the number of components up of each
type are uA � 2, uB � 2 and uC � 1, as before. In this
traversal a component of type C first fails at ID 5, which
makes uC � 0. Thus, η for the depth-first traversal does not
include the factors 1�φA,C , 1�φB,C and 1�φA,C from the
subsequent type-C nodes at IDs 9, 11 and 3, respectively. In
contrast, the breadth-first traversal includes one 1 � φA,C
factor at ID 3. Moreover, the depth-first traversal also
includes a factor 1� φA,B at ID 8, which is not included in
the breadth-first traversal. Overall, the depth-first traversal
has η � p1�φB,Aqp1�φA,Bq from IDs 4 and 8, as opposed
to η � p1� φA,Cqp1� φB,Aq for the breadth-first traversal.
Thus, even though the components in a cascading tree fail
instantaneously, this example demonstrates the necessity
of defining an order in which they fail for the tree rate (and
the CTMC) to be well-defined, as η (but not ρ) depends on
the order.

4 ALGORITHMS TO CONSTRUCT THE EXACT GEN-
ERATOR MATRIX

We now provide efficient algorithms for generating all pos-
sible trees and constructing the exact generator matrixQ of
the CTMC. A tree corresponds to a multiset of particular
components failing, and cascading failures starting from
different states can have the same multiset of components
failing. Hence, a particular tree may correspond to several
different transitions px, yq. Our algorithm generates each
possible tree only once and determines all the transitions
to which this tree corresponds. The approach avoids gener-
ating the same tree numerous times for each corresponding
transition, as was originally done in [22]. Moreover, rather
than building each new tree from scratch, as was done in
[22], our current algorithm builds larger trees from smaller
ones already considered, leading to substantial additional
savings in the overall computational effort.

Computing the rate (1) of a given tree depends on
the state from which the cascading failure began and the
multiset of components that fail in the cascade. We do
not actually construct the supertree in our algorithm to
compute a tree’s rate, but instead build a data structure
called a breadth-first history to keep track of the infor-
mation necessary to compute η in (1). The breadth-first
history concisely recounts the creation of the tree and thus
allows us to obtain η without having to build supertrees per
transition as was done in [22]. All of the computations are

done in Algorithms 1 (SeedTrees), 2 (AddTreeLevel)
and 3 (ComputeTreeRate), which we describe below. In
the Appendix we re-examine the example tree from Sec-
tion 3.2 to show how the breadth-first history is constructed
and used to evaluate η.

SeedTrees starts the tree generation and initial-
izes the necessary data structures for AddTreeLevel.
AddTreeLevel introduces a new level to an existing tree
in a recursive fashion, updates ρ in (1) to include the
component-affected probabilities of failed components, and
builds the tree’s breadth-first history. ComputeTreeRate
calculates the rate of a completed tree for all the transitions
it corresponds to using ρ and η computed from the breadth-
first history populated in AddTreeLevel. Later references
to line numbers in the algorithms are given within angled
brackets x y. Section 4.2 will work through an example,
including constructing BFH, using Algorithms 1 and 2.

Algorithm 1: SeedTrees

Input: Γ
// an array of ordered sets that

describes which components can cause
which other components to fail

1 for root.type P Ω do
2 level = [];

// Dynamic array of failed components
at tree’s current bottom level;
initially empty

3 nFailed = r0, 0, . . . , 0s;
// Array that counts failed

components of each type in the
tree

4 BFH = rp q, p q, . . . , p qs;
// Array of linked lists that keeps a

history of parent component types
in breadth-first order; BFH is
indexed by component types; each
linked list is initially empty

5 add root.type to level;
6 nFailed [root.type] = 1;
7 add @ to BFH [root.type];

// Signifies one component of type
root.type has failed

8 ρ = 1;
// initialize product of

component-affected probabilities
9 if ΓnFailedrroot.types == H then

10 ComputeTreeRate(nFailed,BFH,ρ,root.type);

11 else
12 AddTreeLevel(level,nFailed,BFH,ρ,root.type);

4.1 Dependability Measures
Once the generator matrix Q has been constructed, we
can use it to compute various dependability measures. We
first partition the state space S � U Y F , where U (resp.,
F) is the set of states for which the system is operational

7

Algorithm 2: AddTreeLevel

Input: level, nFailed, BFH, ρ, root.type
// where level is the current level of

failed components, nFailed counts
failed components by type in the
tree, BFH is breadth-first history, ρ
is a cumulative product of
component-affected probabilities,
root.type is the root component’s type
in the current tree

1 nextLevelPossibilities =
|level|�
i� 1:

Γlevelris�H

PpΓlevelrisq;

// Builds all possibilities for the next
level (given the current level) by
taking a Cartesian product of the
power sets P of non-empty Γ sets of
failed nodes in the current level

2 for oneNextLevelPossibility P nextLevelPossibilities do
3 addedAChildFlag = False;
4 validTree = True;
5 for parent P level do
6 for i P Γparent.type do
7 if D child P oneNextLevelPossibility :

child.type == i && child.parentID ==
parent.ID && validTree then

8 addedAChildFlag = True;
9 validTree = True;

10 if nFailedrchild.types �� rchild.type then
// Invalid tree, it requires
more components of type
child.type than available

11 validTree = False;

12 if validTree then
13 nFailed [child.type] = nFailed

[child.type] + 1;
14 add @ to BFH[child.type];

// @ denotes a component of
type child.type has failed

15 ρ � ρ � φparent.type, child.type;
// Update rate with

appropriate
component-affected
probability

16 else if validTree then
17 add parent.type to BFH[child.type];

// One component of type
child.type has not failed,
but was present in Γparent.type

18 if validTree then
19 if addedAChildFlag then // Tree can be

grown further
20 AddTreeLevel(oneNextLevelPossibility,

nFailed, BFH, ρ, root.type);

21 else // Current tree is complete
because it cannot be grown further

22 ComputeTreeRate(nFailed, BFH, ρ,
root.type);

Algorithm 3: ComputeTreeRate

Input: nFailed, BFH, ρ, root.type
// where nFailed is the number of failed

components of each type in the tree,
BFH is breadth-first history, ρ is a
cumulative product of
component-affected probabilities,
root.type is the root’s type in the
tree

1 for x1 P S1 do
2 η � 1;

// Cumulative product of complement
probabilities of components that
could have failed but did not

3 for i P Ω do
4 ui � ri � x1i;
5 for parent.type P BFH[i] do
6 if parent.type == @ then
7 ui � ui � 1;

8 else if ui ¡ 0 then
9 η � η � p1� φparent.type, iq;

// need ui ¡ 0 or else there
cannot be any more failed
nodes of type i

10 for e P E do
11 x � px1, eq;
12 y � px1 � nFailed, eq;
13 if y is a valid state then
14 Qpx, yq �

prroot.type � x[root.type]q � λroot.type,e � ρ � η;

(resp., failed). We assume that the initial state x� P U
and that F � H. The partition is determined by a model
specification giving conditions under which the system is
considered to be operational; e.g., at least υi components
of type i are up for each type i P Ω.

4.1.1 Steady-State Unavailability
One dependability measure is the steady-state unavailabil-
ity (SSU), which we define as follows. Let π � pπpxq : x P
Sq be the nonnegative row vector defined such that πQ � 0
and πe � 0, where e is the column vector of all 1s; i.e., π
is the steady-state probability vector of the CTMC; e.g.,
see Chapter 5 of [35]. The vector π exists and is unique
because, as shown in [22], our CTMC is irreducible and
positive recurrent. We then define the SSU as

°
xPF πpxq,

which is the long-run fraction of time the CTMC is in F .

4.1.2 Mean Time to Failure
Another dependability measure is the mean time to failure
(MTTF), which can be defined as follows. Define TF �
inftt ¡ 0 : Zptq P F u, so the MTTF is ErTF |Zp0q � x� s,
where E denotes statistical expectation. We can com-
pute the MTTF in terms of Q as follows. Define the
transition probability matrix P � pP px, yq : x, y P Sq
of the embedded discrete-time Markov chain (DTMC)
Y � rYn : n � 0, 1, 2, . . .s with P px, yq � �Qpx, yq{Qpx, xq

8

for x � y, and P px, xq � 0 (Chapter 5 of [35]). Also define
the |U |�|U | matrix PU � pP px, yq : x, y P Uq and |U |�|U |
identity matrix I, and let h � phpxq : x P Uq be the column
vector such that hpxq � �1{Qpx, xq, which is the mean
holding time that the CTMC spends in each visit to state
x. Because Y is irreducible, |S| 8, and F � H, we have
that I � PU is nonsingular. Then let m � pI � PU q

�1h,
where pI�PU q

�1 is known as the “fundamental matrix” of
the DTMC, and the MTTF equals mpx�q; e.g., see Section
7.9 of [38].

4.1.3 Steady-State Distribution of Cascade Size
We introduce a new dependability measure, the “steady-
state distribution of cascade size” (SSDCS). To define the
SSDCS, recall that Ψf is the set of failure transitions.
For px, yq P Ψf, let apx, yq �

°N
i�1pyi � xiq be the

total number of components (of all types) that fail in
transition px, yq. Also, let apx, yq � 0 for a non-failure
transition px, yq R Ψf. The maximum number of compo-
nents failing in a cascade is b �

°N
i�1 ri. For each integer

1 ¤ l ¤ b, let Ψfplq � tpx, yq P Ψf : apx, yq � lu,
which is the set of failure transitions in which exactly
l components fail. Let S̄ � tx � px1, . . . , xN , xN�1q P
S : xi ri for some i � 1, 2, . . . , Nu, which is the set
of states having at least one nonfailed component. Define
ξ � pξpxq : x P Sq as the nonnegative row vector with
ξpxq � πpxqQpx, xq{r

°
yPS πpyqQpy, yqs for each x P S, so ξ

is the steady-state distribution of the embedded DTMC Y ;
i.e., ξP � ξ, ξe � 1, and ξ ¥ 0. Then we have the following:

Theorem 1. The SSDCS θ � pθplq : 1 ¤ l ¤ bq satisfies

θplq �
1°

wPS̄ ξpwq

¸
xPS̄

ξpxq

°
px,yqPΨfplq

P px, yq°
px,zqPΨf

P px, zq
. (2)

Proof. Let H be a random variable denoting the number
of failing components in a cascade in steady state. In any
state x P S such that xi � ri for all i � 1, 2, . . . , N ,
no components are operational, so there cannot be any
cascades out of such a state x. Thus, a cascade (possibly
with just a single component) can only start from a
state in S̄. Define the row vector ξ̄ � pξ̄pxq : x P S̄q
with ξ̄pxq � ξpxq{r

°
yPS̄ ξpyqs, which is the steady-state

distribution of the DTMC conditioned to lie in S̄. Let Pξ̄ be
the conditional probability measure, given that the initial
state Y0 of the DTMC is chosen using distribution ξ̄. For
1 ¤ l ¤ b, we have that θplq � P pH � lq satisfies

θplq � Pξ̄ppY0, Y1q P Ψfplq | pY0, Y1q P Ψfq

�
¸
xPS̄

ξ̄pxq

°
px,yqPΨfplq

P px, yq°
px,zqPΨf

P px, zq
, (3)

from which (2) follows.

4.1.4 Distribution of Cascade Size Until Failure
We next introduce another new dependability measure χ �
pχplq : 1 ¤ l ¤ bq, which we call the “distribution of cascade
size until failure” (DCSUF). For 1 ¤ l ¤ b, let Jl be the
number of cascades of size exactly l until the system first
fails. Specifically, let T 1

F � inftn ¥ 0 : Yn P F u, which is
the number of transitions that the DTMC Y takes to first

enter F . Let Ip�q denote the indicator function, which takes
on value 1 (resp., 0) when its argument is true (resp., false).
For 1 ¤ l ¤ b, we have that

Jl �

T 1F̧

n�1

IpapYn�1, Ynq � lq.

Also, let J �
°b
l�1 Jl be the total number of cascades

(of any size) until the system first fails. We then define the
distribution χ of cascade size until failure, given the DTMC
starts in state x�, with

χplq �
ErJl |Y0 � x�s

ErJ |Y0 � x�s
. (4)

Thus, χplq is the fraction of the expected number of
cascades until failure that have size exactly l.

We next derive a computable expression for χplq. Let

ζlpxq � E rJl | Y0 � x s , (5)

which is the conditional expectation of Jl, given the DTMC
starts in state x P U . Then we have the following result.

Theorem 2. The DCSUF χ � pχplq : 1 ¤ l ¤ bq has

χplq �
ζlpx�q°b
i�1 ζipx�q

, (6)

where ζl � pζlpxq : x P Uq satisfies

ζl � pI � PU q
�1κl, (7)

with κl � pκlpxq : x P Uq and

κlpxq �
¸
zPS:

px,zqPΨfplq

P px, zq. (8)

Proof. By conditioning on the first step of the DTMC Y ,
we can express (5) as

ζlpxq �
¸
yPU

P px, yq rIpapx, yq � lq � ζlpyqs

�
¸
zPF

P px, zqIpapx, zq � lq

�
¸
yPU

P px, yqζlpyq �
¸
zPS

P px, zqIpapx, zq � lq (9)

because S � UYF . Note that κlpxq in (8) is the probability
of having a cascade of exactly size l from state x, which we
can write as

κlpxq �
¸
zPS

P px, zqIpapx, zq � lq.

Then we can express (9) in matrix form as ζl � PUζl � κl,
or equivalently, pI � PU qζl � κl. We previously argued
(Section 4.1.2) that I � PU is nonsingular, so (7) holds.
Thus, in (4), the numerator is ErJl |Y0 � x�s � ζlpx�q,
and the denominator is

ErJ |Y0 � x�s �
b̧

l�1

ErJl |Y0 � x�s �
b̧

l�1

ζlpx�q.

Therefore, we obtain (6) to complete the proof.

9

4.2 Example Demonstrating Tree Generation

We now provide an example illustrating our tree-generation
algorithms. We consider a system with Ω � tA,B,Cu, so
there are N � 3 types of components, with redundancies
rA � rB � 4, and rC � 1. There is a single environment,
i.e., E � t0u, so the system has prA � 1qprB � 1qprC �
1q|E | � 50 states. The component repair rates are µA,0 �
µB,0 � µC,0 � 1, and components B and C have failure
rates λB,0 � 2E�4 and λC,0 � 1E�10. For cascading, the
component-affected sets are ΓA � tB,Cu, ΓB � tAu, ΓC �
H, and φA,C � 1E�08. For the other parameters (λA,0,
φA,B , and φB,A), we considered three versions of the model,
called Cases 1–3, that differ in their values, which are given
at the top of Table 1. We chose the cases’ parameter values
to illustrate other aspects of our approaches, as we will see
later in Section 5.4.

The structure of the trees built by Algorithms 1 and 2
is described in Table 1, between the two sets of horizontal
double lines and to the left of the vertical double lines. (The
other parts of the table will be explained in Section 5.4.)
Each row with depth equal to 0 corresponds to a new
iteration of the loop in line x1y of Algorithm 1, which
starts building a new tree with a particular root type. After
initializing the data structures in lines x2y–x8y, Algorithm 1
then calls Algorithm 2 in x12y to further build the tree.
Each row of Table 1 represents one iteration of the outer
loop (line x2y) of Algorithm 2, which recursively constructs
trees by adding a new level onto a previously built tree,
increasing the depth by 1. For each tree, the column labeled
“Nodes” in the table gives the nodes corresponding to
the components belonging to the component-affected sets
of the failed nodes from the previous level. Nodes that
represent components that have not failed, but belong to
the component-affected set Γi of a node of type i in the
previous level, are prefaced with “-”. For each tree, there
is one additional hidden level one level deeper where no
components have failed. These levels are not depicted in
the table, and do not contribute to the structure of the
failed components in each tree. But they are important for
calculating the tree’s exact rate in (1) because they may
contribute 1�φi,j factors to η from non-failing components.
As previously noted in the first paragraph of Section 4,
each constructed tree may correspond to several px, yq
transitions of the CTMC, and the column “Trees Eval.”
in Table 1 gives the number of transitions in which each
tree is used. For example, tree t � 2 corresponds to 20
different transitions in the CTMC’s generator matrix.

A tree with depth 0 is a tree with a single node, and
it is not built from any previous tree. The node in such a
tree will be the root for any tree that is built from it. For
example, in Algorithm 1, the first iteration of the loop at
line x1y starts building a tree with root of type A, which
is at depth 0 in the tree; x3y and x4y initialize nFailedris �
0 and BFHris � pq for each component type i; x6y sets
nFailedrAs � 1; x7y sets BFHrAs � p@q to denote a type-
A component failed; x8y initializes ρ � 1; and x12y calls
AddTreeLevel to try to further grow the tree.

Then in Algorithm 2, line x1y builds all subsets of ΓA �
tB,Cu as the possible children (at depth 1) of the root,
where each subset is considered separately in the loop at

Case 1 Case 2 Case 3
λA,0 0.002 0.002 0.02
φA,B 0.06 0.042 0.0042
φB,A 0.08 0.088 0.0088

τr 4.82E-13 1.39E-08 2.00E-02

Tree Trees
t Depth Nodes Eval. R1pTtq R1pTtq R1pTtq
1 0 A 40 2.00E-03* 2.00E-03* 2.00E-02*
2 1 -B, C 20 2.00E-11* 2.00E-11 2.00E-10
3 1 B, -C 32 1.20E-04* 8.40E-05* 8.40E-05
4 2 A 24 9.60E-06* 7.39E-06* 7.39E-07
5 3 -B, C 12 9.60E-14 7.39E-14 7.39E-15
6 3 B, -C 18 5.76E-07* 3.10E-07* 3.10E-09
7 4 A 12 4.61E-08* 2.73E-08* 2.73E-11
8 5 -B, C 6 4.61E-16 2.73E-16 2.73E-19
9 5 B, -C 8 2.76E-09* 1.15E-09 1.15E-13

10 6 A 4 2.21E-10* 1.01E-10 1.01E-15
11 7 -B, C 2 2.21E-18 1.01E-18 1.01E-23
12 7 B, -C 2 1.33E-11* 4.24E-12 4.24E-18
13 7 B, C 1 1.33E-19 4.24E-20 4.24E-26
14 5 B, C 4 2.76E-17 1.15E-17 1.15E-21
15 6 A 2 2.21E-18 1.01E-18 1.01E-23
16 7 B, -C 1 1.33E-19 4.24E-20 4.24E-26
17 3 B, C 9 5.76E-15 3.10E-15 3.10E-17
18 4 A 6 4.61E-16 2.73E-16 2.73E-19
19 5 B, -C 4 2.76E-17 1.15E-17 1.15E-21
20 6 A 2 2.21E-18 1.01E-18 1.01E-23
21 7 B, -C 1 1.33E-19 4.24E-20 4.24E-26
22 1 B, C 16 1.20E-12* 8.40E-13 8.40E-13
23 2 A 12 9.60E-14 7.39E-14 7.39E-15
24 3 B, -C 9 5.76E-15 3.10E-15 3.10E-17
25 4 A 6 4.61E-16 2.73E-16 2.73E-19
26 5 B, -C 4 2.76E-17 1.15E-17 1.15E-21
27 6 A 2 2.21E-18 1.01E-18 1.01E-23
28 7 B, -C 1 1.33E-19 4.24E-20 4.24E-26
29 0 B 40 2.00E-04* 2.00E-04* 2.00E-04
30 1 A 32 1.60E-05* 1.76E-05* 1.76E-06
31 2 -B, C 16 1.60E-13 1.76E-13 1.76E-14
32 2 B, -C 24 9.60E-07* 7.39E-07* 7.39E-09
33 3 A 18 7.68E-08* 6.50E-08* 6.50E-11
34 4 -B, C 9 7.68E-16 6.50E-16 6.50E-19
35 4 B, -C 12 4.61E-09* 2.73E-09 2.73E-13
36 5 A 8 3.69E-10* 2.40E-10 2.40E-15
37 6 -B, C 4 3.69E-18 2.40E-18 2.40E-23
38 6 B, -C 4 2.21E-11* 1.01E-11 1.01E-17
39 7 A 2 1.77E-12* 8.89E-13 8.89E-20
40 8 -B, C 1 1.77E-20 8.89E-21 8.89E-28
41 6 B, C 2 2.21E-19 1.01E-19 1.01E-25
42 7 A 1 1.77E-20 8.89E-21 8.89E-28
43 4 B, C 6 4.61E-17 2.73E-17 2.73E-21
44 5 A 4 3.69E-18 2.40E-18 2.40E-23
45 6 B, -C 2 2.21E-19 1.01E-19 1.01E-25
46 7 A 1 1.77E-20 8.89E-21 8.89E-28
47 2 B, C 12 9.60E-15 7.39E-15 7.39E-17
48 3 A 9 7.68E-16 6.50E-16 6.50E-19
49 4 B, -C 6 4.61E-17 2.73E-17 2.73E-21
50 5 A 4 3.69E-18 2.40E-18 2.40E-23
51 6 B, -C 2 2.21E-19 1.01E-19 1.01E-25
52 7 A 1 1.77E-20 8.89E-21 8.89E-28
53 0 C 25 1.00E-10* 1.00E-10 1.00E-10

MTTFpQq 1.51E+08 2.28E+08 2.84E+05
MTTFpQ1q{MTTFpQq 1.000214 1.189983 1.032338
MTTFpQ2q{MTTFpQq 1.000000 1.138655 0.936967

SSUpQq 8.93E-09 5.73E-09 3.61E-06
SSUpQq{SSUpQ1q 1.000367 1.231557 1.037857
SSUpQq{SSUpQ2q 1.000049 1.173329 0.941876

Trees: unique (eval.) 19 (341) 9 (240) 1 (40)

TABLE 1: Example with three cases to illustrate the exact
tree-generation methods in Algorithms 1 and 2, and the
computed dependability measures for the exact generator
matrix Q. Other aspects of the table, including τr, R

1pTtq,
Q1, and Q2, will be explained later in Section 5.4.

10

x2y. In Table 1, the subset H (resp., tCu, tBu, and tB,Cu)
of ΓA corresponds to row t � 1 (resp., 2, 3, and 22). We
next explain how Algorithm 2 handles each of the subsets
of ΓA to be added at depth 1, including updating BFH.

 For the subset H � ΓA, the first iteration of the
loop in line x6y considers B P ΓA, and x17y updates
BFHrBs � pAq to denote that a type-B component
(with parent type A) did not fail. The next iteration
of the loop in x6y considersC P ΓA, and x17y updates
BFHrCs � pAq to denote that a type-C component
(with parent type A) did not fail. As this tree cannot
be further grown, x22y calls ComputeTreeRate.

 For the subset tCu � ΓA, the first iteration of the
loop in x6y considers B P ΓA, and x17y updates
BFHrBs � pAq to denote that a type-B component
(with parent type A) did not fail. The next iteration
of the loop in x6y considers C P ΓA. Because a type-
C component fails (at depth 1) in the current sub-
set, x13y increments nFailedrCs to 1, x14y updates
BFHrCs � p@q to denote that a type-C component
failed, and x15y updates ρ by multiplying it by φA,C .

 The subset tBu � ΓA is handled similarly, but
instead with nFailedrBs incremented to 1, BFHrBs �
p@q, ρ is multiplied by φA,B , and BFHrCs � pAq.

 For the subset tB,Cu � ΓA, we instead have
both nFailedrBs and nFailedrCs incremented to 1,
BFHrBs � p@q, BFHrCs � p@q, and ρ multiplied by
φA,BφA,C .

Because at least one node was added (at depth 1) to the
tree for each of the last three subsets, line x20y recursively
calls AddTreeLevel to try to further grow the tree for
each of those subsets.

We next continue to depth 2 in Algorithm 2 for each of
the last three ΓA subsets at depth 1 considered above.

 For the subset tCu from depth 1, we have that ΓC �
H. Thus, this tree cannot be grown any further, and
x22y calls ComputeTreeRate.

 For the subset tBu from depth 1, we need to consider
each of the subsets (at depth 2) of ΓB � tAu.

– For the subset H � ΓB at depth 2, x17y
updates BFHrAs � p@, Bq to denote that a
type-A component (with parent type B) did
not fail. Because the tree cannot be grown any
further, x22y calls ComputeTreeRate.

– For the subset tAu � ΓB at depth 2, a
type-A component fails (at depth 2), x13y
increments nFailedrAs to 2, x14y updates
BFHrAs � p@,@q to denote that another
type-A component failed, and x15y updates
ρ by multiplying it by φB,A. The resulting
tree corresponds to row t � 4 in Table 1.
Because at least one node was added (at
depth 2) to the tree, line x20y recursively calls
AddTreeLevel to try to further grow the
tree.

 For the subset tB,Cu from depth 1, we need to
consider each of the subsets (at depth 2) of only
ΓB � tAu because ΓC � H. We handle the subsets

at depth 2 of ΓB as in the previous bullet, but
instead the resulting tree for the subset tAu � ΓB
at depth 2 corresponds to row t � 23 in Table 1.

Rather than going through the details of the rest of
the example, we note that the full structure of any tree in
Table 1 can be gleaned from the table by following the rows
backwards until reaching depth 0. Each tree with depth
greater than 0 builds on a tree that appears previously in
the table by adding an additional level of nodes, increasing
the depth by one. The immediate-predecessor tree from
which one tree is directly built is the nearest tree that
appears previously in the table with a depth one less than
its own. For example, the tree T18 (in row 18) has the
following structure.

 At depth 4, a type-A component fails because Nodes
for the row for T18 is “A”.

 Row t � 17 is the nearest row with depth 3 above
row 18, and one component each of types B and C
fail at depth 3 because Nodes is “B, C” in row 17.
The type-A component from depth 4 in row 18 is the
child of the type-B component that fails from T17 at
depth 3 because A P ΓB . (The other component, of
type C, in row 17 has ΓC � H.)

 Row t � 4 is the closest row with depth 2 above row
17, and one component of type A is the only node to
fail at depth 2 because Nodes is “A” in row 4. Both
components from depth 3 in row 17 are children of
the type-A component from T4 at depth 2 because
B,C P ΓA.

 Row t � 3 is the closest row with depth 1 above row
4, and a component of type B (resp., C) fails (resp.,
does not fail) at depth 1 because Nodes is “B, -C”
in row 3. The component of type A from depth 2 is
the child of the B at depth 1 because A P ΓB .

 Row t � 1 is the closest row with depth 0 above
row 3, and a component of type A fails at depth 0
because Nodes is “A” in row 1. The B at depth 1
is a child of the A at depth 0 because B P ΓA. (A
component of type C did not fail at level 1, even
though C P ΓA.)

4.3 Comparison of Runtimes
We now compare the runtimes of the original version of the
code [22] with our current implementation of DECaF, as
described in Section 4. Both versions are implemented in
Java, where the current code is a complete overhaul of the
original. We carry out the comparison on a set of different
models described in Table 2, which gives for each model the
cardinality of its state space S, the set of component types,
the redundancies of each component type, the component-
affected sets Γi, and the number of environments. In
the text below we refer to each model by its number of
states, e.g., the “125-state model.” Note that the number
of trees does not always grow as the number of states
increases, but rather the relationships among the Γ sets
and the component redundancies determine the amount
of cascading possible. The experiments were conducted on
the Amazon EC2 c1.xlarge cloud service, with 64-bit Intel
Xeon E5-2650 CPU (2Ghz, 8 cores), 8 virtual CPUs and
7GB of memory, running Windows Server 2012.

11

States Comp.
Types

Redundancies Component-
Affected Sets

Env.

81 A,B,C,D rA � 2,
rB � 2,
rC � 2,
rD � 2

ΓA � tB,Cu,
ΓB � tA,Du,
ΓC � H,
ΓD � tA,B,Cu

1

288 A,B,C,D rA � 3,
rB � 3,
rC � 2,
rD � 2

ΓA � tB,Cu,
ΓB � tA,Cu,
ΓC � tB,Du,
ΓD � tCu

2

640 A,B,C,D rA � 4,
rB � 3,
rC � 3,
rD � 3

ΓA � tB,Cu,
ΓB � tA,Cu,
ΓC � tB,Du,
ΓD � tBu

2

125 A,B,C rA � 4,
rB � 4,
rC � 4

ΓA � tB,Cu,
ΓB � tA,Cu,
ΓC � tA,Bu

1

1944 A,B,C,D,
E,F

rA � 2,
rB � 2,
rC � 2,
rD � 3,
rE � 2,
rF � 2

ΓA � ΓB �
tC,Du,
ΓC � tA,Eu,
ΓD � tB,F u,
ΓE � ΓF � H

2

TABLE 2: Description of the various models we used to
analyze our algorithm

Previous Version New Version
States Trees FTT NFTT FTT NFTT DMT

81 978 1.30 0.30 0.12 0.10 0.08
288 4507 19.00 0.62 0.26 0.10 0.16
640 27746 137.29 5.98 1.56 0.11 0.61
125 321372 114.25 0.33 6.01 0.10 0.09

1944 6328 6124.01 234.84 1.35 0.16 8.27

TABLE 3: Number of trees, failure-transition time (FTT),
non-failure-transition time (NFTT), and dependability-
measure time (DMT) across several models for the previous
and new versions of the code.

Table 3 gives the running times (in seconds) for various
parts of the overall algorithms of the original code [22] and
the current implementation. (We ran each model several
times and observed very little difference in run times.
Table 3 contains the averages across the runs.) We compare
the two versions in terms of the failure-transition time
(FTT) and non-failure-transition time (NFTT). The FTT
is the time to generate all of the trees and to fill in all of
the failure transitions in generator matrix Q. The NFTT is
the time to fill in the rates for the repair and environment
transitions. For the current implementation, we also give
the dependability-measure time (DMT), which includes the
time to compute the MTTF and SSU (but not the SSDCS
and DCSUF), as described in Section 4.1, after Q is built.
While the MTTF and SSU computations are performed
using the OJAlgo package [34], the solving of the measures
once Q has been constructed is not our paper’s focus, and
we can swap the current solver with another.

Table 3 shows the enormous increases in efficiency that
we get from the new version of the code. The current
implementation decreases the FTT by about one order
of magnitude on the 81-state model and by over a factor
of 4500 on the 1944-state model. The efficiency gains are
due to the changes described in Section 4, as well as other
improvements in the design of the algorithms and data
structures developed. For the new version of the code, the
FTT mainly grows as a function of the number of trees.

5 CONSTRUCTING APPROXIMATE MODELS

The number of trees can grow exponentially in the number
of components in the cascade [22], which limits the size of
the models that our algorithms in Section 4 can handle.
To address this issue, we explored efficient approxima-
tions that reduce the computational effort by selectively
constructing only certain trees. We implement this idea
by enclosing lines x18y–x22y of Algorithm 2 within an if
statement that checks whether a given condition, which
we call a “growing criterion,” is satisfied. Thus, if the
growing criterion does not hold, the algorithm skips over
to the next enumeration of the bottom-most tree level,
so we do not generate certain trees; the omitted trees’
rates are not computed and not included in the generator
matrix. This saves computation time, but the resulting
matrix Q1 � pQ1px, yq : x, y P Sq (which includes all
repair and environment transitions but for the failure
transitions, sums the rates of only the built trees) can differ
from the matrix Q that includes all trees. Solving for the
dependability measures with Q1 rather than Q leads to
inaccuracies in the values for the measures.

Omitting trees often results in the MTTF being greater
or equal to the MTTF when all trees are considered. To
see why, observe that Qpx, yq � Q1px, yq for all non-failure
transitions px, yq with x � y. But Qpx, yq ¥ Q1px, yq for all
failure transitions px, yq because Q1 only considers a subset
of the trees used in computing Q. Thus, from each state,
the CTMC with Q1 is less likely to make a failure transition
than the CTMC for Q, which typically leads to the MTTF
being at least as large when trees are left out. Similarly, the
SSU for Q1 is usually no greater than the SSU for Q.

We investigated the trade-off in the time saved by
omitting some trees versus the resulting error in the MTTF
and SSU computed from Q1 instead of Q. In designing a
growing criterion specifying if the algorithm should enlarge
the current tree, we want to allow trees with large rates
to be generated, as these often have a big impact on the
MTTF and SSU, and skip small-rate trees. We considered
three criteria based on different types of thresholds.

We first examine a “height threshold,” and the growing
criterion is height ¤ τh, where the global variable height
keeps track of the current tree height and τh is the
threshold. Our implementation requires a slight change
to AddTreeLevel (Algorithm 2), where we introduce
height as a method parameter. We also modified line x20y
of Algorithm 2 to increment height on every successive
recursive call.

We also consider a “node threshold” τn in the growing
criterion

°
iPΩ nFailedris ¤ τn. Hence, constructed trees will

contain a maximum of τn failed components.
The third growing criterion uses a “rate threshold” to

only generate trees with rates above a certain value. Define

R1pT q � λ̄iρ (10)

as the approximate rate for a tree T , where λ̄i �
maxePE λi,e is the maximum failure rate for the type i of
the root of the tree T over all the different environments,
and ρ is as defined in (1). Note that R1pT q differs from the
tree rate RpT q in (1) because R1pT q omits both η, which is
the product of the 1� φi,j factors for components of types

12

j that did not fail in the cascade but could have (because
j P Γi of a component of type i that did fail and there are
still type-j components up at that point), and the current
number of up components of the root type. Also, R1pT q
uses the maximum failure rate λ̄i of the root type i instead
of the environment-specific failure rate. Then the growing
criterion is R1pT q ¥ τr, where τr is the specified threshold.

For each of the three growing criteria, once a given tree
T does not satisfy the criterion, the current tree will not
be grown any further. This point is clear for the node and
height thresholds. For the rate threshold, adding additional
nodes to T decreases ρ in (10) because it is multiplied
by additional factors φj,k ¤ 1, so once the rate growing
criterion is not satisfied, T will not be further enlarged.

Increasing τh and τn leads to a monotonic increase
in the number of generated trees, whereas the number
of generated trees decreases monotonically in τr. Setting
τh � τn � 8 or τr � 0 results in generating all trees, so the
computed generator matrix is exact and there is then no
error in the computed MTTF and SSU.

We now present numerical results when applying one
growing criterion at a time for the 125-state model (see
Table 2), where the failure rates are λA,0 � λB,0 � 0.02,
λC,0 � 0.01, and component-affect probabilities φA,B �
φB,C � 0.2, φC,A � φB,A � 0.3, φA,C � φC,B � 0.4. Also,
the repair rates µi,0 � 1 for all types i, and the system is
operational as long as at least 1 component is up of each
type. Figure 2 plots pairs (% FTT, % Error), where % FTT
is the percentage of the FTT when omitting trees relative
to the FTT when all trees are constructed, and % Error is
the percent error in the computed dependability measure
(MTTF or SSU) relative to the measure with all trees. For
example, if % FTT is 25, then the time to generate all of the
failure transitions when using the threshold was a quarter
of the corresponding time when generating all trees. The
experiments were performed on a PC with an Intel Core
i7 4770k processor with 8 virtual cores operating at 3.5–
3.9 GHz and 32GB of memory, running 64-bit Windows
10. As we expect, for each threshold, the magnitude of the
error decreases as the FTT increases. For a fixed FTT,
the growing criterion based on the rate threshold leads to
smaller absolute error than the two other criteria; similarly,
if we fix a level of error, the rate criterion requires less
FTT than the other two criteria to achieve that error.
Hence, the points from using the rate threshold define the
“efficient frontier,” analogous to the idea introduced by [28]
in the context of financial portfolio selection. (Results for
the other models in Table 2 are not shown but are similar.
Section 6 contains results for a much larger model using
a rate threshold computed from the model building blocks
and a further correction described in Section 5.2, and our
methods reduce FTT by up to a factor of over 600 with just
a few percent error.)

5.1 Computing a rate threshold

The previous discussion shows that a growing criterion
based on a rate threshold appears to outperform the other
thresholds we considered. We now discuss an efficient
approach that solely uses the building blocks of the model
to try to select an appropriate value for the rate threshold τr

0 20 40 60 80 100

0

50

100

150

200

250

300

% FTT

%
E

rr
o
r

M
T

T
F

τh
τn
τr

0 20 40 60 80 100

�100

�80

�60

�40

�20

0

% FTT

%
E

rr
or

S
S
U

τr
τn
τh

Fig. 2: % Error in MTTF and SSU versus % FTT when
iterating each threshold τ

so that only a relatively small number of trees are generated
but the resulting error in the dependability measures is
small. The method exploits the idea that trees occurring
in the most likely way the system fails should be the ones
whose rates contribute most to the computed dependability
measures. Exactly identifying these trees is complicated,
so we instead use various approximations and simplifying
assumptions to roughly determine a value for τr that allows
such trees to be built while precluding trees that only occur
on significantly less likely paths to failure.

We first give an overview of our approach. Assume that
the system consists of highly reliable components [17] in the
sense that component failure rates are much smaller than
the repair rates. Suppose the system-operational conditions
require that at least υi components of each type i are up
for the system to be operational, so the system is failed
when at least di � ri � υi � 1 components have failed
for some type i. We will focus on sequences of states (i.e.,
paths of the embedded DTMC) for which the first state in
the sequence has all components up, the last state in the
sequence is a failed state (i.e., in F), all states in between
are operational (i.e., in U), and each successive pair of
states is a failure transition (possibly with more than one
component failing). Such a sequence of states is a path to

13

system failure, and the most likely way the system fails
is usually when exactly di components of some type i fail
along the path. (There may be other component types that
also fail in cascades along the path. If the path has no
multi-component cascades, then each failure transition is
just a tree with a single node, which is of type i.)

For each component type i and each 1 ¤ k ¤ di, we
examine paths consisting of exactly k (failure) transitions
over which a total of di components of type i fail. For each
failure transition in the path, we build only one tree out of
the collection of failing components on the transition, even
though there might be multiple trees corresponding to the
transition. If there is more than one tree corresponding
to a particular transition in the path, we want the single
tree that we construct to be the one with the largest rate.
We then use that tree in a rough approximation for the
probability of the transition for the embedded DTMC.
The product of the approximate transition probabilities
along the path then gives an approximate probability of the
entire path. The path that maximizes the approximate path
probability over all types i and numbers k of transitions in
the path provides an approximation to the most likely path
to failure. Finally we set the rate threshold as

τr � αβ, (11)

where α is the smallest approximate rate R1 from (10) of
a tree along the approximate most likely path to failure,
and 0 β ¤ 1 is a correction factor that is included to
allow trees with approximate rates somewhat below α to
be generated. We next provide details of the approach. (In
Section 5.1.4 we will demonstrate the algorithms using an
example.)

5.1.1 Computing α
FindRateThreshold (Algorithm 4) determines τr in (11).
We start by explaining how it specifies α. Line x3y calls
BuildBestTrees (Algorithm 5, which we will explain in
Section 5.1.2) to build and store, for each i P Ω, j P Ω
and 1 ¤ f ¤ di, a tree Ti,j,f with a root of type j and
having f components of type i failing, where Ti,j,f has
approximately the largest rate among those trees with these
characteristics. Lines x4y, x5y, and x7y loop over all possible
values of i, j, and k, where i is the component type whose
di failures will cause the system to fail, j is the type for the
root of the trees along the path to failure of the embedded
DTMC, and k is the number of transitions along the path.
Each transition along the path has exactly fi � di{k type-i
components failing. (When di{k is not an integer, we first
allocate tdi{ku failing components of type i to each of the
k transitions, where t � u denotes the floor function. Then
for the remaining bi � di � ktdi{ku type-i components
to fail along the path, we allocate one additional failing
component of type i to the first bi transitions. Thus, the
first bi transitions along the path each have tdi{ku � 1
type-i components failing, and the other k � bi transitions
each have tdi{ku type-i failures. In this case, we let fi be
either tdi{ku or tdi{ku� 1; this is done in lines x10y–x15y of
Algorithm 4.)

Lines x11y–x18y loop over the k transition indices
l � 1, 2, . . . , k to build a path pxp0q, xp1q, . . . , xpkqq to failure
of the embedded DTMC, where the initial state xp0q is

Algorithm 4: FindRateThreshold

Output: τr
// Calculate α

1 maxApproxProb = 0;
2 bestPathTrees = H; // trees along best path
3 BuildBestTrees(); // Build trees Ti,j,f

with approx largest rate with root type
j and f type-i components.

4 for i P Ω do
5 for j P Ω do
6 xp0q = x�rjs ; // initial state has

environment e that maximizes λj,e
7 for k P r1, dis do
8 pathApproxProb = 1;
9 pathTrees = H;

10 bi � di � ktdi{ku;
11 for l P r1, ks do
12 if l ¤ bi then //adjust first bi
13 fi = tdi{ku� 1;

14 else
15 fi = tdi{ku;

16 xplq =
resultingState(xpl�1q,Ti,j,fi);

17 pathTrees = pathTrees Y tTi,j,fiu;
18 pathApproxProb �

pathApproxProb � P 1pxpl�1q, xplqq ;
// P 1 defined in eq. (12)

19 if pathApproxProb ¡ maxApproxProb then
20 bestPathTrees = pathTrees;
21 maxApproxProb = pathApproxProb;
22 k� = k;

23 T� = arg minTPbestPathTrees R
1pT q;

24 α = R1pT�q;
// Calculate β

25 M = tpi, jq : φi,j ¡ 0u;

26 β �
�°

pi,jqPM φi,j

|M |

	minr|T�|,
°

lPΩprl�x
pk�q

l qs

;

27 return τr � α β ;

defined in line x6y as the state x�rjs with all components
operational and the environment e is chosen to maximize
the failure rate λj,e of the component type j at the root,
as was also done in (10). Line x16y uses the tree Ti,j,fi pre-
computed by BuildBestTrees in line x3y for the current
values of i, j, and fi, and the function resultingState
determines the next state xplq that follows the previous
state xpl�1q after a cascade with tree Ti,j,fi occurs. Line x18y
updates the approximate probability of the constructed
path by multiplying by the approximate DTMC probability
P 1pxpl�1q, xplqq of the current transition, where we define

P 1px, yq �
RpT, xq°

j1PΩprj1 � xj1qλj1,e �
°
j1PΩ xj1µj1,e{p

°
lPΩ xlq

,

(12)
for a transition px, yq corresponding to a tree T . The
numerator in (12) is the (exact) rate from (1) for the
transition px, yq corresponding to the tree T , and the

14

denominator is the total failure and repair rate out of
state x. (When

°
lPΩ xl � 0, there are no components

failed in state x, so
°
j1PΩ xj1µj1,e � 0, and the second term

in the denominator is 0{0, which we define to be 0.) We
omit the environment-change rate from the denominator
of P 1px, yq as we are only focusing on failure and repair
transitions in our approximation. If, for some combination
of loop indices i, j, and k, the approximate probability of
one of the transitions is zero because BuildBestTrees did
not identify the necessary corresponding tree Ti,j,fi , then
that combination is not considered. A tree can always be
found for fi � 1 when in a non-failed state because a tree of
just single component of type i can always occur; therefore,
a path of k � di transitions where each transition has size
fi � 1 is always possible.

After lines x19y–x22y of Algorithm 4 identify the path
with the highest approximate probability, x23y–x24y com-
putes α as the minimum approximate tree rate along that
path. If we set the rate threshold as τr � α, then the
algorithm would generate all of the trees used to construct
the approximate most likely path to failure but trees with
smaller approximate rates are omitted. Instead, we include
additional trees by further multiplying the threshold by
0 β ¤ 1 (computed in x25y–x26y), which we will explain
in Section 5.1.3.

5.1.2 BuildBestTrees
We now discuss Algorithm 5, which, for each i P Ω,
j P Ω, and 1 ¤ f ¤ di, constructs a tree Ti,j,f with f
type-i components and type-j root, where each tree built
has roughly the largest rate among those trees with the
specified characteristics. For any tree T , recall R1pT q in
(10) is the product of the maximum failure rate of the root
and the product ρ of the component-affected probabilities
φl,m of components that fail in the cascade. As adding
more nodes to a tree will multiply its approximate rate by
additional φl,m factors, each of which is no greater than
1, a tree T with large R1pT q will typically have not too
many nodes and the φl,m factors included in ρ from (1) will
often be relatively large. We equivalently try to find such
a tree T with large lnpR1pT qq, which converts the product
R1pT q into a sum of logs. This transformation allows us to
use a shortest-path algorithm on an appropriately defined
graph to approximately identify such a tree. To simplify
the search, we restrict ourselves to trees in which only the
root can have more than one child; we call such a tree a
“broom.”

Specifically, construct a weighted graph G � pV,E,W q,
where V � Ω is the set of vertices, E � tpl,mq : l P
Ω,m P Γlu is its set of edges, and W � twl,m : pl,mq P
Eu is the set of weights (costs), with wl,m � � lnφl,m.
Thus, large φl,m corresponds to smallwl,m. We next explain
how Algorithm 5 tries to identify a broom Ti,j,f with large
lnpR1pTi,j,f qq for each i, j, and f .

In line x3y of Algorithm 5, the function Dijkstra
returns the lowest-cost i1-to-j1 path gi1,j1 and its cost ci1,j1 .
Then lines x4y–x8y compute for each possible i1 and j1

the optimal path from i1 to j1 (by considering the first
step to each possible l P Γi1) and the associated cost, and
stores them in a priority queue pqi1,j1 . The data in the
priority queue for each i1, j1 is later used as we iteratively

add in the current lowest-cost branch from i1 to j1 and
then remove it from the priority queue. Lines x9y–x11y loop
over all i, j, and f to build the best broom with f type-i
components and type-j root, using the variable failed to
count the number of type-i components in the broom so
far. The while loop at line x22y iteratively removes the
lowest-cost j-to-i branch from the priority queue pqj,i and
attaches it to the root, as long as its cost is lower than that
of the best i-to-i cycle. (The paths in the priority queue
are stored in line x8y to not include the starting node, so
attaching a branch does not incorrectly have the first step
going from j to j.) This continues as long as the broom
does not have enough type-i components and the priority
queue is not empty. Once the next lowest-cost j-to-i branch
is more expensive than the best i-to-i cycle, the while loop
at line x30y only appends the (same) best i-to-i cycle to
the leaf of the first branch of the root, stopping when the
broom has enough type-i components. (In the first iteration
of line x30y, if the broom so far has only the root, which
then must be of type i because of x27y, then the best i-to-i
cycle is appended to the root.)

5.1.3 Computing β
In our initial numerical experiments using a computed
rate threshold τr, we first set τr � α but found that it
did not work well on some models. We determined that
τr � α was such a high threshold that too few trees were
being generated. Although it led to an enormous decrease
in the computation time needed to construct trees, the
resulting errors in the MTTF and SSU were unacceptably
large. One reason is that in addition to the approximate
most likely path to failure, there may be many other paths
whose approximate probabilities are only slightly smaller.
These additional paths also significantly contribute to the
computed dependability measures, and omitting the trees
in those paths causes substantial errors in the MTTF
and SSU. Compounding this issue is the coarseness of the
approximations applied to determine the approximate most
likely path to failure. Hence, we adjust τr by including
another factor 0 β ¤ 1 (see (11)) to permit more of
the important trees to be generated.

To explain how we compute β in lines x25y–x26y of
Algorithm 4, consider the tree T� identified in line x23y of
Algorithm 4, whose approximate rate R1pT�q is minimal
along the approximate most likely path to failure, i.e.,
R1pT�q � α (see line x24y). Let T 1

� be another tree obtained
by adding some extra nodes to T� below the root; we
compute its approximate rate R1pT 1

�q by multiplying α and
the product of additional component-affected probabilities
φl,m for the new nodes where they are attached to T�.
The value of R1pT 1

�q may be only slightly smaller than α
when the number of additional new nodes is not too large
and when the extra φl,m factors are relatively large. But if
we set the rate threshold τr � α, then the tree T 1

� would
be eliminated by the rate threshold. Thus, we adjust τr
by further multiplying it by β to approximate the extra
factors by which we multiply α to obtain R1pT 1

�q. This
is done in lines x25y–x26y of Algorithm 4. (In line x26y,
when the component-affected sets of all component types
are empty, we have that |M | � 0, and

°
pi,jqPM φi,j � 0.

In this case, we define β � 1.) Rather than multiplying

15

Algorithm 5: BuildBestTrees

// Precompute optimal paths and costs
1 for i1 P Ω do
2 for j1 P Ω do
3 (gi1,j1 , ci1,j1) = Dijkstra (G, i1, j1) ;

// Function Dijkstra returns
lowest-cost i1-to-j1 path and its
cost.

4 for i1 P Ω do
5 for j1 P Ω do
6 for l P Γi1 do
7 if wi1,l � cl,j1 8 then
8 pqi1,j1 .insert(gl,j1 , wi1,l � cl,j1) ;

// i1-to-j1 path omits i1 but
cost includes cost of first
step from i1 to l

// For each i, j, f, build "best" tree
with f type-i comps and type j as
root

9 for i P Ω do
10 for j P Ω do
11 for f P r1, dis do
12 if |pqi,i| � 0 then
13 (cycPathi, cycCosti) = pqi,i.peek();

14 else
15 cycCosti � 8;

16 failed = 0;
17 T i,j,f .root = j;
18 if j == i then
19 failed = failed + 1;

20 else
21 pqBranch � pqj,i;
22 while failed f && |pqBranch| ¡ 0

do
23 (branch, cost) =

pqBranch.remove();
24 if cost cycCosti or failed ==0

then
25 attach branch to root of T i,j,f ;
26 failed = failed + 1;

27 if failed == 0 || (failed f &&
cycCosti==8) then

28 T i,j,f � H;

29 else
30 while failed f do
31 attach cycPathi to leaf of

T i,j,f .firstBranch;
32 failed = failed + 1;

CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

A B

C

D

E

− lnφA,D = − ln ǫ

− lnφA,E = − ln ǫ

− lnφE,A = − ln ǫ

− lnφB,A = − ln(1/2)

− lnφB,C = − ln(1/2)

− lnφB,D = − ln ǫ2

− lnφC,A = − ln(1/2)

− lnφC,E = − ln ǫ2

− lnφD,A = − ln ǫ2

1

Fig. 3: Example of weighted graph G � pV,E,W q used by
Algorithm 5.

α by the specific φl,m to obtain R1pT 1
�q, we simplify the

calculations by instead using the average of the component-
affected probabilities, which is the base of β in line x26y of
Algorithm 4. If we attach one new node to each existing
node in T� to obtain T 1

�, then the number of new nodes
is |T�|. But when adding the new nodes to T�, we still
want the resulting new path to failure to be possible, so we
cannot add more nodes to T� than there are remaining
up components at the end of the path to failure, i.e.,°
lPΩprl � x

pk�q
l q. Hence, we take the minimum of this and

|T�| to obtain the exponent of β. Finally given α and β, we
compute τr � αβ as in (11) and line x27y of Algorithm 4.

5.1.4 Example Demonstrating Computing Rate Threshold

We now use an example to demonstrate how Algorithms 4
and 5 compute the rate threshold τr in (11). Consider
a system with Ω � tA,B,C,D,Eu and E � t0u. Each
component type i P Ω has redundancy ri � 6, and the
system fails when any type’s redundancy is exhausted,
i.e., di � 6. Let ε be a small positive constant, e.g.,
ε � 10�5, and the component failure rates are λB,0 � ε
and λi,0 � ε4 for types i � B. The repair rate is µi,0 � 1
for each type i P Ω. For cascading, we have ΓA � tD,Eu,
ΓB � tA,C,Du, ΓC � tA,Eu, ΓD � ΓE � tAu, and
φA,D � φA,E � φE,A � ε, φB,A � φB,C � φC,A � 1{2,
φB,D � φC,E � φD,A � ε2.

BuildBestTrees

We first describe how Algorithm 5 constructs trees Ti,j,f
with f components of type i failing and root type j. We
only consider the situation for j � B and i � A, which turn
out to be the values for the approximate most likely paths
to failure. Figure 3 shows the weighted graphG constructed
from the component-affect sets and probabilities, which is
used in line x3y. The graph G has the following B-to-A and
A-to-A paths, with corresponding costs:

 B Ñ A has cost � lnφB,A � � lnp1{2q,

 B Ñ C Ñ A has cost � lnφB,C � lnφC,A �

�2 lnp1{2q,

16

 B Ñ C Ñ E Ñ A has cost � lnφB,C � lnφC,E �
lnφE,A � � lnp1{2q � 3 ln ε,

 B Ñ D Ñ A has cost � lnφB,D� lnφD,A � �4 ln ε,

 AÑ D Ñ A has cost � lnφA,D � lnφD,A � �3 ln ε,

AÑ E Ñ A has cost � lnφA,E � lnφE,A � �2 ln ε.

Thus, x8y builds the priority queue pqB,A �
ppA,� lnp1{2qq, pC Ñ A,�2 lnp1{2qq, pD Ñ A,�4 ln εqq as
the best branches from B to A (omitting the initial B)
for each possible first step, where the entries in pqB,A are
sorted with ascending costs. Also, we have pqA,A � ppE Ñ
A,�2 ln εq, pD Ñ A,�3 ln εqq has the best A-to-A cycles
(without the initial A) for each possible first step, sorted
with increasing costs. Then x13y sets cycPathA asE Ñ A as
the best A-to-A cycle, which has cost cycCostA � �2 ln ε.
The while loop at x22y will attach to the root B the B-
to-A branches from pqB,A in order of cost as long as those
branches have lower cost than cycCostA, at which point the
algorithm repeatedly attaches the same best A-to-A cycle
until the counter failed of type-A nodes in the tree equals
the required number f .

Now we consider each iteration of the loop over f P r1, 6s
in x11y for i � A and j � B in x9y and x10y, respectively.
In each iteration, we begin with variable failed � 0 in x16y,
and the tree root as B in x17y.

 First consider f � 1 in the loop at line x11y. The
first iteration of the while loop at line x22y removes
the best B-to-A branch, pA,� lnp1{2qq, from pqB,A
in x23y, and x25y attaches a child A to the root.
We now have pqB,A � ppC Ñ A,�2 lnp1{2qq, pD Ñ
A,�4 ln εqq and failed � 1. Thus, the tree has
the required number f of A nodes, so the tree is
complete. The resulting tree TA,B,1, which appears
in Figure 4, has approximate rate

R1pTA,B,1q � λB,0φB,A � p1{2qε

computed from (10).

 Now consider f � 2 in the loop at line x11y. The

first iteration of the while loop at x22y is the same as
above for f � 1. The second iteration of the loop at
x22y finds that the new best B-to-A branch, C Ñ A,
in pqB,A, has cost,�2 lnp1{2qq, that is lower than the
cycCostA � �2 ln ε of the best A-to-A cycle. Thus,
x23y removes pC Ñ A,�2 lnp1{2qq from pqB,A, and
x25y attaches a branch C Ñ A to the root. We now
have pqB,A � ppD Ñ A,�4 ln εqq and failed � 2.
Thus, the tree has the required number f ofA nodes,
so the tree is complete. The resulting tree TA,B,2 in
Figure 4 has approximate rate

R1pTA,B,2q � λB,0φB,AφB,CφC,A � p1{8qε.

 Now consider f � 3 in the loop at x11y. The first two
iterations of the while loop at x22y are the same as
above for f � 1 and f � 2. The third iteration of the
while loop at x22y finds that the cost, �4 ln ε, of the
new best B-to-A branch, D Ñ A, in pqB,A is higher
than cycCostA � �2 ln ε. Thus, the while loop at
x22y will not attach anymore B-to-A branches from
pqB,A to the root. Instead, the while loop at line x30y
will grow the first branch in TA,B,2 by attaching the
best A-to-A cycle, E Ñ A, to that branch’s leaf,

TA,B,1

B

A

TA,B,2

B

A C

A

TA,B,3

B

A C

AE

A

TA,B,4

B

A C

AE

A

E

A

TA,B,5

B

A C

AE

A

E

A

E

A

TA,B,6

B

A C

AE

A

E

A

E

A

E

A

2

Fig. 4: Trees TA,B,f constructed by Algorithm 5 having f
type-A components failing and type-B root.

which is an A. Thus, as we now have failed � 3,
the tree has the required number f of A nodes, so
the tree is complete. The resulting tree TA,B,3 in
Figure 4 has approximate rate

R1pTA,B,3q � λB,0φB,AφB,CφC,AφA,EφE,A

� p1{8qε3.

 Each of the remaining iterations for f � 4, 5, 6
in line x11y will further grow the branch from the
first iteration of the while loop at x22y by attaching
the same A-to-A cycle, E Ñ A, to that branch’s
leaf, which is of type A. The resulting trees, TA,B,4,
TA,B,5, and TA,B,6, appear in Figure 4, and they
have approximate rate

R1pTA,B,f q � λB,0φB,AφB,CφC,ApφA,EφE,Aq
f�2

� p1{8qε2f�3.

FindRateThreshold

We next describe how Algorithm 4 computes the rate
threshold τr. We only consider the loops for i � A and
j � B in lines x4y and x5y; i.e., when the system fails
from exhausting type A with trees having a type-B root.
We now examine what happens for each iteration of k in
the loop at x7y, where k is the number of transitions in a
path to failure that is to be constructed, and we recall that
dA � 6. When we compute pathApproxProb in x18y, the first
transition along the path has that the denominator in (12)

17

is Opεq because there are only failure transitions and no
repair transitions out of the initial state. Each subsequent
transition along the path has that the denominator in (12)
is Op1q because at least one component is failed so there is
an ongoing repair.

 For k � 1, line x10y has bA � 0, so the single
transition in the constructed path to failure has
fA � 6 type-A components failing. We use the tree
TA,B,6 in Figure 4 for that transition. The resulting
DTMC path has approximate probability

pathApproxProb � Opε8q

computed using x18y.

 For k � 2, line x10y has bA � 0, so by x15y, each of

the k transitions in the constructed path to failure
has fA � 3 type-A components failing. The resulting
DTMC path of k transitions, each corresponding to
TA,B,3, has approximate probability

pathApproxProb � Opε5q.

 For k � 3, line x10y has bA � 0, so by x15y, each of
the k transitions in the constructed path to failure
has fA � 2 type-A components failing. The resulting
DTMC path of k transitions, each corresponding to
TA,B,2, has approximate probability

pathApproxProb � Opε2q.

 For k � 4, line x10y has bA � 2, so in the loop
at x11y, each of the first two transitions in the
constructed path to failure has fA � 2 type-A com-
ponents failing, and each of the last two transitions
has fA � 1. These correspond to trees TA,B,2 and
TA,B,1 in Figure 4. The resulting DTMC path of k
transitions has approximate probability

pathApproxProb � Opε3q.

 For k � 5 and 6, we can similarly show that
pathApproxProb � Opε4q and Opε5q respectively.

Hence, x19y–x22y of Algorithm 4 identify the constructed
path with the highest approximate probability as having
length k� � 3, so x23y–x24y result in T� � TA,B,2 and
α � R1pTA,B,2q � p1{8qε as the minimum approximate tree
rate along the identified path with k� transitions.

Finally, we compute the other factor β in (11). First,
we have that M � t pA,Dq, pA,Eq, pB,Aq, pB,Cq, pB,Dq,
pC,Aq, pC,Eq, pD,Aq, pE,Aq u in line x25y of Algorithm 4.
In x26y the base averages the component-affected probabil-
ities: pε � ε � 1{2 � 1{2 � ε2 � 1{2 � ε2 � ε2 � εq{9 � 1{6.
For the exponent in x26y, we have that |T�| � |TA,B,2| � 4,
as seen in Figure 4. Also, after the k� � 3 transitions in
the constructed approximate most likely path to failure, the
numbers of remaining up components of types A, B, . . . , E
are 0, 3, 3, 6, 6, so the second term in the exponent for β is
their sum, 18. Hence, the exponent for β is minp4, 18q � 4,
so β � p1{6q4, resulting in τr � αβ � p1{8qp1{6q4ε as the
rate threshold.

5.2 Correcting the Generator Matrix’s Diagonal Entries

As we will see in Section 6, the methods developed in
Sections 5 and 5.1 can drastically reduce the number of
trees constructed and the computation time. But because
the resulting generator matrix Q1 includes only a subset
of the trees used to construct Q, errors arise in the com-
puted dependability measures. We next try to reduce the
error by modifying Q1 to obtain another generator matrix
Q2 � pQ2px, yq : x, y P Sq that has the same diagonal
entries as the original matrix Q. Because �1{Qpx, xq is the
mean time that the original CTMC spends in state x on
each visit there, matching the diagonal entries to those of
Q can help by ensuring the approximate CTMC spends the
same amount of time on average in each state as the com-
plete model. Moreover, we can view the diagonal correction
of Q2 as a way of compensating for not generating all of
the trees.

In the complete matrix Q, the sum of the rates (1) of
all trees originating in a state x and having a root of type i
is pri � xiqλi,xN�1

, the factor from the root in each tree
rate. This holds because the set of all those trees includes
every possible combination of failures and non-failures of
components that could be affected in a cascade triggered
by the failure of a component of type i. Because a failure
transition out of state x can be triggered by any component
type that still has operating components in the state, the
total failure rate out of state x satisfies

¸
y:px,yqPΨf

Qpx, yq �
Ņ

i�1

pri � xiqλi,xN�1
¥

¸
y:px,yqPΨf

Q1px, yq,

where we recall that Ψf was defined in Section 3 as the set
of failure transitions, and the inequality holds because Q1

was computed by omitting some trees.
For the complete matrix Q, the total rate out of x is

�Qpx, xq, which equals

¸
y:px,yqPΨf

Qpx, yq �
¸

y:px,yqPΨe

Qpx, yq �
¸

y:px,yqPΨr

Qpx, yq,

where we recall from Section 3 that Ψe and Ψr are the
sets of environment and repair transitions, respectively.
Because Q1 includes all environment and repair transitions,
we have that

°
y:px,yqPΨe

Q1px, yq �
°
y:px,yqPΨe

Qpx, yq and°
y:px,yqPΨr

Q1px, yq �
°
y:px,yqPΨr

Qpx, yq. Thus, for each x,
the difference in the diagonal entries, which is

εx � �Qpx, xq �Q1px, xq ¥ 0, (13)

results solely from the failure transitions, and we define
the new matrix Q2 such that Q2px, xq � Qpx, xq for
each x P S. For y � x, we let Q2px, yq � Qpx, yq
for px, yq R Ψf, so Q2 shares the same rates for non-
failure transitions as Q (and Q1). We then need to de-
fine Q2px, yq for failure transitions px, yq P Ψf so that°
y:px,yqPΨf

Q2px, yq �
°
y:px,yqPΨf

Qpx, yq for each state
x P S.

To do this, for a failure transition px, yq P Ψf, we add to
each Q1px, yq a portion of the difference εx in (13); i.e.,

Q2px, yq � Q1px, yq � w1px, yqεx, (14)

18

where w1px, yq ¥ 0 is a weighting function such that°
y:px,yqPΨf

w1px, yq � 1. Through experimentation with
various weighting schemes, we found that setting

w1px, yq �
Q1px, yqv°

z:px,zqPΨf
Q1px, zqv

with v � �2 worked well across different models. Observe
that w1px, yq � 0 whenever Q1px, yq � 0, so only failure
transitions that are possible in Q1 are modified by (14).

As noted in Section 5, Q1 typically has the property
that its corresponding MTTF and SSU are no worse than
those for Q (because omitting trees usually makes the
system more dependable), but no such trends seem to hold
when comparing the dependability measures of Q2 and Q.
However, we often have that the system with Q2 is less
dependable than the system with matrix Q1 because Q2

has larger rates for the failure transitions than Q1 does
(with the same environment and repair rates). It is often
the case that the system with Q2 is more dependable than
with Q; however, it is possible that Q2 overcompensates,
and the system with Q2 can be less dependable than with
Q; e.g., see Case 3 of Table 1.

5.3 Errors from Q1 and Q2

Our approach in Section 5.1 to compute τr relies on a
number of approximations, some of which were developed
under the assumption that the component-affected prob-
abilities φi,j are small. To test the effect of the size of
the φi,j on the resulting errors in the MTTF and SSU,
we ran numerical experiments on various models, where we
systematically increased the φi,j . Figure 5 shows the results
for a modified version of the 125-state model from Table 2
with ΓA � ΓB � tCu and ΓC � tA,Bu. We started with
φA,C � 0.1, φB,C � 0.3, φC,A � 0.05, φC,B � 0.4, and
the other φi,j � 0, and then simultaneously changed all
nonzero φi,j to φi,j �∆ for ∆ � 0.1, 0.2, . . . , 0.5.

For a generator matrix Q̄, let MTTFpQ̄q and SSUpQ̄q
be the MTTF and SSU, respectively, computed from
Q̄. Figure 5 plots the ratios MTTFpQ̂q{MTTFpQq and
SSUpQq{SSUpQ̂q, for Q̂ � Q1 and Q2. The reason we
inverted the ratios for MTTF and SSU is that increasing
∆ leads to the system becoming less dependable, so the
MTTF and SSU then move in opposite directions. A ratio of
1 indicates no error. As ∆ grows, the ratios worsen, so using
the rate threshold τr alone (i.e., Q1) seems to work best
when the φi,j are relatively small. But Q2 from Section 5.2
substantially reduces the error by correcting the diagonal
entries of the generator matrix. Results for other models
(not shown) are similar.

5.4 Error from Eliminating a Single Tree
When computing the dependability measures of a system
for which trees have been eliminated (e.g., by a rate
threshold), the computed dependability measures typically
differ from the exact values that correspond to the original
system with generator Q. We now study to what extent
the values of dependability measures change by eliminating
just a single tree at a time, and as we will see, this provides
further numerical evidence supporting our decision of using
a rate threshold to omit trees. We carry out the analysis

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

3

3.5

∆

R
at

io

MTTFpQ1q{MTTFpQq

SSUpQq{SSUpQ1q

MTTFpQ2q{MTTFpQq

SSUpQq{SSUpQ2q

Fig. 5: Ratios comparing dependability measures with Q1

and Q2 to Q as non-zero component-affected probabilities
φi,j �∆ vary.

on the model previously considered in Section 4.2. For the
three cases of the model, we chose the values of λA,0 φA,B ,
and φB,A, listed at the top of Table 1, so that Algorithm 4
identifies fundamentally different approximate most likely
paths to failure.

In each case, component type A is the one whose dA �
rA � υA � 1 � 4 failures lead to system failure in the
approximate most likely path to failure, but the cases have
a different optimal number k� of transitions in that path
(see line x22y of Algorithm 4).

 Case 1 has k� � 1 transition, and the single tree
on that path to failure is tree t � 10 (i.e., T10)
in Table 1; tree T10 has fA � dA{k� � 4 type-A
components (along with other components) failing.
(Section 4.2 explains the structure of the trees that
appear in the table.)

 Case 2 has k� � 2 transitions, and its approximate
most likely path to failure has two successive occur-
rences of tree T4, which has fA � dA{k� � 2 type-A
failures.

 Case 3 has k� � 4 transitions, where tree T1, which
has fA � dA{k� � 1 type-A failure, is repeated four
times on the path to failure.

The row labeled τr in Table 1 gives the value of the
resulting rate threshold obtained by Algorithm 4 for each
case. Table 1 also gives the approximate rate R1pTtq from
(10) of each tree Tt, where an entry with a * denotes that
R1pTtq ¥ τr; the values of the MTTF and SSU for Q; and
the ratios of MTTF and SSU for Q compared to Q1 and
Q2. The last row of Table 1 gives for each case, the number
of trees constructed (labeled “unique”) and total number
of times those built trees were used in transitions (“eval.”)
in Q1.

Let Q�
t � pQ�

t px, yq : x, y P Sq be the infinitesimal
generator matrix when all trees except Tt are included.
To isolate the impact of just Tt, larger trees built from
Tt are still included in Q�

t . This is in contrast to the
study in Figure 2, where all larger trees built from Tt

19

10�20 10�16 10�12 10�8 10�4 100
10�12

10�8

10�4

100

104

R1pTtq

%
E

rr
or

Case 1
Case 2
Case 3

Fig. 6: Absolute value of percent error in MTTF versus
approximate rate when removing each distinct failure tree

10�29 10�23 10�17 10�11 10�5

10�27

10�20

10�13

10�6

101

R1pTtq

%
E

rr
or

Case 1
Case 2
Case 3

Fig. 7: Sum over all cascade sizes of absolute values of
errors in DCSUF versus approximate rate when removing
each distinct failure tree

would also be skipped because if Tt does not satisfy the
growing condition, then each larger tree built from Tt
would also not satisfy the growing condition. Thus, using
the tree-rate function R defined in (1), we have that
Q�
t px, yq � Qpx, yq � RpTt, xq for each failure transition

px, yq that includes Tt, and Q�
t px, yq � Qpx, yq for each

transition px, yq with x � y not including Tt. Also, the diag-
onal entry Q�

t px, xq � �
°
y�xQ

�
t px, yq. We next compare

for each tree Tt the values of our dependability measures
for Q�

t and for the original generator Q. This gives us a way
to assess each tree’s importance.

For each tree Tt, Figure 6 plots the % error in the
MTTF for Q�

t as a function of the approximate rate
R1pTtq, where the % error is given by |MTTFpQ�

t q �
MTTFpQq|{MTTFpQq. Though not shown, the plots of the
steady-state unavailability error follow the same pattern.
Similarly, Figure 7 (resp., 8) plots the % error in the
computed DCSUF χ in (6) as a function of R1pTtq, where
the % error is given by

°b
l�1 |χpl, Q

�
t q � χpl, Qq| (resp.,°b

l�1 |χpl, Q
�
t q � χpl, Qq|{χpl, Qq), and χpl, Q̄q is the value

of χplq for a generator matrix Q̄. Though not shown,

10�29 10�23 10�17 10�11 10�5
10�9

10�6

10�3

100

103

R’

%
E

rr
or

Case 1
Case 2
Case 3

Fig. 8: Sum over all cascade sizes of absolute values of
relative errors in DCSUF versus approximate rate when
removing each distinct failure tree

the plots of the error in the SSDCS θ in (2) follow the
same pattern. In all three cases, a clear trend shows that
eliminating a tree with a higher approximate rate from
all appropriate transitions in the generator matrix tends
to lead to greater error in the computed dependability
measures. This leads us to conclude that trees with a
higher approximate rate have a greater importance on
the accuracy of the dependability measures, which is in
accordance with our previous findings from Figure 2.

Figure 8 shows a clear grouping of plotted points that
is not found in Figures 6 or 7. In Figure 8, with the
exception of the two leftmost points, which are in fact
eight overlapping points, those in the upper half of the plot
correspond to trees that do not contain a failed component
of typeC, while those in the lower half do. This is significant
because the models have only one component of type C,
and there is very small chance that another component
type causes a C to fail (i.e., φA,C � 10�8 and φB,C � 0).
This means that whenever a component of type C fails
in some tree Tt, and it is not the root of Tt, the exact
rate of Tt becomes extremely small. When the rate of Tt
is significantly smaller than the rate of some other tree
of the same cascade size, Tt seems to contribute little to
χplq relative to other trees with larger rates. Note that
the two left-most points do not seem to follow this trend,
as the trees that contribute to those points all contain a
failed component of type C. This is because for those eight
trees, the cascade has the largest possible size. These eight
trees are the only trees with every single component failing,
including one of type C. This means that no tree has a
rate that is significantly smaller than that of other trees
of the same size due to the effect of including one failed
component of type C. Furthermore, within each of those
groupings (i.e., the top group, the bottom group, and the
group containing the two leftmost points), there is a further
subgrouping, with one band of points above and one below.
The points in the upper (resp., lower) grouping correspond
to trees with a type-A (resp., type-B) component at the
root. For these models we have that λA{λB � 10 or 100,
and a similar argument as before explains how eliminating

20

FS MS BS

LB HV

SC

0.25 0.20

0.20 0.20

0.15
0.30

0.20

0.40 0.35

0.25

0.45
0.35

0.20

Fig. 9: Component-affected probabilities φi,j in a cloud-
computing model.

a tree Tt seems to lead to the error being smaller when Tt
has a rate significantly smaller than some other tree of the
same cascade size.

6 CLOUD-COMPUTING MODEL

To test the efficacy and efficiency of our approaches, we
ran numerical experiments on a large-scale model. High
dependability is crucial for cloud-computing services [14],
and we considered a dependability model of a three-
tier cloud-computing system in Figure 9. Each group of
boxes represents a component type, where the labels FS,
MS, BS, LB, HV and SC, respectively, denote front-
end servers, middle-end servers, back-end servers, load
balancers, hypervisors, and system controllers. There is
a directed edge from component type i to type j if the
failure of a component of type i can probabilistically cause
a component of type j to immediately fail, i.e., j P Γi.
The label on an edge from i to j is the component-affected
probability φi,j . For example, there are edges from HV to
FS, MS and BS because according to [42], hypervisors
often “cause other system components to fail and certainly
cause server racks to fail because of state corruption.”

The redundancies for the different component types are
rFS � rMS � rBS � 4, rLB � rHW � 5, and rSC � 2,
which are depicted in Figure 9 by the multiple boxes for
a component type. We assume the system is operational if
and only if there is at least one component up of each type.
Additionally, the system operates in two environments:
high demand (e � 1) and low demand (e � 0). The
resulting state space S of the CTMC has size |S| � 27,000.

For the high-demand environment, the component
types have failure rates λFS,1 � λMS,1 � λBS,1 � 1{8760,
λLB,1 � λHV,1 � 1{4380, and λSC,1 � 1{43800, where the
time unit is hours. Thus, in the high-demand environment,
the mean component lifetime of a server is one year,
each load balancer and hypervisor has a mean lifetime
of 0.5 years, and a system controller has a mean lifetime
of 5 years. In the low-demand environment 0, we set
λSC,0 � λSC,1{2 and λi,0 � λi,1{4 for each other com-
ponent type i � SC. These values are roughly comparable
to failure rates given in [16], in which the authors state,
based on discussions with vendor personnel, their numbers
are “reasonable” with respect to actual proprietary values.

In environment 1, the repair rate for failed servers is
1{12, and the load balancer and hypervisor (resp., system
controller) have double (resp., half) that repair rate. In en-
vironment 0, the repair rate is halved for each type, except
for the system controller, which has the same repair rate in
both environments. These values are roughly comparable
to repair rates used in [16]. The environment switches once
every 12 hours on average to the other environment, so
ν0 � ν1 � 1{12 and δ0,1 � δ1,0 � 1.

Table 4 contains results from running the new version
of DECaF to compute the MTTF and DCSUF of vari-
ous versions of the cloud-computing model. The versieons
differ in the amount of cascading possible: high, low, and
none. The high-cascading version is as described above,
with component-affected sets ΓFS � tMSu, ΓMS �
tFS,BS, SCu, ΓBS � tMSu, ΓLB � tFS,MS,BSu,
ΓHV � tFS,MS,BSu, and ΓSC � tLB,HV u. Some sets
are smaller in the low-cascading version: ΓLB � ΓHV �
tMSu and all other Γi are unchanged from the high-
cascading version. Also, the low-cascading version has the
same component-affected probabilities φi,j as shown in
Figure 9 for j P Γi, and φi,j � 0 for j R Γi. The no-
cascading version has all Γi � H and φi,j � 0. For the high-
and low-cascading models, we ran DECaF three times: once
with the complete generator matrix Q that includes all
cascading-failure trees, using the algorithms from Section 4;
a second time with generator matrix Q1, which implements
only the rate threshold τr from Sections 5 and 5.1; and
the third with generator matrix Q2, which further corrects
the diagonal entries to equal those in Q, as described in
Section 5.2. (For the model with no cascading, the methods
from Sections 5.1 and 5.2 do not eliminate any trees, so we
only report the results for Q.) The third column of Table 4
shows the number of unique trees that are constructed by

TABLE 4: Numerical results for different versions of the cloud-computing model, including the failure-transition time
(FTT), non-failure transition time (NFTT), fundamental-matrix time (FMT), MTTF time (MTTFT), DCSUF time
(DCSUFT), and rate-threshold time (RTT).

Casc. Gen. Unique Trees % Error CPU Times (seconds)
Amt. Mat. Trees Eval. MTTF MTTF Total FTT NFTT FMT MTTFT DCSUFT RTT

High Q 2.00E08 1.93E10 26851 0.0 269957.0 266205.2 2.1 3733.7 0.15 15.87 0
High Q1 2.67E05 3.82E08 42796 59.4 4160.0 442.1 2.2 3699.7 0.15 15.86 0.02
High Q2 2.67E05 3.82E08 26046 �3.0 4089.9 437.8 1.9 3633.4 0.14 16.59 0.02

Low Q 1.04E06 3.17E08 49453 0.0 5039.9 1384.0 1.9 3638.7 0.14 15.13 0
Low Q1 2.92E04 4.70E07 57674 16.6 4012.0 47.2 2.2 3943.0 0.25 19.33 0.03
Low Q2 2.92E04 4.70E07 49353 �0.2 3688.7 44.9 1.9 3626.8 0.14 14.93 0.02

None Q 6.00E00 1.28E05 67606175 0.0 3445.5 0.04 1.9 3428.4 0.14 14.98 0

21

DECaF, where each unique tree may be used several times
for different transitions, as explained in Section 4. Summing
up the number of times each unique tree is used in some
failure transition over all unique trees results in the entries
in the column labeled “Trees Eval.”; thus, the ratio of Trees
Evaluated over Unique Trees gives the average number of
failure transitions for which each unique tree was used. The
fifth column of Table 4 contains the MTTF for the specified
generator matrix Q, Q1 or Q2. As expected, MTTFpQq
increases (i.e., the system becomes more dependable) as
the amount of cascading decreases. For each model version,
the sixth column shows that the percent error in the MTTF
for Q1 is always nonnegative in this model, so Q1 results in
a more dependable system, as we had noted is usually the
case in Section 5. Note that Q1 produces MTTFs that are
reasonably close to the true value from Q, but Q2 does
substantially better, resulting in errors of at most a few
percent.

The last seven columns of Table 4 present the CPU
times it took DECaF to perform various computations.
The experiments were performed on the same computer
used to generate the results in Figure 2 (but different
from the one employed for Table 3). The “Total” column
gives the amount of time required to complete an entire
run of DECaF to compute the MTTF and DCSUF. (We
did not compute the SSU nor the SSDCS in this set of
experiments.) As in Table 3, the FTT (resp., NFTT) is the
failure-transition (resp., non-failure transition) time. Note
that NFTT is insignificant compared to Total Time for all
rows in Table 4. The FTT includes the time to perform
the computations corresponding to the columns Unique
Trees and Trees Eval. The FMT is the fundamental-matrix
time, which is the time to compute pI � PU q

�1, needed for
computing both the MTTF and DCSUF; see Sections 4.1.2
and 4.1.4. MTTFT is the additional CPU time required
within a run to compute the MTTF after computing the
fundamental matrix. DCSUFT is the extra time to compute
DCSUF after pI � PU q

�1 has been computed. RTT in the
last column of Table 4 is the rate-threshold time: how
long it took to compute the rate threshold τr, which we
note is minuscule compared to FMT and the Total Time.
Moreover, RTT is always much smaller than FTT, with
orders of magnitude difference when there are many trees.
Thus, the algorithm in Section 5.1 to compute τr is very
efficient and incurs virtually no overhead.

In the high-cascading version of the model, the use of
the rate threshold decreased the number of unique trees by
a factor of 761, with a 51-fold drop in the trees evaluated.
FTT was lowered by a factor of about 600, and the total
time shrank by over 60-fold. The error in the MTTF from
using only the rate threshold (i.e., Q1) is about 60%, and
further applying the diagonal correction (i.e.,Q2q produced
less than 3% error. Thus, the methods of Sections 5.1 and
5.2 can dramatically reduce computation time with small
error in models with a high level of cascading. For the
low-cascading model version, the unique trees generated
decreased by a factor of 35.6, resulting in a roughly 30-
fold reduction in FTT. The total time does not shrink as
dramatically because FMT now becomes the bottleneck.
(We are currently investigating more efficient techniques to
compute the fundamental matrix.) Compared to the high-

0 5 10 15 20
10�6

10�5

10�4

10�3

10�2

10�1

100

Cascade size (l)

χ
pl
q

Q

Q1

Q2

Fig. 10: DCSUF χplq, l P r1, 24s, for cloud model with high
cascading, where only non-zero values of χplq are plotted

cascading model, Q1 and Q2 for low cascading produce
substantially more accurate values for MTTF, with only
0.2% error for Q2.

For the cloud model with the high (resp., low) level of
cascading, Figure 10 (resp., 11) plots (on semilog scale)
the values of the DCSUF χplq from Section 4.1.4 for the
possible cascade (tree) sizes l for the generator matrices Q,
Q1 and Q2. Although the theoretical largest possible value
of l is 24, which is the sum of all component redundancies,
we have that χplq � 0 for Q when l ¥ 20 (resp., l ¥ 13)
for the model with high (resp., low) cascading as those
larger trees cannot occur because of limitations imposed
by the component-affected sets Γi and the redundancies.
In Figure 10 we see that the values of χplq closely match for
all three generators when l is small; the values for Q1 and Q
start diverging for the middle range of l; and there are no
values forQ1 andQ2 for large l. The apparent reason for this
arises from the way we apply the growing criterion with rate
threshold τr, which we recall generates a tree T if and only
if its approximate rate R1pT q ¥ τr. Cascades with small
size l correspond to trees T with relatively large R1pT q, so
most of those trees are not eliminated by τr. This leads to
χplq for Q1 and Q2 being close to that for Q for small l. The
middle values of l result in trees whose approximate rate
straddle τr, so some portion of them are constructed and
others not. This leads to Q1 having substantial error for the
middle range of l, butQ2 largely corrects this. Finally, trees
with large size l are completely eliminated by τr, so Q1 and
Q2 give χplq � 0. Figure 11, which is for the low-cascading
version, exhibits a similar pattern but without the behavior
on the far right of Figure 10 because, although Q1 and Q2

correspond to eliminating some trees in the low-cascading
model, there are still others that are built for each value of
l for which χplq ¡ 0 for Q.

7 CONCLUDING REMARKS

We developed efficient algorithms and data structures to
construct, analytically solve, and approximate a CTMC
model of a dependability system having cascading failures.

22

0 2 4 6 8 10 12

10�4

10�3

10�2

10�1

100

Cascade size

χ
pl
q

Q

Q1

Q2

Fig. 11: DCSUF χplq, l P r1, 24s, for cloud model with low
cascading, where only non-zero values of χplq are plotted

We implemented the ideas in a software package called
the Dependability Evaluator of Cascading Failures, DE-
CaF, which builds the CTMC from basic building blocks
describing the system and then solves it to compute var-
ious dependability measures. In addition to the SSU and
MTTF, we also derive two new dependability measures:
the steady-state distribution of cascade size (SSDCS), and
the distribution of cascade size until failure (DCSUF).

In contrast to many studies of CTMCs, simply building
the CTMC in our setting poses tremendous computational
hurdles. The problem arises from the complexity in gener-
ating the cascading-failure trees, and we provided efficient
methods to quickly construct the trees. The new algorithms
led to decreasing the runtime of DECaF by orders of
magnitude compared to the previous version in [22].

But even with efficient methods for generating trees,
the exponential growth in the number of trees limits the
size of models that can be analyzed exactly. Thus, we
also proposed a technique that judiciously generates only a
subset of the trees by using a rate threshold τr. Exploiting
the idea of most likely paths to failure, the approach tries
to generate trees that arise on such paths but omits those
on significantly less probable paths. Because not all trees
are generated, the resulting dependability measures have
some error, but our numerical experiments indicate the
approach can dramatically reduce computation time and
still have very accurate results when we further correct
for the diagonal entries in the generator matrix, especially
when the component-affected probabilities are relatively
small (see Section 5.3).

Our approach in Section 5.1 to specify τr exploits
approximations based on the system comprising highly
reliable components, i.e., failure rates are much smaller
than repair rates. Section 6 presented numerical results
for a large cloud model with this characteristic, as well
as the φi,j not being too large, and our methods reduced
computation time by orders of magnitude with just a few
percent error. Our techniques can also work with models
of other systems satisfying these assumptions in different
applications areas.

It would be interesting to see if additional problem
structure can be exploited to obtain more efficient methods
by using e.g., lumping [9], symmetries [10], or continuous
approximations [5].

Another topic for future work is to adapt the approx-
imation based on a subset of the trees for use in a quick
simulation method using importance sampling (IS) [33].
Previously developed IS schemes have applied the concept
of most likely paths to failure in their design for efficiently
simulating dependability systems with limited cascading
failures [23], [33]. We plan to investigate expanding the
idea in our model with more general cascading failures.

ACKNOWLEDGMENTS

This work has been supported in part by the National
Science Foundation under Grants No. CMMI-0926949 and
CMMI-1200065. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of
the National Science Foundation. Additional funding came
from the NJIT Provost Undergraduate Summer Research
program. The authors thank Prasad Tendolkar for his
contributions to the early efforts of the project. Finally, the
authors thank the associate editor and referees for making
numerous suggestions that led to an improved paper.

APPENDIX

Computing a Tree’s Rate Revisited
We reconsider our example in Section 3.2 to show how to
compute η from (1) for Figure 1 using the data structure
BFH (breadth-first history). We assume the tree in Fig-
ure 1 was first constructed from several recursive calls to
AddTreeLevel (Algorithm 2), which also built BFH as
follows.

A @-1 B-2 @-6 B-7
B @-2 @-7 A-6
C A-1 @-5 A-6 B-7

We have also included the node IDs in BFH to aid in the
following discussion, although the IDs are not part of BFH.

We then proceed to ComputeTreeRate (Algorithm 3)
to compute η. As in Section 3.2, prior to iterating through
BFH, we have uA � 2, uB � 2 and uC � 1. Iteration
through BFH occurs as specified in ComputeTreeRate in
lines x3y–x9y.

 Iteration through the linked list at index A is as
follows. The @-1 means a component of type A has
failed at ID 1, so we then decrement uA to 1. Then
for the next entry, because uA is still positive, η
includes a factor p1� φB,Aq from B-2 in its product
from the A not failing at ID 4. Next the @-6 means
that a component of typeA failed at ID 6, so we then
decrement uA to 0. Finally, the B-7 means that the
node of type A at ID 10 has as its parent the node
of type B at ID 7; but because uA � 0 at this point,
η does not include a factor p1� φB,Aq for B-7.

 Iteration through the linked list at index B is as
follows: @-2 and @-7 mean components of type
B have failed at IDs 2 and 7 respectively, so we

23

decrement uB from 2 to 1 and then from 1 to 0.
Because uB is now 0, η does not include the factor
p1� φA,Bq for A-6.

 Iteration through the linked list at index C is as
follows. Because uC starts out positive (i.e., uC �
1), we include the factor p1� φA,Cq from A-1. Next,
@-5 means a component of type C has failed at ID
5, so we then decrement uC to 0. Because uC � 0
now, we do not include any further factors from this
row in η.

Multiplying the contributions from each index results in
η � p1� φB,Aqp1� φA,Cq.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing, 1:11–
33, 2004.

[2] C. Beounes, M. Aguera, J. Arlat, S. Bachmann, C. Bourdeau,
J.-E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J. Moreira
de Souza, D. Powell, and P. Spiesser. SURF-2: A program
for dependability evaluation of complex hardware and software
systems. In The Twenty-Third International Symposium on
Fault-Tolerant Computing (FTCS-23) Digest of Papers, pages
668–673, 1993.

[3] S. Bernson, E. de Souza e Silva, and R. Muntz. A methodology
for the specification of Markov models. In W. Stewart, editor,
Numerical Solution to Markov Chains, pages 11–37, 1991.

[4] A. Blum, P. Heidelberger, S. S. Lavenberg, M. K. Nakayama, and
P. Shahabuddin. Modeling and analysis of system availability us-
ing SAVE. In Proceedings of the 23rd International Symposium
on Fault Tolerant Computing, pages 137–141, 1994.

[5] L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Contin-
uous approximation of collective system behaviour: A tutorial.
Performance Evaluation, 70:317–349, 2013.

[6] H. Boudali, P. Crouzen, and M. Stoelinga. A rigorous, compo-
sitional, and extensible framework for dynamic fault tree analy-
sis. IEEE Transactions on Dependable and Secure Computing,
7(2):128–143, 2010.

[7] M. Bouissou and J. L. Bon. A new formalism that combines
advantages of fault-trees and Markov models: Boolean logic
driven Markov processes. Reliability Engineering and System
Safety, 82:149–163, 2003.

[8] W. G. Bouricius, W. C. Carter, and P. R. Schneider. Reliability
modeling techniques for self-repairing computer systems. In
Proceedings of the 1969 24th ACM National Conference, pages
295–309. ACM, 1969.

[9] P. Buchholz. Exact and ordinary lumpability in finite Markov
chains. Journal of Applied Probability, 31:59–75, 1994.

[10] P. Buchholz. Hierarchical Markovian models: symmetries and
reduction. Performance Evaluation, 22(1):93–110, 1995.

[11] R. W. Butler. The SURE reliability analysis program. In AIAA
Guidance, Navigation, and Control Conference, pages 198–204,
1986.

[12] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman.
Critical points and transitions in an electric power transmission
model for cascading failure blackouts. Chaos, 12:985–1076, 2002.

[13] P. Crucitti, V. Latora, and M. Marchiori. Model for cascading
failures in complex networks. Physical Review E, 69:045104,
2004.

[14] S. Distefano, A. Puliafito, and K. S. Trivedi. Guest editors’ intro-
duction: Special section on cloud computing assessment: Metrics,
algorithms, policies, models, and evaluation techniques. IEEE
Transactions on Dependable and Secure Computing, 10:251–252,
2013.

[15] J. B. Dugan and K. S. Trivedi. Coverage modeling for depend-
ability analysis of fault-tolerant systems. IEEE Transactions on
Computers, 28:775–787, 1989.

[16] S. Goddard, R. Kieckhafer, and Y. Zhang. An unavailabil-
ity analysis of firewall sandwich configurations. In Sixth
IEEE International Symposium on High Assurance Systems
Engineering, pages 139–148, 2001.

[17] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, and P. W.
Glynn. A unified framework for simulating Markovian models of
highly dependable systems. IEEE Transactions on Computers,
C-41:36–51, 1992.

[18] H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur,
and J. Robbins. Failure as a Service (FaaS): A cloud service for
large-scale, online failure drills. Technical Report UCB/EECS-
2011-87, Electrical Engineering and Computer Sciences, U. C.
Berkeley, 2011.

[19] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria. What bugs live in the cloud? A
study of 3000+ issues in cloud systems. In E. Lazowska, D. Terry,
R. H. Arpaci-Dusseau, and J. Gehrke, editors, Proceedings of the
ACM Symposium on Cloud Computing, pages 7:1–7:14, 2014.

[20] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar. Why does the cloud stop
computing? Lessons from hundreds of service outages. In M. K.
Aguilera, B. Cooper, and Y. Diao, editors, Proceedings of the
7th ACM Symposium on Cloud Computing, pages 1–16, 2016.

[21] C. Hirel, B. Tuffin, and K. S. Trivedi. SPNP version 6.0. Lecture
Notes in Computer Science, 1786:354–357, 2000.

[22] S. M. Iyer, M. K. Nakayama, and A. V. Gerbessiotis. A
Markovian dependability model with cascading failures. IEEE
Transactions on Computers, 139:1238–1249, 2009.

[23] S. Juneja and P. Shahabuddin. Rare event simulation techniques:
An introduction and recent advances. In S. G. Henderson
and B. L. Nelson, editors, Elsevier Handbooks in Operations
Research and Management Science: Simulation, pages 291–350.
Elsevier, Amsterdam, 2006.

[24] D. E. Knuth. The Art of Computer Programming: Fundamental
Algorithms. Addison-Wesley, Reading, Massachusetts, third
edition, 1997.

[25] G. Krishnamurthi, A. Gupta, and A. K. Somani. The HIMAP
modeling environment. In Proceedings of the 9th International
Conference on Parallel and Distributed Computing Systems,
pages 254–259, 1996.

[26] H. Langseth and L. Portinale. Bayesian networks in reliability.
Reliability Engineering and System Safety, 92:92–108, 2007.

[27] R. G. Little. Controlling cascading failure: Understanding the
vulnerabilities of interconnected infrastructures. Journal of
Urban Technology, 9:109–123, 2002.

[28] H. M. Markowitz. Portfolio selection. Journal of Finance, 7:77–
91, 1952.

[29] T. McDaniels, S. Chang, K. Peterson, J. Mikawoz, and D. Reed.
Empirical framework for characterizing infrastructure failure
interdependencies. Journal of Infrastructure Systems, 13(3):175–
184, 2007.

[30] S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri.
RADYBAN: A tool for reliability analysis of dynamic fault trees
through conversion into dynamic Bayesian networks. Reliability
Engineering and System Safety, 93:922–932, 2008.

[31] B. Mukherjee, F. Habib, and F. Dikbiyik. Network adapt-
ability from disaster disruptions and cascading failures. IEEE
Communications Magazine, 52(5):230–238, May 2014.

[32] J. K. Muppala, R. M. Fricks, and K. S. Trivedi. Techniques for
system dependability evaluation. In W. K. Grassmann, editor,
Computational Probability, pages 445–480, The Netherlands,
2000. Kluwer.

[33] V. F. Nicola, P. Shahabuddin, and M. K. Nakayama. Techniques
for fast simulation of models of highly dependable systems. IEEE
Transactions on Reliability, 50:246–264, 2001.

[34] A. Peterson. oj! algorithms. http://ojalgo.org/, 2013.
[35] S. M. Ross. Stochastic Processes. Wiley, New York, second

edition, 1995.
[36] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and

Reliability Analysis of Computer Systems. Kluwer, Boston, 1996.
[37] K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo fault tree

analysis tool. In Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing, pages 232–235, 1999.

[38] K. S. Trivedi. Probability and Statistics with Reliability,
Queueing, and Computer Science Applications. Wiley, New
York, second edition, 2001.

[39] M. Walter, M. Siegle, and A. Bode. Opensesame–the simple
but extensive, structured availability modeling environment.
Reliability Engineering and System Safety, 93:857–873, 2008.

24

[40] M. Xie, Y. S. Dai, and K.L. Poh. Computing Systems Reliability:
Models and Analysis. Kluwer Academic, New York, 2004.

[41] H. Xu, L. Xing, and R. Robidoux. DRBD: Dynamic reliability
block diagrams for system reliability modeling. International
Journal of Computers and Applications, 31, 2009. DOI:
10.2316/Journal.202.2009.2.202-2552.

[42] M. Ye and Y. Tamir. Rehype: Enabling vm survival across
hypervisor failures. ACM SIGPLAN Notices, 46(7):63–74, 2011.

[43] J.-F. Zheng, Z.-Y. Gao, and X.-M. Zhao. Clustering and
congestion effects on cascading failures of scale-free networks.
Europhysics Letters, 79:58002, 2007.

Mihir Sanghavi received his BS degree in Computer Science and Ap-
plied Mathematics from the New Jersey Institute of Technology in 2013.
He is currently a technology associate at Morgan Stanley rewriting the
platform that supports ultra high-net-worth individuals. He is responsible
for gathering business requirements, designing, proofing and developing
web and mobile software solutions. His current research interest is in
natural language processing and algorithmic trading through dark pools.

Sashank Tadepalli received the BS degree in Computer Science from
the New Jersey Institute of Technology in 2013. He is currently a lead
systems engineer at Kydia Inc, where he is responsible for designing,
engineering and developing web-based software solutions. He has held
a previous position in Tata Consultancy Services as a solutions engineer
and technology consultant. His current research interest is in the study
of high-performance applications in the mobile-web domain.

Timothy J. Boyle Jr. received BS and MS degrees in Computer Science
from the New Jersey Institute of Technology.

Matthew Downey received a BS in Computer Science from the New
Jersey Institute of Technology.

Marvin K. Nakayama is a professor in the Department of Computer
Science at the New Jersey Institute of Technology. He has previously
held positions at Rutgers University’s Graduate School of Management,
Columbia Business School in New York, and at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York. He received
a B.A. in mathematics/computer science from University of California,
San Diego, and an M.S. and Ph.D. in operations research from Stanford
University. Dr. Nakayama won second prize in the 1992 George E.
Nicholson Student Paper Competition sponsored by INFORMS and is
a recipient of a CAREER Award from the National Science Foundation.
He was the simulation area editor for INFORMS Journal on Computing
from 2007–2016, and is an associate editor for ACM Transactions
on Modeling and Computer Simulation. His research interests include
simulation and modeling, applied probability, statistics, dependability
modeling, energy and risk analysis.

