Efficient Algorithms for Analyzing Cascading
Failures in a Markovian Dependability Model

Mihir Sanghavi, Sashank Tadepalli, Timothy J. Boyle Jr., Matthew Downey and Marvin K. Nakayama

Abstract—We devise efficient algorithms to construct, evaluate, and approximate a Markovian dependability system with cascading
failures. The model, which was previously considered in [22], represents a cascading failure as a tree of components that
instantaneously and probabilistically fail. Constructing the Markov chain presents significant computational challenges because it
requires generating and evaluating all such possible trees, but the number of trees can grow exponentially in the size of the model. Our
new algorithm reduces runtimes by orders of magnitude compared to a previous method in [22]. Moreover, we propose some efficient
approximations based on the idea of most likely paths to failure to further substantially reduce the computation time by instead
constructing a model that uses only a subset of the trees. We also derive two new dependability measures related to the distribution of
the size of a cascade. We present numerical results demonstrating the effectiveness of our approaches. For a model of a large
cloud-computing system, our approximations reduce computation times by orders of magnitude with only a few percent error in the
computed dependability measures.

Index Terms—Availability, reliability modeling, Markov processes, trees, cascading failures.

+
Acronyms component fails
BFH breadth-first-history data structure for i probability that a failure of a component

computing tree rate of type ¢ causes a component of type j € I';

CTMC continuous-time Markov chain to immediately fail. N
DCSUF distribution of cascade size until failure Z CTMC of dependability system
DECaF Dependability Evaluator of Cascading Failures S state space of CTMC Z _
DMT dependability-measure (computation) time Ty state with 1o comps falleq and environment 0
DTMC discrete-time Markov chain W,, U, Us sets of environment, repair, and failure
FTT failure-transition (computation) time transitions, resp.
MTTF mean time to failure R(T) rate of tree T’ o
MTTFT MTTF (computation) time p product of component-affected probabilities ¢; ;

NFTT non-failure-transition (computation) time of failed components in a tree
RTT rate threshold (computation) time n product of complements of component-affected

SSDCS steady-state distribution of cascade size probabilities of non-failing components in a tree

SSU steady-state unavailability U; current number of up components of type 7
U, F sets of up and failed states, resp., in S
] Y embedded DTMC
Notation P transition probability matrix of DTMC
Q (infinitesimal) generator matrix of Py submatrix of P corresponding to U
complete CTMC including all trees a(x,y) number of components failing in transition (x,y)
Q set {1,2,..., N} of component types b sum of redundancies of all component types
N number of component types 6 steady-state distribution of cascade size (SSDCS)
T redundancy of component type i € 2 X distribution of cascade size until failure (DCSUF)
& set {0,1,..., L} of environments Q' CTMC generator matrix when trees omitted
Ve (exponential) rate of leaving environment e € £ R'(T) approximate rate of tree T
Oe,er transition probability of moving from i max failure rate of type i over all environments
environment e to e’ d; minimum number of components failed of
Aies fie failure and repair rates, resp., of a component type i needed for system to be down
of type ¢ in environment e Th, Tn, Tr height, node, and rate thresholds, resp.
T; (ordered) set of component types that can be o one factor in rate threshold
caused to fail immediately when a type-i 154 second factor in rate threshold
fi number of type-i comps failing in a transition

e The authors are affiliated with the Department of Computer on'approximate most likely path to fz'iﬂure
Science, New Jersey Institute of Technology, Newark, NJ, 07102. G weighted graph (V, E, W) used to build tree

E-mail: marvin@njit.edu to approximate most likely path to failure

P’ approximate transition probability matrix
Q" CTMC generator matrix when trees omitted
and corrected diagonal entries

€ difference in diagonal entry (z,z) for Q and @’
FS, MS front-end and middle-end servers, resp.

BS, LB back-end server and load balancer, resp.

av hypervisor

1 INTRODUCTION

M odern society relies on complex stochastic systems
that operate in uncertain environments. These sys-
tems can suffer from cascading failures, in which the
failure of one part of the system causes other parts to
also fail. Examples include networks [13], electric power
grids [12], national infrastructures [27], and transportation
and communication systems [43]. Cascading failures in
these systems can be catastrophic, causing widespread
disruptions and damage.

Cascading failures occur in quite varied and compli-
cated ways. For example, complex interdependencies have
led to propagating failures in telecommunications networks
initiated by disasters [31] and across infrastructure systems
due to blackouts [29]. In a large study of cloud-system
outages, [19] determines that cascades often arise from
both hardware (e.g., failures corrupting data) and software
issues (“killer bugs . .. that simultaneously affect multiple
nodes or the entire cluster”). Moreover, [20] conducts an-
other analysis of many recent large-scale service outages in
cloud systems, and provides statistics on the frequency and
durations of the outages; [20] further identifies prominent
causes of cascades, including “cascading bugs” (“one bug
simultaneously affects many or all of the redundancies,
hence impossibility of failover”) and redirected traffic from
failed nodes overwhelming healthy ones. In addition, [18]
also discusses several major cloud outages, where 25-30%
of the machines went down.

In this paper we devise methods for analyzing and
approximating a dependability system with cascading fail-
ures. We model such a system as a continuous-time Markov
chain (CTMC; e.g., Chapter 5 of [35]), where the system
is a collection of components operating in a randomly
changing environment, and each component can fail and
be repaired with specified failure and repair rates. We
represent a cascading failure as a tree of probabilistically
failing components that fail instantaneously, where the
root of the tree is the failing component that triggers the
cascade. The root probabilistically causes components from
a specified set to fail immediately, with each component
in the set having its own component-affected probability.
Each of these secondary failures subsequently cause other
components to probabilistically fail immediately, and so on.
The rate of the resulting tree depends on the failure rate
of the root and the component-affected probabilities of the
failing and non-failing components in the cascade.

Analyzing such a Markovian dependability model with
cascading failures presents significant computational chal-
lenges. Even simply building the (infinitesimal) generator
matrix @ of the CTMC can be extremely time consum-
ing, and indeed, the amount of work required can grow
exponentially in the number of components in the system.

2

For example, consider a simple system with components
A, B and C, where the failure of any one component
can cause each of the others to fail immediately with
certain probabilities. For a CTMC transition (z,y) in
which all three components fail instantaneously, there are
9 corresponding cascading-failure trees: A causing B to
fail, and then B causes C to fail; A causing B and C to
immediately fail; B causing A causing C' to fail; and so on. If
the different components’ failure rates and the component-
affected probabilities differ, then each of the 9 trees has a
different rate, and computing the (z,y)-entry in @ requires
summing the rates of all 9 trees. In general, the number
of trees corresponding to a single collection of components
instantaneously failing can grow exponentially in the size of
the set, with up to m™ ! different trees corresponding to a
collection of m components failing in a cascade in the worst
case [22]. Moreover, we need to examine each possible set of
components that can immediately fail, and the number of
such sets is exponential in the number of components in the
system. Thus, merely constructing the generator matrix @
for the CTMC presents significant computational hurdles.

The paper [22] considers the same dependability model
and provides an algorithm to build @, but that algorithm
often requires enormous runtimes to generate and solve
larger models. We now devise new algorithms, which are
significantly more efficient and can decrease the computa-
tional effort by orders of magnitude. We have developed
software implementing our techniques in Java, and we
call the package the Dependability Evaluator of Cascading
Failures (DECaF). DECaF reads in a user-created input file
specifying a model’s basic building blocks (e.g., component
types, redundancies, failure and repair rates, component-
affected probabilities), from which DECaF builds the
CTMC and solves it analytically for various dependability
measures.

Previous tree-generation algorithms exist (e.g., Section
2.3.4.4 of [24]) for enumerating all possible trees in which
there are no limitations on a node’s possible children. But
in our model, we restrict the children a particular node can
have, which is why [22] and the current paper needed to
develop new tree-generation algorithms.

In addition, because the time to construct) inher-
ently grows exponentially because of the trees to build,
we also propose efficient approximations to reduce the
computational effort by generating only a subset of the
trees. Our method exploits the idea of the most likely
paths to failure, which has been previously utilized to
design provably effective quick simulation methods based
on importance sampling for analyzing systems with highly
reliable components, i.e., failure rates are much smaller
than repair rates [23], [33]. We apply the concept to try to
generate only the cascading-failure trees that arise on the
most likely paths to failure, because these paths typically
contribute most to the dependability measures computed,
and leave out those trees on significantly less likely paths.
The omission leads to an approximate generator matrix,
which incurs errors in the resulting dependability measures.
We explore the trade-off of the time savings from skipping
trees with the error in the dependability measures. We
also present numerical results demonstrating that for a
large model with significant amounts of cascading possible,

our techniques can reduce computation time by orders of
magnitude while incurring only small error.

The rest of the paper has the following layout. Section 2
reviews related work on dependability models, with a
particular focus on cascading failures and other component
interactions. We describe the mathematical model in Sec-
tion 3. Section 4 contains our new algorithms to build the
CTMC’s generator matrix and presents numerical results
comparing its runtime to that of the implementation in [22].
Section 4.1 discusses dependability measures, including two
new ones related to the cascade-size distribution. In Sec-
tion 5 we develop the approximations that reduce runtime
by instead building a model based on only a subset of the
trees, which introduces inaccuracies in the dependability
measures, and we explore the trade-off through experi-
ments. We apply our methods to a large cloud-computing
model in Section 6, and Section 7 provides some concluding
remarks. An appendix gives a detailed example showing
how our algorithms compute the rate of a tree.

2 RELATED WORK

As mentioned in Section 1, the model we analyze was
previously studied in [22], but our new algorithms can
solve large models with orders-of-magnitude reductions in
runtime. In addition, the current paper devises approxi-
mations to further substantially reduce computation times
while incurring only small error; [22] does not consider
such approximations. The SAVE (System Availability Es-
timator) package [4], developed at IBM, analyzes a similar
Markovian dependability model with cascading failures
having the restriction that there is only one level of cas-
cading; i.e., the root of a tree can cause other components
to immediately fail, but those subsequent failures cannot
cause further instantaneous failures. Allowing for more
than a single level of cascading makes the CTMC model
we consider tremendously more difficult to construct.
Other modeling techniques, such as fault trees, relia-
bility block diagrams (RBDs), and reliability graphs, have
also been applied to study dependability systems, but these
approaches do not allow for the level of details that are
possible with CTMCs [32]. However, a notable drawback of
CTMCs is the explosive growth in the size of the state
space, which increases exponentially in the number of
components in the system. Other packages for analyzing
Markovian dependability models include SHARPE [36],
SURF [11], SURF-2 [2], TANGRAM [3], and HIMAP [25].
Instead of assuming a CTMC model, some packages
work with other mathematical models, such as stochastic
Petri nets (SPNs), which are analyzed by SNPN [21].
OpenSESAME [39] also solves SPNs described via a high-
level modeling language, which allows for cascading failures
through failure dependency diagrams, but the complexity
of the cascades that can be handled is not as great as in our
model. The Galileo package [37] examines dynamic fault
trees (DFTs), which can model certain types of cascading
failures via functional dependency (FDEP) gates. One
limitation of the FDEP gate is that it appears to allow
for only deterministic cascading; i.e., the failure of one
component deterministically causes other components to
fail. Our framework permits probabilistic cascading, where

3

the failure of one component causes other components to
fail, each with a given probability. Moreover, modeling
a cascading failure with a DFT FDEP gate can lead to
an ambiguity in how a cascade progresses, complicating
the construction of a CTMC model of the dependability
system. For example, consider a system with components A
and B. Suppose that the failure of A can immediately cause
B to fail, and also that the failure of B can immediately
cause A to fail. Then in moving from a state with both
A and B up to a state with both failed, there are two
possible ways in which this can occur: A first fails, causing
B to fail immediately; and B first fails, causing A to fail
immediately. A CTMC model needs to explicitly consider
both possibilities, as is done in [22] and as we do in our
development, but the DFT does not. The paper [6] instead
uses an input/output interactive Markov chain (I/O-IMC)
to formalize DFT, producing a continuous-time Markov
decision process (CTMDP). An advantage of the approach
in [6] is that the resulting I/O-IMC may be smaller than the
corresponding CTMC. But analysis of a CTMDP provides
only bounds for dependability measures rather than their
exact values, as one can get by solving a CTMC.

The paper [26] considers Bayesian networks for studying
reliability systems. The software tool RADYBAN [30]
includes a generalization of the DFT FDEP gate called
a probabilistic dependency (PDEP) gate, which allows for
a type of probabilistic cascading failure that seems to differ
from ours. Specifically, suppose that when a component of
type A fails, it can cause a component of type B and a
component of type C' to fail instantaneously. In the PDEP
gate, A causes B and C to both fail with a single specified
probability. In our framework, if A fails, the immediate
failures of B and C' are independent events, each occurring
with its own probability. Also, RADYBAN converts a DFT
into a dynamic Bayesian network to compute reliability
measures.

Other mathematical modeling techniques that allow
some forms of cascading failures or component interactions
include Boolean driven Markov processes (BDMP) [7],
common-cause and common-mode failures [1], [8], and
coverage [15]. DRBD [41] uses dynamic reliability block
diagrams, which extend traditional RBDs to allow for
certain component interactions.

3 MODEL

We now describe the mathematical model. We work with
the stochastic model of [22], which considers the evolution
over time of a repairable dependability system operating in
a randomly changing environment. We start by explaining
the basic building blocks of the model, which we then use
to define a CTMC. The system consists of a collection
Q = {1,2,...,N} of N < oo component types. Each
component type ¢ € 2 has a redundancy 1 < r; < oo, and
the r; components of type i are assumed to be identical. A
component can be either operational (up) or failed (down).

Environments

The environment changes randomly within a set &€ =
{0,1,2,...,L}. For example, the environment might rep-
resent the current load on the system, and if there are

two possible environments, 0 and 1, then 0 (resp., 1) may
represent a low (resp., high) load. Once the environment
enters e € &£, it remains there for an exponentially dis-
tributed amount of time with rate v, > 0, after which
the environment changes to e’ with probability ... > 0,
where 0. = 0 and Y}, 0cer = 1. We assume the matrix
§ = (be,er : €,€ € &) is irreducible; i.e., for each e, e’ € &,
there exists k > 1 and a sequence eg = e,e1,€3,...,6, =€
with each e; € £ such that 1—[2:01 deieisy > 0. In other
words, it is possible to eventually move from environment
e to environment e’.

Failure and Repair Rates

The components in the system can randomly fail and then
be repaired. When the environment is e € £, the failure rate
and repair rate of each component of type ¢ are A\; o > 0
and p1; . > 0, respectively. If there is only one environment
e, i.e., |E] = 1, then the lifetimes and repair times of
components of type i are exponentially distributed with
rates A; o and f; 0, respectively. Exponential distributions
are frequently used to model lifetimes of hardware and
software components; e.g., see [40]. We assume that all
operating components of a type ¢ have the same failure rate
Aie in environment e. Thus, in a system with redundancies
for which not all components of a type are needed for
operation of the system, the extras are “hot spares” because
they fail at the same rate as the main components.

Cascading Failures

Our model includes probabilistic, instantaneous cascading
failures occurring as follows. The ordered set I'; specifies the
types of components that a failure of a type-i component
can cause to immediately fail. When a component of type
1 fails, it directly causes a single component of type j € T';
to fail immediately with probability ¢; ; > 0 (if there is
at least one component of type j up), and we call ¢;;
a “component-affected probability”. The events that the
individual components of types j € I'; fail immediately are
statistically independent. Thus, when a component of type
i fails, there are statistically independent “coin flips” to
determine which components in I'; fail, where the coin flip
for j € T'; comes up heads (one component of type j fails)
with probability ¢;; and tails (no component of type j
fails) with probability 1 — ¢; ;.

A cascading failure can continue as long as there are
still components operational in the system. For example,
the failure of a component of type ¢ may cause a component
of type j to fail (with probability ¢; ;), which in turn makes
a component of type k fail (with probability ¢;), and so
on. As noted in [22], the SAVE package [4] allows for only
one level of cascading, but the unlimited cascading in our
model makes it significantly more difficult to analyze.

We can think of a cascading failure as a tree of instanta-
neously failing components. The root is the component,
say of type i, whose failure triggers the cascade. The
root’s children, which are from I';, are those components
whose immediate failures were directly caused by the root’s
failure. At any non-root level of the tree, these components’
failures were directly caused by the failures of their parents
at the previous level. Although all the failing components in
a cascade fail at the same time, we need to specify an order

4

in which they fail for our problem to be well-defined, as we
explain later in Section 3.2. We assume the components in
a tree fail in breadth-first order.

Repair Discipline

There is a single repairman who fixes failed components
using a processor-sharing discipline. Specifically, if the
current environment is e and there is only one failed
component, which is of type 7, then the repairman fixes that
component at rate j; .. If there are b components currently
failed, then the repairman allocates 1/b of his effort to
each failed component, so a failed component of type ¢ is
repaired at rate p; /b. (While our model assumes a single
repairman, we can easily extend the model to allow for
multiple repairmen. On the other hand, instead assuming
a first-come-first-served repair discipline would require the
Markov chain (see Section 3.1) to keep track of the order
in which components fail, leading to a much larger state
space.)

3.1 Markov Chain

We want to analyze the behavior of the system as it
evolves over time. Because of the processor-sharing repair
discipline and the exponential rates for the event lifetimes,
it will suffice to define the state of the system as a
vector containing the number of failed components of each
type and the current environment. Thus, let S = {z =
(xl,x27...,xN,xN+1) 0 < x; <r; Vie Q, TN4+1 € 5}
be the state space, where x; is the number of failed com-
ponents of type ¢ in state z and x4 1 is the environment.
Let Z = [Z(t) : t = 0] be the CTMC living on S keeping
track of the current state of the system. (If we had instead
assumed a first-come-first-served repair discipline, then the
state space would need to be augmented to keep track of the
order in which the current set of down components failed.)
We assume that Z starts in environment 0 € £ with no
components failed, i.e., state z, = (0,0,...,0). As noted
in [22] the CTMC is irreducible and positive recurrent.

Generator Matrix

We now describe the CTMC’s (infinitesimal) generator
matrix @ = (Q(z,y) : xz,y € S), where Q(z,y) is the rate
that the CTMC Z moves from state v = (z1,...,ZN,TN+1)
tostatey = (y1,...,yn,yn+1). lfy; = x; for each i € Q and
YN+1 # TN+1, then (z,y) is an “environment transition”
with Q(z,Y) = Vanyi0ensrynes- B ¥i = ;3 — 1 for one
i€ Q,y; =z, for cach j € Q —{i}, and yy41 = Tn+1, then
(z,y) is a “repair transition” corresponding to the repair of
a component of type 4, and Q(z,y) = xi,umNH/(ZjEQ xj).
If y; = x; for all ¢ € Q with y; > x; for some j € Q and
YN+1 = TN+1, then (z,y) is a “failure transition” in which
y; — x; components of type i fail, i € 2. Any other (z,y)
with & # y not falling into one of the above three categories
is not possible, so Q(z,y) = 0. Let ¥, U, and ¥¢ be the sets
of environment, repair, and failure transitions, respectively.
Each diagonal entry satisfies Q(z,x) = — Zy;&I Q(z,y), as
required for a CTMC; e.g., see Chapter 5 of [35].

We now determine the rate Q(z, y) of a failure transition
(z,y). First consider the case when cascading failures are
not possible, i.e., I'; = ¢ for each type i. Then the only

possible failure transitions (z,y) have y; = x; + 1 for one
i€ Q,y; = x; for each j € Q — {i}, and yny4+1 = Tn41, and
this transition corresponds to a single component of type @
failing. Then Q(z,y) = (r; — ;) A

LT N1

Generator Matrix When Cascading Failures Possible

Cascading failures complicate the computation of Q(z,y)
for a failure transition (x,y). As mentioned before, we
model a cascading failure as a tree T built from the multiset
B of instantaneously failing components, where B has
ye — x¢ = 0 failing components of type ¢, £ € Q. A tree
T in a transition starting from a state x has a rate

R(T) = R(Ta J;) = (ri - xi)/\i,wz\quna (1)
where

o (15 — i) Nizyy, is the failure rate of the root (as-
sumed here to be of type i),

o p = p(T)isthe product of the ¢, terms for a parent
node of type j immediately causing a child of type
k € I'; to fail in the tree T, and

o n = n(T,x) is the product of 1 — ¢;; terms from
a node of type j not causing a component of type
k € T'; to fail when there are type-k components up.

We provide more details in Section 3.2.

A difficulty arises because there can be many such trees
corresponding to the multiset B of components failing in
(z,y), and calculating Q(x, y) requires summing R(T') over
all possible trees T' that can be constructed from B. The
number of such trees grows exponentially in the number of
failing components in the cascade; see [22].

Our model assumes that the component-affected sets
I'; and the component-affected probabilities ¢; ; do not
depend on the current state z of the system. This may limit
our model’s appropriateness for certain application do-
mains. But the assumption can greatly reduce the amount
of information that the user needs to specify in building a
model. Because the state space S may be enormous, requir-
ing the user to instead specify state-dependent I';(z) and
¢, () for each state x € S quickly becomes intractable. A
simplification may be to specify particular functional forms
for T';(z) and ¢; j(x) as a function of the state x, but this
may also be difficult to do.

3.2 Example of Computing a Tree’s Rate

We now provide an example of computing the rate R(T') of
atree T. Let Q = {A, B, C}, with redundancies r4 = rg =
rc = 4. Also, define the component-affected sets 'y =
{B,C},Tp ={A,C}, and I'c = {A, B}. Suppose that the
set of environments is £ = {0}, and consider the failure
transition (z,y) with z = (2,2,3,0) and y = (4,4,4,0).
Thus, (z,y) corresponds to 2 components each of types A
and B failing and a single component of type C failing. One
possible tree T corresponding to (z, y) is shown in Figure 1.
We assume the nodes in T fail in breadth-first order.

The nodes depicted as double circles form the tree
of failing components. The dashed circles correspond to
components in some I'; but did not fail. A component type
7 in some I'; could have not failed because either there
are components of type j up at this point but its coin flip

/

@
@@
/

PN

@)

Fig. 1: An example of a supertree.

came up tails (with probability 1 — ¢; ;), or there were no
more components of type j up at this point. Each node has
a label of the form ¢-ID, where ¢ denotes the type of the
component for that node, and ID is the position of the node
in a breadth-first ordering of all the nodes (dashed circles
and double circles). We include the IDs to simplify the
discussion here. We call the tree of all nodes the “supertree”
corresponding to the tree T of failing nodes.

The supertree is used to compute R(T") of T as follows.
Let u; be the number of components of type i currently up
in the system. Because the root is a component of type A
and there are ug = r4 — x4 = 2 components of type A at
the start of the transition (x,y), the rate of the trigger of
the cascade is 2A 4 9. The root then causes a component of
type B to fail at node ID 2, and this failure occurs with
probability ¢4 p. (The failure of A at ID 1 can cause only
zero or one B to fail, with respective probabilities 1 — ¢4, B
and ¢4, p, even if there is more than one B up at that
point.) The node at ID 3 did not fail, and at this point
there are uc = r¢ —x¢c = 1 > 0 components of type C still
up, so this non-failure occurs with probability 1 — ¢4 c.
Instead of stepping through the rest of the supertree one
node at a time, we note that R(T") includes the product of
all the ¢; ; terms for a type-¢ parent with a type-j child
when both are double circles. Thus, in (1) we have p =
®A,BPB,c c,a ¢c,p from IDs 2, 5, 6, and 7, respectively.

We observe the following when calculating the product
nin (1):

o 1 — ¢;; factors are included if and only if there are
still components of type j up at that point in the
breadth-first traversal through the tree.

o Each time we encounter a node of type j that
has failed in the breadth-first traversal of T, we
decrement u; by 1.

Keeping these observations in mind, we now calculate 7.
For component type A, we have us = 2 before the cascade
begins. As we do a breadth-first traversal through T, at
ID 1, it decrements to u4 = 1. We see that u4 > 0 until
ID 6, so n includes factor 1 — ¢p 4 from ID 4, but 7 does
not include the factor 1 — ¢p 4 at ID 10 as type A has
been exhausted before that point. For component type B,
we have ug = rg — xp = 2 before we traverse through 7'
Because components of type B are exhausted at ID 7, we do
not include the factor 1 — ¢4 p at ID 8 in 5. For component
type C, we see that uc = 1 before we traverse through

T, and uc = 0 at ID 5. Hence, the only contribution to n
from a component of type C' not failing is 1 — ¢4 ¢ from
ID 3; we do not include the factors 1 — ¢4,c and 1 — ¢p,c
from IDs 9 and 11, respectively. Taking the product over all
component types yieldsn = (1—¢a,c) (1—¢p,4) from IDs 3
and 4. Therefore, R(T') is 2X 4,0 p 1. In our implementation,
we calculate) through a data structure called the breadth-
first history (BFH), which is described later in Section 4.

We previously stated that the order in which the com-
ponents fail in a tree must be specified for the tree’s rate
to be well defined. To see why, suppose instead that the
components in Figure 1 fail in depth-first order. The depth-
first traversal of T is A-1, B-2, A-4, C-5, A-6, B-8, C-9,
B-7, A-10, C-11, C-3. Zero time elapses for the entire tree
to occur, but the depth-first traversal specifies the ordering
of the nodes. Initially, the number of components up of each
type are uq = 2, ug = 2 and uc = 1, as before. In this
traversal a component of type C first fails at ID 5, which
makes uc = 0. Thus, n for the depth-first traversal does not
include the factors 1 —¢4.c, 1 —¢p,c and 1 —¢ 4 ¢ from the
subsequent type-C nodes at IDs 9, 11 and 3, respectively. In
contrast, the breadth-first traversal includes one 1 — ¢4 ¢
factor at ID 3. Moreover, the depth-first traversal also
includes a factor 1 — ¢4, at ID 8, which is not included in
the breadth-first traversal. Overall, the depth-first traversal
hasn = (1—¢p,a)(1— ¢4, p) from IDs 4 and 8, as opposed
ton=(1—¢a,c)(l—¢p,a) for the breadth-first traversal.
Thus, even though the components in a cascading tree fail
instantaneously, this example demonstrates the necessity
of defining an order in which they fail for the tree rate (and
the CTMC) to be well-defined, as 7 (but not p) depends on
the order.

4 ALGORITHMS TO CONSTRUCT THE EXACT GEN-
ERATOR MATRIX

We now provide efficient algorithms for generating all pos-
sible trees and constructing the exact generator matrix @ of
the CTMC. A tree corresponds to a multiset of particular
components failing, and cascading failures starting from
different states can have the same multiset of components
failing. Hence, a particular tree may correspond to several
different transitions (z,y). Our algorithm generates each
possible tree only once and determines all the transitions
to which this tree corresponds. The approach avoids gener-
ating the same tree numerous times for each corresponding
transition, as was originally done in [22]. Moreover, rather
than building each new tree from scratch, as was done in
[22], our current algorithm builds larger trees from smaller
ones already considered, leading to substantial additional
savings in the overall computational effort.

Computing the rate (1) of a given tree depends on
the state from which the cascading failure began and the
multiset of components that fail in the cascade. We do
not actually construct the supertree in our algorithm to
compute a tree’s rate, but instead build a data structure
called a breadth-first history to keep track of the infor-
mation necessary to compute 1 in (1). The breadth-first
history concisely recounts the creation of the tree and thus
allows us to obtain n without having to build supertrees per
transition as was done in [22]. All of the computations are

6

done in Algorithms 1 (SeedTrees), 2 (AddTreelevel)
and 3 (ComputeTreeRate), which we describe below. In
the Appendix we re-examine the example tree from Sec-
tion 3.2 to show how the breadth-first history is constructed
and used to evaluate 7.

SeedTrees starts the tree generation and initial-
izes the necessary data structures for AddTreelLevel.
AddTreeLevel introduces a new level to an existing tree
in a recursive fashion, updates p in (1) to include the
component-affected probabilities of failed components, and
builds the tree’s breadth-first history. ComputeTreeRate
calculates the rate of a completed tree for all the transitions
it corresponds to using p and 1 computed from the breadth-
first history populated in AddTreeLevel. Later references
to line numbers in the algorithms are given within angled
brackets {). Section 4.2 will work through an example,
including constructing BFH, using Algorithms 1 and 2.

Algorithm 1: SeedTrees

Input: T’

// an array of ordered sets that
describes which components can cause
which other components to fail

1 for root.type € 2 do

2 level = [];

// Dynamic array of failed components
at tree’s current bottom level;
initially empty

3 nFailed = [0,0,...,0];

// Array that counts failed
components of each type in the
tree

i | BFH=[0.0.., O

// Array of linked lists that keeps a
history of parent component types
in breadth-first order; BFH is
indexed by component types; each
linked list is initially empty

add root.type to level;

nFailed [root.type | = 1;

add @ to BFH [root.type |[;

// Signifies one component of type
root.type has failed

8 p=1

// initialize product of
component—-affected probabilities

9 if T'nrailed root.type] == ¢ then

10 ComputeTreeRate (nFailed,BFH,p,root.type) ;
11 else
12 L AddTreeLevel (level,nFailed,BFH,p,root.type) ;

4.1 Dependability Measures

Once the generator matrix) has been constructed, we
can use it to compute various dependability measures. We
first partition the state space S = U u F, where U (resp.,
F) is the set of states for which the system is operational

Algorithm 2: AddTreeLevel

Algorithm 3: ComputeTreeRate

10

11

12
13

14

15

16
17

18
19

20

21

22

nextLevelPossibilities =

Input: level, nFailed, BFH, p, root.type
// where level is the current level of

failed components, nFailed counts
failed components by type in the
tree, BFH is breadth-first history, p
is a cumulative product of
component—-affected probabilities,
root.type is the root component’s type

in the current tree
|[level|

X P(Flevel[i])§

i=1:
1—‘Ievel[i]#Q

// Builds all possibilities for the next

level (given the current level) by
taking a Cartesian product of the
power sets P of non-empty I' sets of
failed nodes in the current level

for oneNextLevelPossibility € nextLevelPossibilities do

addedAChildFlag = False;

validTree = True;

for parent € level do

for i e Fparent.type do

if 3 child € oneNextLevelPossibility :
child.type == i && child.parentlD ==
parent.ID && validTree then

addedAChildFlag = True;

validTree = True;

if nFailed[child.type] == rchig.type then
// Invalid tree, it requires
more components of type
child.type than available
| validTree = False;

if validTree then
nFailed [child.type | = nFailed
[child.type | + 1;

add @ to BFH[child.type];

// @ denotes a component of
type child.type has failed

p=p: ¢parent.type, child.type >

// Update rate with
appropriate
component—-affected
probability

else if validTree then

add parent.type to BFHI[child.type I;

// One component of type
child.type has not failed,
but was present in Dparent.type

if validTree then
if addedAChildFlag then // Tree can be
grown further
AddTreeLevel (oneNextLevelPossibility,
L nFailed, BFH, p, root.type) ;

else // Current tree is complete

because it cannot be grown further
ComputeTreeRate (nFailed, BFH, p,

L root.type) ;

Input: nFailed, BFH, p, root.type

// where nFailed is the number of failed
components of each type in the tree,
BFH is breadth-first history, p is a
cumulative product of
component-affected probabilities,
root.type is the root’s type in the

tree
1 for 2’ € S’ do
2 | n=1

// Cumulative product of complement
probabilities of components that
could have failed but did not

3 forie Q) do

4 up =i —a's;

5 for parent.type € BFH][i] do

6 if parent.type == @ then

7 L u; = u; — 1

8 else if u; > 0 then

9 n=nmn- (1 - ¢parent.type, i);

// need u; >0 or else there
cannot be any more failed
nodes of type 1

10 foree &€ do

11 xr = (1"7 e);
12 y = (2’ + nFailed, e);
13 if y is a valid state then
14 C?(m7y)::
(Troot.type — #{root.type]) - Arcot.type.e = £ - 713

(resp., failed). We assume that the initial state z, € U
and that F' # . The partition is determined by a model
specification giving conditions under which the system is
considered to be operational; e.g., at least v; components
of type ¢ are up for each type i € Q.

4.1.1 Steady-State Unavailability

One dependability measure is the steady-state unavailabil-
ity (SSU), which we define as follows. Let m = (w(x) : x €
S) be the nonnegative row vector defined such that 7Q) = 0
and me = 0, where e is the column vector of all 1s; i.e., ™
is the steady-state probability vector of the CTMC; e.g.,
see Chapter 5 of [35]. The vector 7 exists and is unique
because, as shown in [22], our CTMC is irreducible and
positive recurrent. We then define the SSU as », . 7(x),
which is the long-run fraction of time the CTMC is in F.

4.1.2 Mean Time to Failure

Another dependability measure is the mean time to failure
(MTTF), which can be defined as follows. Define Tr =
inf{t >0: Z(t) € F}, so the MTTF is E[TFr | Z(0) = x4 |,
where E denotes statistical expectation. We can com-
pute the MTTF in terms of @ as follows. Define the
transition probability matrix P = (P(z,y) : z,y € S)
of the embedded discrete-time Markov chain (DTMC)
Y =[Y,:n=0,1,2,...] with P(z,y) = —Q(z,v)/Q(x,x)

for x # y, and P(x,z) = 0 (Chapter 5 of [35]). Also define
the |U| x |U| matrix Py = (P(z,y) : ,y € U) and |U| x |U|
identity matrix I, and let h = (h(z) : z € U) be the column
vector such that h(z) = —1/Q(z,x), which is the mean
holding time that the CTMC spends in each visit to state
x. Because Y is irreducible, |S| < oo, and F # (J, we have
that I — Py is nonsingular. Then let m = (I — Py)~!h,
where (I — Py)~! is known as the “fundamental matrix” of
the DTMC, and the MTTF equals m(z4); e.g., see Section
7.9 of [38].

4.1.3 Steady-State Distribution of Cascade Size

We introduce a new dependability measure, the “steady-
state distribution of cascade size” (SSDCS). To define the
SSDCS, recall that ¥; is the set of failure transitions.
For (z,y) € Uy let a(z,y) = ZZI\;(% — x;) be the
total number of components (of all types) that fail in
transition (x,y). Also, let a(x,y) = 0 for a non-failure
transition (z,y) ¢ W¢. The maximum number of compo-
nents failing in a cascade is b = vazl r;. For each integer
1 <1 < b, let \I/f(l) = {(x’y) € W : a(x,y) = l}7
which is the set of failure transitions in which exactly
I components fail. Let S = {& = (x1,...,ZN,TN311) €
S : x; < r; forsomei = 1 2,..., N}, which is the set
of states having at least one nonfailed component. Define
& = (&(x) : x € 5) as the nonnegative row vector with
£(x) = 7(2)Q(, 2)/[Xyes TW)Qy, y)] for each z € S, 50 &
is the steady-state distribution of the embedded DTMC Y
ie,EP =& fe=1,and £ > 0. Then we have the following:

Theorem 1. The SSDCS 0 = (0(1) 11 <1< b) satisfies
(z,y)eWe(l) P((E y)

ZwES 5(Z f Z(z z E‘lif P(LL‘ Z)

Proof. Let H be a random variable denoting the number
of failing components in a cascade in steady state. In any
state * € S such that z; = r; for all ¢« = 1,2,... N,
no components are operational, so there cannot be any
cascades out of such a state x. Thus, a cascade (possibly
with just a single component) can only start from a
state in S. Define the row vector ¢ = (£(z) : = € S)
with &(z) = £(2)/[X,e5€(y)], which is the steady-state
distribution of the DTMC conditioned to lie in S. Let Pg be
the conditional probability measure, given that the 1n1t1al
state Yy of the DTMC is chosen using distribution £. For
1 <1< b, we have that (1) = P(H =) satisfies

(1) = Pg((Y(JaYl) € We(l) | (Yo, Y1) € Wy)

_Zg ’I'yE\I/f()P(x7y)
zeS Z(l‘ z)EVs P(z,z)

from which (2) follows. O

(1) =

4.1.4 Distribution of Cascade Size Until Failure

We next introduce another new dependability measure x =
(x(1) : 1 <1< b), which we call the “distribution of cascade
size until failure” (DCSUF). For 1 < I < b, let J; be the
number of cascades of size exactly [until the system first
fails. Specifically, let T = inf{n > 0 : Y,, € F'}, which is
the number of transitions that the DTMC Y takes to first

8

enter F'. Let Z(-) denote the indicator function, which takes
on value 1 (resp., 0) when its argument is true (resp., false).
For 1 <1 < b, we have that

ZI Yoo1,Yy) =1).

Also, let J = Z?:l Ji be the total number of cascades
(of any size) until the system first fails. We then define the
distribution x of cascade size until failure, given the DTMC
starts in state x4, with

Thus, x(I) is the fraction of the expected number of
cascades until failure that have size exactly (.
We next derive a computable expression for x(I). Let

Gz) =E[/ | Yo = =], ()

which is the conditional expectation of .J;, given the DTMC
starts in state « € U. Then we have the following result.

Theorem 2. The DCSUF x = (x(I) : < b) has

Cl(x*)
Zs:l Gi(wy)

1<

x(l) = ; (6)

where (; = (¢;(x) : x € U) satisfies
G=~Py) " w, (7)
with k; = (ki(x) : 2 € U) and

ki(z) = Z

z€S:
(z,2)eWx(1)

P(z,2). (8)

Proof. By conditioning on the first step of the DTMC Y,
we can express () as

ZPmy

a(z,y) = 1) + G(y)]

yeU

+ZPzzIa(a:,z)=l)

zEF

= Y P(@.)G) + >, Pz, 2)I(a(z,2) = 1) (9)
yeU z€S

because S = U U F'. Note that x;(x) in (8) is the probability
of having a cascade of exactly size [from state x, which we
can write as

= Z P(z,2)I(a(zx,z) =1).

Then we can express (9) in matrix form as ¢ = Py(; + &,
or equivalently, (I — Py){; = k;. We previously argued
(Section 4.1.2) that I — Py is nonsingular, so (7) holds.
Thus, in (4), the numerator is E[J; | Yy = z4] = ((x4),
and the denominator is

Cl(x*)

b
E[J|Yy = z.] = D E[J | Yo = 2] =
=1

I

Therefore, we obtain (6) to complete the proof. O

4.2 Example Demonstrating Tree Generation

We now provide an example illustrating our tree-generation
algorithms. We consider a system with Q = {A, B,C}, so
there are N = 3 types of components, with redundancies
ra =rp = 4, and rc = 1. There is a single environment,
ie, & = {0}, so the system has (rq + 1)(rg + 1)(r¢c +
1)|€| = 50 states. The component repair rates are p14,0 =
1Bo = pco = 1, and components B and C have failure
rates Ap,g = 2E—4 and A¢ ¢ = 1E-10. For cascading, the
component-affected sets areI'y = {B,C},I'p = {A},T¢ =
&, and ¢pa,c = 1E—08. For the other parameters (A4,
¢a,B,and ¢p_4), we considered three versions of the model,
called Cases 1-3, that differ in their values, which are given
at the top of Table 1. We chose the cases’ parameter values
to illustrate other aspects of our approaches, as we will see
later in Section 5.4.

The structure of the trees built by Algorithms 1 and 2
is described in Table 1, between the two sets of horizontal
double lines and to the left of the vertical double lines. (The
other parts of the table will be explained in Section 5.4.)
Each row with depth equal to 0 corresponds to a new
iteration of the loop in line (1) of Algorithm 1, which
starts building a new tree with a particular root type. After
initializing the data structures in lines (2)—8), Algorithm 1
then calls Algorithm 2 in {12) to further build the tree.
Each row of Table 1 represents one iteration of the outer
loop (line {2)) of Algorithm 2, which recursively constructs
trees by adding a new level onto a previously built tree,
increasing the depth by 1. For each tree, the column labeled
“Nodes” in the table gives the nodes corresponding to
the components belonging to the component-affected sets
of the failed nodes from the previous level. Nodes that
represent components that have not failed, but belong to
the component-affected set I'; of a node of type 7 in the
previous level, are prefaced with “-”. For each tree, there
is one additional hidden level one level deeper where no
components have failed. These levels are not depicted in
the table, and do not contribute to the structure of the
failed components in each tree. But they are important for
calculating the tree’s exact rate in (1) because they may
contribute 1—¢; ; factors to n from non-failing components.
As previously noted in the first paragraph of Section 4,
each constructed tree may correspond to several (z,y)
transitions of the CTMC, and the column “Trees Eval.”
in Table 1 gives the number of transitions in which each
tree is used. For example, tree ¢t = 2 corresponds to 20
different transitions in the CTMC’s generator matrix.

A tree with depth 0 is a tree with a single node, and
it is not built from any previous tree. The node in such a
tree will be the root for any tree that is built from it. For
example, in Algorithm 1, the first iteration of the loop at
line (1) starts building a tree with root of type A, which
is at depth 0 in the tree; (3) and {4) initialize nFailed[i] =
0 and BFH[i] = () for each component type ; (6) sets
nFailed[A] = 1; (7) sets BFH[A] = (@) to denote a type-
A component failed; (8) initializes p = 1; and (12) calls
AddTreeLevel to try to further grow the tree.

Then in Algorithm 2, line (1) builds all subsets of I' 4 =
{B,C} as the possible children (at depth 1) of the root,
where each subset is considered separately in the loop at

Case 1 Case 2 Case 3
AAL0 0.002 0.002 0.02
ba,B 0.06 0.042 0.0042
PB.A 0.08 0.088 0.0088
Tr 4.82E-13 1.39E-08 2.00E-02
Tree Trees
t |Depth| Nodes |Eval.|| R/(T}) R'(Ty) R/(T)
1 0 A 40 2.00E-03* | 2.00E-03* | 2.00E-02*
2 1 -B,C 20 2.00E-11*% | 2.00E-11 2.00E-10
3 1 B, -C 32 1.20E-04* | 8.40E-05* | 8.40E-05
4 2 A 24 9.60E-06* | 7.39E-06* | 7.39E-07
5 3| -B,C 12 9.60E-14 7.39E-14 7.39E-15
6 3 B, -C 18 5.76E-07* | 3.10E-07* | 3.10E-09
7 4 A 12 4.61E-08* | 2.73E-08* | 2.73E-11
8 5 -B, C 6 4.61E-16 2.73E-16 2.73E-19
9 5 B, -C 8 2.76E-09*% | 1.15E-09 1.15E-13
10 6 A 4 2.21E-10* | 1.01E-10 1.01E-15
11 7| -B,C 2 2.21E-18 1.01E-18 1.01E-23
12 7 B, -C 2 1.33E-11* | 4.24E-12 4.24E-18
13 7 B, C 1 1.33E-19 4.24E-20 4.24E-26
14 5 B, C 4 2.76E-17 1.15E-17 1.15E-21
15 6 A 2 2.21E-18 1.01E-18 1.01E-23
16 7 B, -C 1 1.33E-19 4.24E-20 4.24E-26
17 3 B,C 9 5.76E-15 3.10E-15 3.10E-17
18 4 A 6 4.61E-16 2.73E-16 2.73E-19
19 5 B, -C 4 2.76E-17 1.15E-17 1.15E-21
20 6 A 2 2.21E-18 1.01E-18 1.01E-23
21 7 B, -C 1 1.33E-19 4.24E-20 4.24FE-26
22 1 B, C 16 1.20E-12¥ | 8.40E-13 8.40E-13
23 2 A 12 9.60E-14 7.39E-14 7.39E-15
24 3 B, -C 9 5.76E-15 3.10E-15 3.10E-17
25 4 A 6 4.61E-16 2.73E-16 2.73E-19
26 5 B, -C 4 2.76E-17 1.15E-17 1.15E-21
27 6 A 2 2.21E-18 1.01E-18 1.01E-23
28 7 B, -C 1 1.33E-19 4.24E-20 4.24E-26
29 0 B 40 2.00E-04* | 2.00E-04* | 2.00E-04
30 1 A 32 1.60E-05* | 1.76E-05* | 1.76E-06
31 2| -B,C 16 1.60E-13 1.76E-13 1.76E-14
32 2 B, -C 24 9.60E-07* | 7.39E-07* | 7.39E-09
33 3 A 18 7.68E-08* | 6.50E-08*% | 6.50E-11
34 4| -B,C 9 7.68E-16 6.50E-16 6.50E-19
35 4 B, -C 12 4.61E-09*% | 2.73E-09 2.73E-13
36 5 A 8 3.69E-10*% | 2.40E-10 2.40E-15
37 6 | -B,C 4 3.69E-18 2.40E-18 2.40E-23
38 6 B, -C 4 2.21E-11*% | 1.01E-11 1.01E-17
39 7 A 2 1.77E-12* | 8.89E-13 8.89E-20
40 8| -B,C 1 1.77E-20 8.89E-21 8.89E-28
41 6 B, C 2 2.21E-19 1.01E-19 1.01E-25
42 7 A 1 1.77E-20 8.89E-21 8.89E-28
43 4 B, C 6 4.61E-17 2.73E-17 2.73E-21
44 5 A 4 3.69E-18 2.40E-18 2.40E-23
45 6 B, -C 2 2.21E-19 1.01E-19 1.01E-25
46 7 A 1 1.77E-20 8.89E-21 8.89E-28
47 2 B, C 12 9.60E-15 7.39E-15 7.39E-17
48 3 A 9 7.68E-16 6.50E-16 6.50E-19
49 4 B, -C 6 4.61E-17 2.73E-17 2.73E-21
50 5 A 4 3.69E-18 2.40E-18 2.40E-23
51 6 B, -C 2 2.21E-19 1.01E-19 1.01E-25
52 7 A 1 1.77E-20 8.89E-21 8.89E-28
53 0 C 25 1.00E-10¥ | 1.00E-10 1.00E-10
MTTF(Q) || L51E108 | 2.28E108 | 2.84B105
MTTF(Q)/MTTF(Q) || 1.000214 | 1.189983 | 1.032338
MTTF(Q")/MTTF(Q) || 1.000000 | 1.138655 | 0.936967
SSU(Q) 8.93E-09 5.73E-09 3.61E-06
SSU(Q)/SSU(QY) || 1.000367 | 1.231557 | 1.037857
SSU(Q)/SSU(Q") || 1.000049 | 1.173320 | 0.941876
Trees: unique (eval.) || 19 (341) 9 (240) 1 (40)

TABLE 1: Example with three cases to illustrate the exact
tree-generation methods in Algorithms 1 and 2, and the
computed dependability measures for the exact generator
matrix Q. Other aspects of the table, including ., R'(T%),
@', and Q", will be explained later in Section 5.4.

(2). In Table 1, the subset & (resp., {C}, {B}, and {B,C})
of T'4 corresponds to row t = 1 (resp., 2, 3, and 22). We
next explain how Algorithm 2 handles each of the subsets
of I' 4 to be added at depth 1, including updating BFH.

o For the subset @ < I'4, the first iteration of the
loop in line {6) considers B € I'4, and {17) updates
BFH[B] = (A) to denote that a type-B component
(with parent type A) did not fail. The next iteration
of the loop in {6) considers C' € I' 4, and {17y updates
BFH[C] = (A) to denote that a type-C' component
(with parent type A) did not fail. As this tree cannot
be further grown, (22) calls ComputeTreeRate.

« For the subset {C'} € T'y4, the first iteration of the
loop in {(6) considers B € I'4, and {17) updates
BFH[B] = (A) to denote that a type-B component
(with parent type A) did not fail. The next iteration
of the loop in {(6) considers C' € T"4. Because a type-
C component fails (at depth 1) in the current sub-
set, (13) increments nFailed[C] to 1, {14) updates
BFH[C] = (@) to denote that a type-C component
failed, and {15) updates p by multiplying it by ¢4, ¢

o The subset {B} < TI'y is handled similarly, but
instead with nFailed[B] incremented to 1, BFH[B] =
(@), p is multiplied by ¢4,p, and BFH[C] = (A).

o For the subset {B,C} < T4, we instead have
both nFailed[B] and nFailed[C] incremented to 1,
BFH[B] = (@), BFH[C] = (@), and p multiplied by
ba,BPA,C-

Because at least one node was added (at depth 1) to the
tree for each of the last three subsets, line (20) recursively
calls AddTreeLevel to try to further grow the tree for
each of those subsets.

We next continue to depth 2 in Algorithm 2 for each of
the last three I' 4 subsets at depth 1 considered above.

« For the subset {C} from depth 1, we have that I'c =
&. Thus, this tree cannot be grown any further, and
{22) calls ComputeTreeRate.

« For the subset { B} from depth 1, we need to consider
each of the subsets (at depth 2) of I'p = {A}.

— For the subset @& < T'p at depth 2, {17)
updates BFH[A] = (@, B) to denote that a
type-A component (with parent type B) did
not fail. Because the tree cannot be grown any
further, (22) calls ComputeTreeRate.

— For the subset {A} € T'p at depth 2, a
type-A component fails (at depth 2), (13)
increments nFailed[A] to 2, {14) updates
BFH[A] = (@,@) to denote that another
type-A component failed, and (15) updates
p by multiplying it by ¢p 4. The resulting
tree corresponds to row t = 4 in Table 1.
Because at least one node was added (at
depth 2) to the tree, line (20) recursively calls
AddTreeLlevel to try to further grow the
tree.

« For the subset {B,C} from depth 1, we need to
consider each of the subsets (at depth 2) of only
I'p = {A} because I'c = J. We handle the subsets

10

at depth 2 of I'g as in the previous bullet, but
instead the resulting tree for the subset {A} € I'p
at depth 2 corresponds to row ¢ = 23 in Table 1.

Rather than going through the details of the rest of
the example, we note that the full structure of any tree in
Table 1 can be gleaned from the table by following the rows
backwards until reaching depth 0. Each tree with depth
greater than 0 builds on a tree that appears previously in
the table by adding an additional level of nodes, increasing
the depth by one. The immediate-predecessor tree from
which one tree is directly built is the nearest tree that
appears previously in the table with a depth one less than
its own. For example, the tree Tis (in row 18) has the
following structure.

o At depth 4, a type-A component fails because Nodes
for the row for Tig is “A”.

« Row t = 17 is the nearest row with depth 3 above
row 18, and one component each of types B and C'
fail at depth 3 because Nodes is ‘B, C” in row 17.
The type-A component from depth 4 in row 18 is the
child of the type-B component that fails from 777 at
depth 3 because A € T'g. (The other component, of
type C, inrow 17 has I'c = J.)

« Row t =4 is the closest row with depth 2 above row
17, and one component of type A is the only node to
fail at depth 2 because Nodes is “A” in row 4. Both
components from depth 3 in row 17 are children of
the type-A component from T, at depth 2 because
B, CeTly.

o« Rowt = 3 is the closest row with depth 1 above row
4, and a component of type B (resp., C) fails (resp.,
does not fail) at depth 1 because Nodes is “B, -C”
in row 3. The component of type A from depth 2 is
the child of the B at depth 1 because A € I'g.

e Row t = 1 is the closest row with depth 0 above
row 3, and a component of type A fails at depth 0
because Nodes is “A” in row 1. The B at depth 1
is a child of the A at depth 0 because B € I'4. (A
component of type C' did not fail at level 1, even
though C € T4.)

4.3 Comparison of Runtimes

We now compare the runtimes of the original version of the
code [22] with our current implementation of DECaF, as
described in Section 4. Both versions are implemented in
Java, where the current code is a complete overhaul of the
original. We carry out the comparison on a set of different
models described in Table 2, which gives for each model the
cardinality of its state space S, the set of component types,
the redundancies of each component type, the component-
affected sets I';, and the number of environments. In
the text below we refer to each model by its number of
states, e.g., the “125-state model.” Note that the number
of trees does not always grow as the number of states
increases, but rather the relationships among the I' sets
and the component redundancies determine the amount
of cascading possible. The experiments were conducted on
the Amazon EC2 cl.xlarge cloud service, with 64-bit Intel
Xeon E5-2650 CPU (2Ghz, 8 cores), 8 virtual CPUs and
7GB of memory, running Windows Server 2012.

States | Comp. Redundancies | Component- Env.
Types Affected Sets
81 | A,B,C,D rA =2, 'a = {B,C}, 1
rp =2, I'p = {A, D},
rc =2, I'c =¢,
rp =2 I'p ={A,B,C}
288 | A,B,C,D ra =3, 'a = {B,C}, 2
B = 9, FB = {A7C ’
rc = 27 FC = {B>D}7
TpD = 2 FD = {C}
640 | A,B,C,D ra =4, 'a = {B,C}, 2
B =9, I'p = {A’ C}7
re =3, e = {BvD}v
rp = I'p ={B}
125 | A, B,C ra =4, 'a = {B,C}, 1
rg =4, I'p = {A7 0}7
re =4 I'c ={A, B}
1944 | A, B,C, D, A =2, 'n = I'e = 2
E,F rp =2, {CvD}7
rc =2, 'c = {AFL},
TDZB’ FD:{B>F}7
TE =2, 'g=Tr=
rp =2

TABLE 2: Description of the various models we used to
analyze our algorithm

Previous Version New Version
States Trees FTT | NFTT FTT | NFTT | DMT
81 978 1.30 0.30 0.12 0.10 0.08
288 4507 19.00 0.62 0.26 0.10 0.16
640 27746 137.29 5.98 1.56 0.11 0.61
125 | 321372 114.25 0.33 6.01 0.10 0.09
1944 6328 6124.01 | 234.84 1.35 0.16 8.27

TABLE 3: Number of trees, failure-transition time (FTT),
non-failure-transition time (NFTT), and dependability-
measure time (DMT) across several models for the previous
and new versions of the code.

Table 3 gives the running times (in seconds) for various
parts of the overall algorithms of the original code [22] and
the current implementation. (We ran each model several
times and observed very little difference in run times.
Table 3 contains the averages across the runs.) We compare
the two versions in terms of the failure-transition time
(FTT) and non-failure-transition time (NFTT). The FTT
is the time to generate all of the trees and to fill in all of
the failure transitions in generator matrix). The NFTT is
the time to fill in the rates for the repair and environment
transitions. For the current implementation, we also give
the dependability-measure time (DMT), which includes the
time to compute the MTTF and SSU (but not the SSDCS
and DCSUF), as described in Section 4.1, after @ is built.
While the MTTF and SSU computations are performed
using the OJAlgo package [34], the solving of the measures
once @ has been constructed is not our paper’s focus, and
we can swap the current solver with another.

Table 3 shows the enormous increases in efficiency that
we get from the new version of the code. The current
implementation decreases the FTT by about one order
of magnitude on the 81-state model and by over a factor
of 4500 on the 1944-state model. The efficiency gains are
due to the changes described in Section 4, as well as other
improvements in the design of the algorithms and data
structures developed. For the new version of the code, the
FTT mainly grows as a function of the number of trees.

11

5 CONSTRUCTING APPROXIMATE MODELS

The number of trees can grow exponentially in the number
of components in the cascade [22], which limits the size of
the models that our algorithms in Section 4 can handle.
To address this issue, we explored efficient approxima-
tions that reduce the computational effort by selectively
constructing only certain trees. We implement this idea
by enclosing lines (18)—(22) of Algorithm 2 within an if
statement that checks whether a given condition, which
we call a “growing criterion,” is satisfied. Thus, if the
growing criterion does not hold, the algorithm skips over
to the next enumeration of the bottom-most tree level,
so we do not generate certain trees; the omitted trees’
rates are not computed and not included in the generator
matrix. This saves computation time, but the resulting
matrix Q' = (Q'(z,y) : z,y € S) (which includes all
repair and environment transitions but for the failure
transitions, sums the rates of only the built trees) can differ
from the matrix) that includes all trees. Solving for the
dependability measures with @’ rather than Q leads to
inaccuracies in the values for the measures.

Omitting trees often results in the MTTF being greater
or equal to the MTTF when all trees are considered. To
see why, observe that Q(z,y) = Q'(z,y) for all non-failure
transitions (x,y) with « # y. But Q(z,y) = Q'(x,y) for all
failure transitions (z,y) because @’ only considers a subset
of the trees used in computing). Thus, from each state,
the CTMC with @’ is less likely to make a failure transition
than the CTMC for @, which typically leads to the MTTF
being at least as large when trees are left out. Similarly, the
SSU for @’ is usually no greater than the SSU for Q.

We investigated the trade-off in the time saved by
omitting some trees versus the resulting error in the MTTF
and SSU computed from @’ instead of @. In designing a
growing criterion specifying if the algorithm should enlarge
the current tree, we want to allow trees with large rates
to be generated, as these often have a big impact on the
MTTF and SSU, and skip small-rate trees. We considered
three criteria based on different types of thresholds.

We first examine a “height threshold,” and the growing
criterion is height < 7,, where the global variable height
keeps track of the current tree height and 7, is the
threshold. Our implementation requires a slight change
to AddTreeLevel (Algorithm 2), where we introduce
height as a method parameter. We also modified line {20)
of Algorithm 2 to increment height on every successive
recursive call.

We also consider a “node threshold” 7, in the growing
criterion } ., nFailed[i] < 7,. Hence, constructed trees will
contain a maximum of 7, failed components.

The third growing criterion uses a “rate threshold” to
only generate trees with rates above a certain value. Define

R(T) = \ip (10)
as the approximate rate for a tree T, where)\; =
MaXece Aj,e is the maximum failure rate for the type 7 of
the root of the tree T over all the different environments,
and p is as defined in (1). Note that R/(T) differs from the
tree rate R(T') in (1) because R'(T) omits both n, which is
the product of the 1 — ¢; ; factors for components of types

j that did not fail in the cascade but could have (because
7 € I'; of a component of type ¢ that did fail and there are
still type-j components up at that point), and the current
number of up components of the root type. Also, R'(T)
uses the maximum failure rate); of the root type 7 instead
of the environment-specific failure rate. Then the growing
criterion is R'(T) = 7, where 7; is the specified threshold.

For each of the three growing criteria, once a given tree
T does not satisfy the criterion, the current tree will not
be grown any further. This point is clear for the node and
height thresholds. For the rate threshold, adding additional
nodes to T decreases p in (10) because it is multiplied
by additional factors ¢;; < 1, so once the rate growing
criterion is not satisfied, T will not be further enlarged.

Increasing 7, and 7, leads to a monotonic increase
in the number of generated trees, whereas the number
of generated trees decreases monotonically in 7,. Setting
Th = Tn = 00 or 7y = 0 results in generating all trees, so the
computed generator matrix is exact and there is then no
error in the computed MTTF and SSU.

We now present numerical results when applying one
growing criterion at a time for the 125-state model (see
Table 2), where the failure rates are Aa o = Ap,o = 0.02,
Ac,o = 0.01, and component-affect probabilities ¢4, p =
¢B,c =02, pc.a = ¢pa = 0.3, pac = ¢c,p = 0.4. Also,
the repair rates p;0 = 1 for all types 7, and the system is
operational as long as at least 1 component is up of each
type. Figure 2 plots pairs (% FTT, % Error), where % FTT
is the percentage of the FTT when omitting trees relative
to the FTT when all trees are constructed, and % Error is
the percent error in the computed dependability measure
(MTTF or SSU) relative to the measure with all trees. For
example, if % FTT is 25, then the time to generate all of the
failure transitions when using the threshold was a quarter
of the corresponding time when generating all trees. The
experiments were performed on a PC with an Intel Core
i7 4770k processor with 8 virtual cores operating at 3.5—
3.9 GHz and 32GB of memory, running 64-bit Windows
10. As we expect, for each threshold, the magnitude of the
error decreases as the FTT increases. For a fixed FTT,
the growing criterion based on the rate threshold leads to
smaller absolute error than the two other criteria; similarly,
if we fix a level of error, the rate criterion requires less
FTT than the other two criteria to achieve that error.
Hence, the points from using the rate threshold define the
“efficient frontier,” analogous to the idea introduced by [28]
in the context of financial portfolio selection. (Results for
the other models in Table 2 are not shown but are similar.
Section 6 contains results for a much larger model using
a rate threshold computed from the model building blocks
and a further correction described in Section 5.2, and our
methods reduce FTT by up to a factor of over 600 with just
a few percent error.)

5.1 Computing a rate threshold

The previous discussion shows that a growing criterion
based on a rate threshold appears to outperform the other
thresholds we considered. We now discuss an efficient
approach that solely uses the building blocks of the model
to try to select an appropriate value for the rate threshold 7,

12

300 —
" 4 Th
! -w-Tn
250 | e
e Lo .
s 200 1)
= 10| ¥, |
[\ -
g L
A 1000y - |
IS \ N\
50 | .
0 - .
|
0
0 - .
_20 - |
2
N 40 i
5
= _60 L |
ISN
_80 | N —x— Ty N
: -®-Tn
—100 * A Tho|
| | | | | |
0 20 40 60 80 100
% FTT

Fig. 2: % Error in MTTF and SSU versus % FTT when
iterating each threshold 7

so that only a relatively small number of trees are generated
but the resulting error in the dependability measures is
small. The method exploits the idea that trees occurring
in the most likely way the system fails should be the ones
whose rates contribute most to the computed dependability
measures. Exactly identifying these trees is complicated,
so we instead use various approximations and simplifying
assumptions to roughly determine a value for 7, that allows
such trees to be built while precluding trees that only occur
on significantly less likely paths to failure.

We first give an overview of our approach. Assume that
the system consists of highly reliable components [17] in the
sense that component failure rates are much smaller than
the repair rates. Suppose the system-operational conditions
require that at least v; components of each type ¢ are up
for the system to be operational, so the system is failed
when at least d; = r; — v; + 1 components have failed
for some type i. We will focus on sequences of states (i.e.,
paths of the embedded DTMC) for which the first state in
the sequence has all components up, the last state in the
sequence is a failed state (i.e., in F), all states in between
are operational (i.e., in U), and each successive pair of
states is a failure transition (possibly with more than one
component failing). Such a sequence of states is a path to

system failure, and the most likely way the system fails
is usually when exactly d; components of some type 7 fail
along the path. (There may be other component types that
also fail in cascades along the path. If the path has no
multi-component cascades, then each failure transition is
just a tree with a single node, which is of type i.)

For each component type ¢ and each 1 < k < d;, we
examine paths consisting of exactly k (failure) transitions
over which a total of d; components of type ¢ fail. For each
failure transition in the path, we build only one tree out of
the collection of failing components on the transition, even
though there might be multiple trees corresponding to the
transition. If there is more than one tree corresponding
to a particular transition in the path, we want the single
tree that we construct to be the one with the largest rate.
We then use that tree in a rough approximation for the
probability of the transition for the embedded DTMC.
The product of the approximate transition probabilities
along the path then gives an approximate probability of the
entire path. The path that maximizes the approximate path
probability over all types ¢ and numbers k of transitions in
the path provides an approximation to the most likely path
to failure. Finally we set the rate threshold as

(11)

where « is the smallest approximate rate R’ from (10) of
a tree along the approximate most likely path to failure,
and 0 < 8 < 1 is a correction factor that is included to
allow trees with approximate rates somewhat below a to
be generated. We next provide details of the approach. (In
Section 5.1.4 we will demonstrate the algorithms using an
example.)

Tr = O‘Ba

5.1.1 Computing o
FindRateThreshold (Algorithm 4) determines 7, in (11).
We start by explaining how it specifies «. Line (3) calls
BuildBestTrees (Algorithm 5, which we will explain in
Section 5.1.2) to build and store, for each i € Q, j € Q
and 1 < f < d;, a tree T;; y with a root of type j and
having f components of type 4 failing, where T; ; has
approximately the largest rate among those trees with these
characteristics. Lines (4), {5), and {7) loop over all possible
values of ¢, 7, and k, where ¢ is the component type whose
d; failures will cause the system to fail, j is the type for the
root of the trees along the path to failure of the embedded
DTMC, and k is the number of transitions along the path.
Each transition along the path has exactly f; = d;/k type-i
components failing. (When d;/k is not an integer, we first
allocate |d;/k| failing components of type ¢ to each of the
k transitions, where |- | denotes the floor function. Then
for the remaining b; = d; — k|d;/k| type-i components
to fail along the path, we allocate one additional failing
component of type ¢ to the first b; transitions. Thus, the
first b; transitions along the path each have |d;/k] + 1
type-i components failing, and the other k — b; transitions
each have |d;/k| type-i failures. In this case, we let f; be
either |d;/k| or |d;/k| + 1; this is done in lines {(10)—15) of
Algorithm 4.)

Lines (11><18) loop over the k transition indices
1=1,2,...,ktobuild a path (z(®, 2™ ... 2®) to failure
of the embedded DTMC, where the initial state (%) is

13

Algorithm 4: FindRateThreshold

Output: 7,

// Calculate «

maxApproxProb = 0;

bestPathTrees = (J; // trees along best path

3 BuildBestTrees (); // Build trees T;;
with approx largest rate with root type
j and f type-i components.

N =

4 forie Q) do
5 for j e Q do
6 20 = z,[5] ; // initial state has
environment e that maximizes Aj.
for ke [1,d;] do
pathApproxProb = 1;
9 pathTrees = J;
10 bz =dl—k‘|_dl/]€J,
11 forle[1,k] do
12 if [< b; then //adjust first b,
13 | fi=di/k] + 1
14 else
15 L fi = ldl/k‘J,
16 20 =
resultingState (:E(l’l),TM DK
17 pathTrees = pathTrees U {T; ; 1, };
18 pathApproxProb =
pathApproxProb - P/ (2= 21
// P’ defined in eq. (12)
19 if pathApproxProb > maxApproxProb then
20 bestPathTrees = pathTrees;
21 maxApproxProb = pathApproxProb;
22 ke = k;

28 Ty = arg minTebestPathTrees R/(T);
24 = R'(T*);
// Calculate f
25 M = {(7,,]) : d)i,j > O}7 .
o i min[|7; ‘725 (r—a % N
26 3 = (%) *h2ieq b

27 return 7, = «a 3 ;

)

defined in line {(6) as the state x4[j] with all components
operational and the environment e is chosen to maximize
the failure rate A; . of the component type j at the root,
as was also done in (10). Line (16) uses the tree T; ; f, pre-
computed by BuildBestTrees in line (3) for the current
values of 4, 7, and f;, and the function resultingState
determines the next state z(!) that follows the previous
state (=1 after a cascade with tree T} ; f, occurs. Line (18)
updates the approximate probability of the constructed
path by multiplying by the approximate DTMC probability
P’ (=D z(1) of the current transition, where we define

R(T, z)
Zj’eﬂ(rj’ —zj) Aje + Zj’EQ xj'“jﬂe/(ZleQ(xl))’
12
for a transition (x,y) corresponding to a tree 7. The

numerator in (12) is the (exact) rate from (1) for the
transition (x,y) corresponding to the tree T, and the

P'(x,y) =

denominator is the total failure and repair rate out of
state . (When >, ., 2; = 0, there are no components
failed in state z, so Zj,EQ xj i e = 0, and the second term
in the denominator is 0/0, which we define to be 0.) We
omit the environment-change rate from the denominator
of P'(xz,y) as we are only focusing on failure and repair
transitions in our approximation. If, for some combination
of loop indices i, j, and k, the approximate probability of
one of the transitions is zero because BuildBest Trees did
not identify the necessary corresponding tree 7Tj j y,, then
that combination is not considered. A tree can always be
found for f; = 1 when in a non-failed state because a tree of
just single component of type ¢ can always occur; therefore,
a path of k = d; transitions where each transition has size
fi = 1is always possible.

After lines (19)—(22) of Algorithm 4 identify the path
with the highest approximate probability, (23>~<24) com-
putes a as the minimum approximate tree rate along that
path. If we set the rate threshold as 7. = «, then the
algorithm would generate all of the trees used to construct
the approximate most likely path to failure but trees with
smaller approximate rates are omitted. Instead, we include
additional trees by further multiplying the threshold by
0 < B <1 (computed in {(25)<26)), which we will explain
in Section 5.1.3.

5.1.2 BuildBestTrees

We now discuss Algorithm 5, which, for each i € €,
j € and 1 < f < d;, constructs a tree T; ; ¢ with f
type-i components and type-j root, where each tree built
has roughly the largest rate among those trees with the
specified characteristics. For any tree T, recall R'(T) in
(10) is the product of the maximum failure rate of the root
and the product p of the component-affected probabilities
¢1,m of components that fail in the cascade. As adding
more nodes to a tree will multiply its approximate rate by
additional ¢, factors, each of which is no greater than
1, a tree T with large R'(T) will typically have not too
many nodes and the ¢; ,, factors included in p from (1) will
often be relatively large. We equivalently try to find such
a tree T with large In(R'(T)), which converts the product
R/(T) into a sum of logs. This transformation allows us to
use a shortest-path algorithm on an appropriately defined
graph to approximately identify such a tree. To simplify
the search, we restrict ourselves to trees in which only the
root can have more than one child; we call such a tree a
“broom.”

Specifically, construct a weighted graph G = (V, E, W),
where V' = Q is the set of vertices, E = {(I,m) : | €
Q,m e I';} is its set of edges, and W = {w;,, : (I,m) €
E} is the set of weights (costs), with w;,, = —Ingy .
Thus, large ¢; ,,, corresponds to small w ,,. We next explain
how Algorithm 5 tries to identify a broom T; ; y with large
In(R'(T; ;,5)) for each 4, j, and f.

In line (3) of Algorithm 5, the function Dijkstra
returns the lowest-cost i’-to-j’ path g; j» and its cost ¢ jr.
Then lines {4)<8) compute for each possible i’ and j’
the optimal path from 4’ to j' (by considering the first
step to each possible [€ I';/) and the associated cost, and
stores them in a priority queue pq; ;. The data in the
priority queue for each i, 7’ is later used as we iteratively

14

add in the current lowest-cost branch from ¢’ to j' and
then remove it from the priority queue. Lines (9)—11) loop
over all 7, 7, and f to build the best broom with f type-i
components and type-j root, using the variable failed to
count the number of type-i components in the broom so
far. The while loop at line (22) iteratively removes the
lowest-cost j-to-i branch from the priority queue pq; ; and
attaches it to the root, as long as its cost is lower than that
of the best i-to-i cycle. (The paths in the priority queue
are stored in line (8) to not include the starting node, so
attaching a branch does not incorrectly have the first step
going from j to j.) This continues as long as the broom
does not have enough type-i components and the priority
queue is not empty. Once the next lowest-cost j-to-i branch
is more expensive than the best i-to-i cycle, the while loop
at line (30) only appends the (same) best i-to-i cycle to
the leaf of the first branch of the root, stopping when the
broom has enough type-i components. (In the first iteration
of line {30, if the broom so far has only the root, which
then must be of type 7 because of {(27), then the best i-to-i
cycle is appended to the root.)

5.1.3 Computing 3

In our initial numerical experiments using a computed
rate threshold 7., we first set 7. = « but found that it
did not work well on some models. We determined that
7, = a was such a high threshold that too few trees were
being generated. Although it led to an enormous decrease
in the computation time needed to construct trees, the
resulting errors in the MTTF and SSU were unacceptably
large. One reason is that in addition to the approximate
most likely path to failure, there may be many other paths
whose approximate probabilities are only slightly smaller.
These additional paths also significantly contribute to the
computed dependability measures, and omitting the trees
in those paths causes substantial errors in the MTTF
and SSU. Compounding this issue is the coarseness of the
approximations applied to determine the approximate most
likely path to failure. Hence, we adjust 7. by including
another factor 0 < 8 < 1 (see (11)) to permit more of
the important trees to be generated.

To explain how we compute S in lines (25)<26) of
Algorithm 4, consider the tree Ty identified in line (23) of
Algorithm 4, whose approximate rate R'(T}) is minimal
along the approximate most likely path to failure, i.e.,
R'(Ty) = « (see line (24)). Let T, be another tree obtained
by adding some extra nodes to Ty below the root; we
compute its approximate rate R'(T},) by multiplying o and
the product of additional component-affected probabilities
¢1.m for the new nodes where they are attached to Ti.
The value of R'(T}) may be only slightly smaller than «
when the number of additional new nodes is not too large
and when the extra ¢; ,, factors are relatively large. But if
we set the rate threshold 7, = «, then the tree T}, would
be eliminated by the rate threshold. Thus, we adjust 7,
by further multiplying it by 8 to approximate the extra
factors by which we multiply a to obtain R'(T}). This
is done in lines (25)—26) of Algorithm 4. (In line {26),
when the component-affected sets of all component types
are empty, we have that |M| = 0, and Z(m)eM ¢i; = 0.
In this case, we define = 1.) Rather than multiplying

Algorithm 5: BuildBestTrees

[~ IIEN NS BN

10
11
12
13

14
15

16
17
18
19

20

21

22

23

24

25
26

27

28

29
30
31

32

//

Precompute optimal paths and costs

fori e Q do

//

for j' € Q do

(gi’,j’a Ci’,j') = Dijkstra (Ga i/aj/) ;

// Function Dijkstra returns
lowest-cost i'-to-j’ path and its
cost.

fori e Q do

for j' € Q do
forlel'y do
if

wir g + ¢ 40 < 00 then

PQ; jr-insert (g, Wiy + Crjr) 3
// i'-to-j' path omits ¢ but
cost includes cost of first
step from ¢ to [

For each i, j, f, build "best" tree
with f type-i comps and type j as
root

forie Q do

for j e Q do
for fe[1,d;] do
if |pg; ;| # O then
| (cycPath;, cycCost;) = pq;, ;-peck () ;

else
| cycCost; =

failed = 0;
T; ; r.root = j;
if j ==14 then
| failed = failed + 1;
else
pgBranch = pq; ;;
while failed < f && |pgBranch| > 0
do
(branch, cost) =
pgBranch.remove () ;
if cost < cycCost; or failed ==
then
attach branch to root of T'; ; r;
failed = failed + 1;

if failed == 0 || (failed < f &&
cycCost,==c0) then
L Tijr= s

else

while failed < f do

attach cycPath, to leaf of
T ;s firstBranch;

failed = failed + 1;

15

—Ingcr=—Ine

—In¢pec=—In(1/2)
—Ingca=—1n(1/2)

—Ingsp=—Ine
: —Ingp s =—1n(1/2)

—Ingrpa=—Ine
954 —Ingp s = —Iné?

—Ingsp=—Ine
—Ingpp=—Ine

Fig. 3: Example of weighted graph G = (V, E, W) used by
Algorithm 5.

a by the specific ¢, to obtain R'(T}), we simplify the
calculations by instead using the average of the component-
affected probabilities, which is the base of 5 in line (26) of
Algorithm 4. If we attach one new node to each existing
node in T, to obtain T}, then the number of new nodes
is |Tyx|. But when adding the new nodes to T, we still
want the resulting new path to failure to be possible, so we
cannot add more nodes to T, than there are remaining
up components at the end of the path to failure, i.e.,
Duealri— a:l(k*)). Hence, we take the minimum of this and
|T%| to obtain the exponent of 8. Finally given o and 3, we
compute 7, = o as in (11) and line {27) of Algorithm 4.

5.1.4 Example Demonstrating Computing Rate Threshold

We now use an example to demonstrate how Algorithms 4
and 5 compute the rate threshold 7 in (11). Consider
a system with Q@ = {A,B,C,D,E} and £ = {0}. Each
component type i € € has redundancy r; = 6, and the
system fails when any type’s redundancy is exhausted,
ie, d; = 6. Let € be a small positive constant, e.g.,
e = 1072, and the component failure rates are ABo = €
and \; o = €* for types i # B. The repair rate is pio =1
for each type i € Q. For cascading, we have T'y = {D, E},
FB = {A,C,D}, FC = {A,E}, FD = FE = {A}, and
bap = QA = Pp,A = € dpa = Odpc = dc,a = 1/2,
éB,p =bc,p = dp,a = €.

BuildBestTrees

We first describe how Algorithm 5 constructs trees T; ; ¢
with f components of type 7 failing and root type j. We
only consider the situation for j = B and ¢ = A, which turn
out to be the values for the approximate most likely paths
to failure. Figure 3 shows the weighted graph G constructed
from the component-affect sets and probabilities, which is
used in line (3). The graph G has the following B-to-A and
A-to-A paths, with corresponding costs:

e B — Ahascost —ln¢p 4 = —1n(1/2),
e B - C — A has cost —In¢pc —Ingpc,a =
—21n(1/2),

« B—->(C—>FE — Ahascost —In¢pc —Ingcr —
In¢g a = —1In(1/2) — 31ne,

e« B—>D—> Ahascost —ln¢p p—Ingp a = —4Ine,

« A— D — Ahascost —In¢ap—Indp a = —3Ine,
A—FE — Ahascost —Inga g —Ingp a = —2Ine.

Thus, (8) builds the priority queue pqgp, =
((A,—1In(1/2)),(C - A,—21In(1/2)),(D — A, —41ne)) as
the best branches from B to A (omitting the initial B)
for each possible first step, where the entries in pgp 4 are
sorted with ascending costs. Also, we have pq, 4 = ((£ —
A,—2lne), (D — A,—31Ine¢)) has the best A-to-A cycles
(without the initial A) for each possible first step, sorted
with increasing costs. Then (13) sets cycPath 4, as E — A as
the best A-to-A cycle, which has cost cycCost, = —2Ine.
The while loop at (22) will attach to the root B the B-
to-A branches from pgp 4 in order of cost as long as those
branches have lower cost than cycCost 4, at which point the
algorithm repeatedly attaches the same best A-to-A cycle
until the counter failed of type-A nodes in the tree equals
the required number f.

Now we consider each iteration of the loop over f € [1, 6]
in {11) for i = A and j = B in {9) and {10), respectively.
In each iteration, we begin with variable failed = 0 in (16),
and the tree root as B in {17).

o First consider f = 1 in the loop at line {11). The
first iteration of the while loop at line (22} removes
the best B-to-A branch, (A4, —1In(1/2)), from pgg 4
in (23), and {25) attaches a child A to the root.
We now have pap 4 = ((C — A, -21In(1/2)), (D —
A,—4lne)) and failed = 1. Thus, the tree has
the required number f of A nodes, so the tree is
complete. The resulting tree T4 p 1, which appears
in Figure 4, has approximate rate

R'(Ta,B1) = ABodB,a = (1/2)€

computed from (10).

« Now consider f = 2 in the loop at line {11). The
first iteration of the while loop at (22) is the same as
above for f = 1. The second iteration of the loop at
{22 finds that the new best B-to-A branch, C' — A,
inpqp 4, has cost, —21n(1/2)), that is lower than the
cycCost, = —21Ine of the best A-to-A cycle. Thus,
(23) removes (C' — A, —21In(1/2)) from pgp 4, and
{25) attaches a branch C' — A to the root. We now
have pgg 4 = ((D — A,—4Ine¢)) and failed = 2.
Thus, the tree has the required number f of A nodes,
so the tree is complete. The resulting tree T4 g 2 in
Figure 4 has approximate rate

R'(Ta,B2) = AB,0¢B,A¢B,cOc,a = (1/8)€.

« Now consider f = 3 in the loop at (11). The first two
iterations of the while loop at (22) are the same as
above for f = 1 and f = 2. The third iteration of the
while loop at (22) finds that the cost, —4 Ine, of the
new best B-to-A branch, D — A, in pqp 4 is higher
than cycCost, = —2Ine. Thus, the while loop at
{22) will not attach anymore B-to-A branches from
PAp 4 to the root. Instead, the while loop at line (30)
will grow the first branch in 74 p 2 by attaching the
best A-to-A cycle, E — A, to that branch’s leaf,

16

7

@

TaBs

@

Ty Ba TyBo

L K
©)

TABa

Fig. 4: Trees T4, g, constructed by Algorithm 5 having f
type-A components failing and type-B root.

TaB3

O--O-0-6E

@ @

OROROROROROROROR0

which is an A. Thus, as we now have failed = 3,
the tree has the required number f of A nodes, so
the tree is complete. The resulting tree T4 p 3 in
Figure 4 has approximate rate

R'(Ta,B3) = A\B,00B,AOB,COC,APA EPE, A
= (1/8)€.

« FEach of the remaining iterations for f = 4,5,6
in line (11) will further grow the branch from the
first iteration of the while loop at (22) by attaching
the same A-to-A cycle, E — A, to that branch’s
leaf, which is of type A. The resulting trees, T4, B 4,
Ta,B5, and Ta B, appear in Figure 4, and they
have approximate rate

R(Tapf) = Apodp,ads,coc,aldapdra) >
= (1/8)e*/ 2.

FindRateThreshold

We next describe how Algorithm 4 computes the rate
threshold 7. We only consider the loops for ¢ = A and
j = B in lines {4) and (5); i.e., when the system fails
from exhausting type A with trees having a type-B root.
We now examine what happens for each iteration of k in
the loop at {7), where k is the number of transitions in a
path to failure that is to be constructed, and we recall that
da = 6. When we compute pathApproxProb in (18}, the first
transition along the path has that the denominator in (12)

is O(e) because there are only failure transitions and no
repair transitions out of the initial state. Each subsequent
transition along the path has that the denominator in (12)
is O(1) because at least one component is failed so there is
an ongoing repair.

« For k = 1, line {10) has by = 0, so the single
transition in the constructed path to failure has
fa = 6 type-A components failing. We use the tree
Ta,B,6 in Figure 4 for that transition. The resulting
DTMC path has approximate probability

pathApproxProb = O(€®)

computed using (18).

« For k =2, line {10) has b4 = 0, so by (15), each of
the k transitions in the constructed path to failure
has f4 = 3 type-A components failing. The resulting
DTMC path of k transitions, each corresponding to
T, B,3, has approximate probability

pathApproxProb = O(€®).

« For k = 3, line {10 has b4 = 0, so by {15), each of
the k transitions in the constructed path to failure
has f4 = 2 type-A components failing. The resulting
DTMC path of k transitions, each corresponding to
T'a,B,2, has approximate probability

pathApproxProb = O(€?).

« For k = 4, line (10) has by = 2, so in the loop
at (11), each of the first two transitions in the
constructed path to failure has f4 = 2 type-A com-
ponents failing, and each of the last two transitions
has fa = 1. These correspond to trees T4 > and
T'a,p,1 in Figure 4. The resulting DTMC path of &
transitions has approximate probability

pathApproxProb = O(€?).

e« For £k = 5 and 6, we can similarly show that
pathApproxProb = O(e*) and O(e’) respectively.

Hence, {19)—<22) of Algorithm 4 identify the constructed
path with the highest approximate probability as having
length k, = 3, so (23)<(24) result in T,, = T4 o and
a = R/'(T4 p2) = (1/8)e as the minimum approximate tree
rate along the identified path with k, transitions.

Finally, we compute the other factor 8 in (11). First,
we have that M = { (4, D), (A, E), (B, A), (B,C), (B, D),
(C,A), (C,E), (D,A), (E,A) } in line (25) of Algorithm 4.
In (26) the base averages the component-affected probabil-
ities: (e+e+1/2+1/2+e+1/24+ ¢ +€* +¢)/9 ~ 1/6.
For the exponent in (26), we have that |Tx| = |Ta,p 2| = 4,
as seen in Figure 4. Also, after the k, = 3 transitions in
the constructed approximate most likely path to failure, the
numbers of remaining up components of types A, B, ..., E
are 0, 3, 3, 6, 6, so the second term in the exponent for 3 is
their sum, 18. Hence, the exponent for 8 is min(4, 18) = 4,
so B ~ (1/6)*, resulting in 7 = a8 ~ (1/8)(1/6)*¢ as the
rate threshold.

17

5.2 Correcting the Generator Matrix’s Diagonal Entries

As we will see in Section 6, the methods developed in
Sections 5 and 5.1 can drastically reduce the number of
trees constructed and the computation time. But because
the resulting generator matrix @’ includes only a subset
of the trees used to construct @), errors arise in the com-
puted dependability measures. We next try to reduce the
error by modifying @’ to obtain another generator matrix
Q" = (Q"(z,y) : z,y € S) that has the same diagonal
entries as the original matrix Q. Because —1/Q(x, x) is the
mean time that the original CTMC spends in state x on
each visit there, matching the diagonal entries to those of
@ can help by ensuring the approximate CTMC spends the
same amount of time on average in each state as the com-
plete model. Moreover, we can view the diagonal correction
of Q" as a way of compensating for not generating all of
the trees.

In the complete matrix @, the sum of the rates (1) of
all trees originating in a state x and having a root of type i
is (r; — i) Niwn,,» the factor from the root in each tree
rate. This holds because the set of all those trees includes
every possible combination of failures and non-failures of
components that could be affected in a cascade triggered
by the failure of a component of type i. Because a failure
transition out of state x can be triggered by any component
type that still has operating components in the state, the
total failure rate out of state x satisfies

Mz

> Qlay) = Q' (z,y),

y:(z,y)e¥s i

(ri = 2)Nigwan = D)

y:(z,y)eve

Il
fat

where we recall that Uy was defined in Section 3 as the set
of failure transitions, and the inequality holds because Q'
was computed by omitting some trees.

For the complete matrix Q, the total rate out of x is
—Q(z, x), which equals

>, Qay+),

yi(z,y)eTs yi(z,y)ePe

Qz,y)+ Y, Qxy),

y(z,y)e¥,

where we recall from Section 3 that ¥, and V¥, are the
sets of environment and repair transitions, respectively.
Because Q' includes all environment and repair transitions,
we have that Z (wev. @@ Y) =2 yew, @z, y) and

cw, Q'(z,y) = Z (oyer, @@, y) Thus for each z,
the d1 erence in the dlagonal entries, which is

€z = —Q(z,7) + QI(JJ,CL‘) = 0, (13)

results solely from the failure transitions, and we define
the new matrix @” such that Q"(xz,z) = Q(z,z) for
each x € S. For y # =z, we let Q"(z,y) = Q(z,y)
for (z,y) ¢ Uy so Q" shares the same rates for non-
failure transitions as @ (and @'). We then need to de-
fine Q"(x,y) for failure transitions (z,y) € ¥: so that
2ywyer; @@ Y) = 2 4ew, @@, y) for each state
zeS.
To do this, for a failure transition (x,y) € ¥, we add to
each Q'(z,y) a portion of the difference €, in (13); i.e
Q"(z,y) =Q'(z,y) +

w'(z,y)ex, (14)

where w'(z,y) = 0 is a weighting function such that
Zy:(x e w'(z,y) = 1. Through experimentation with
various weighting schemes, we found that setting

Q'(z,y)"
z:(x,z)eVs Q,("E, Z)v

with v = —2 worked well across different models. Observe
that w’(z,y) = 0 whenever Q'(z,y) = 0, so only failure
transitions that are possible in @' are modified by (14).

As noted in Section 5, @’ typically has the property
that its corresponding MTTF and SSU are no worse than
those for @ (because omitting trees usually makes the
system more dependable), but no such trends seem to hold
when comparing the dependability measures of Q" and Q.
However, we often have that the system with Q” is less
dependable than the system with matrix @’ because Q"
has larger rates for the failure tramsitions than Q' does
(with the same environment and repair rates). It is often
the case that the system with Q” is more dependable than
with Q; however, it is possible that Q" overcompensates,
and the system with Q” can be less dependable than with
Q; e.g., see Case 3 of Table 1.

w(ﬂc7y)=Z

5.3 Errors from Q' and Q"

Our approach in Section 5.1 to compute 7, relies on a
number of approximations, some of which were developed
under the assumption that the component-affected prob-
abilities ¢; ; are small. To test the effect of the size of
the ¢;; on the resulting errors in the MTTF and SSU,
we ran numerical experiments on various models, where we
systematically increased the ¢; ;. Figure 5 shows the results
for a modified version of the 125-state model from Table 2
with Ty = T'p = {C} and T'¢c = {A, B}. We started with
pac = 0.1, ¢pc = 0.3, ¢c,a = 0.05, ¢c,p = 0.4, and
the other ¢; ; = 0, and then simultaneously changed all
nonzero ¢; ; to ¢; ; + A for A =0.1,0.2,...,0.5.

For a generator matrix Q, let MTTF(Q) and SSU(Q)
be the MTTF and SSU, respectively, computed from
Q. Figure 5 plots the ratios MTTF(Q)/MTTF(Q) and
SSU(R)/SSU(Q), for Q@ = Q" and Q”. The reason we
inverted the ratios for MTTF and SSU is that increasing
A leads to the system becoming less dependable, so the
MTTF and SSU then move in opposite directions. A ratio of
1 indicates no error. As A grows, the ratios worsen, so using
the rate threshold 7, alone (i.e., Q') seems to work best
when the ¢; ; are relatively small. But Q” from Section 5.2
substantially reduces the error by correcting the diagonal
entries of the generator matrix. Results for other models
(not shown) are similar.

5.4 Error from Eliminating a Single Tree

When computing the dependability measures of a system
for which trees have been eliminated (e.g., by a rate
threshold), the computed dependability measures typically
differ from the exact values that correspond to the original
system with generator Q. We now study to what extent
the values of dependability measures change by eliminating
just a single tree at a time, and as we will see, this provides
further numerical evidence supporting our decision of using
a rate threshold to omit trees. We carry out the analysis

18

)NTTE@)

35| | MTTF(Q .
->- SSU(Q)/SSU(Q)

3|| ® MTTF(Q")/MTTF(Q) .
-+ SSU(Q)/SSU(QR")

o 251 o
ks

2 - .

1.5 .

1 - .

Fig. 5: Ratios comparing dependability measures with @’
and Q" to Q as non-zero component-affected probabilities
¢i; + A vary.

on the model previously considered in Section 4.2. For the
three cases of the model, we chose the values of A4 ¢ ¢4 B,
and ¢p 4, listed at the top of Table 1, so that Algorithm 4
identifies fundamentally different approximate most likely
paths to failure.

In each case, component type A is the one whose ds =
rqg —v4g + 1 = 4 failures lead to system failure in the
approximate most likely path to failure, but the cases have
a different optimal number k, of transitions in that path
(see line (22) of Algorithm 4).

o Case 1 has k, = 1 transition, and the single tree
on that path to failure is tree ¢ = 10 (i.e., Tio)
in Table 1; tree T1g has fa = da/ks« = 4 type-A
components (along with other components) failing.
(Section 4.2 explains the structure of the trees that
appear in the table.)

o Case 2 has k, = 2 transitions, and its approximate
most likely path to failure has two successive occur-
rences of tree Ty, which has f4 = da/ks = 2 type-A
failures.

o Case 3 has k, = 4 transitions, where tree T3, which
has fa = da/k« = 1 type-A failure, is repeated four
times on the path to failure.

The row labeled 7, in Table 1 gives the value of the
resulting rate threshold obtained by Algorithm 4 for each
case. Table 1 also gives the approximate rate R'(T}) from
(10) of each tree T;, where an entry with a * denotes that
R/(T}) = 7; the values of the MTTF and SSU for @; and
the ratios of MTTF and SSU for Q compared to Q' and
Q". The last row of Table 1 gives for each case, the number
of trees constructed (labeled “unique”) and total number
of times those built trees were used in transitions (“eval.”)
in Q.

Let QFf = (QFf(z,y) : z,y € S) be the infinitesimal
generator matrix when all trees except T; are included.
To isolate the impact of just T;, larger trees built from
T; are still included in Q. This is in contrast to the
study in Figure 2, where all larger trees built from T;

19

T
104 L N
100 | s 2
g(x g%
: St o
A 10t £ L, 1
IS EFEQ . AA A
1078 5 »(‘:PX . 2 xCase 1 ||
o, oCase 2
. aCase 3
10712 1 ! ! ! T
10720 107 1072 107® 107* 10°
R(T})

Fig. 6: Absolute value of percent error in MTTF versus
approximate rate when removing each distinct failure tree

101 - o a |
@@@%
A
1076 | ﬁ :
8 &4
Lﬂé: 10_13 [ﬁﬁ N
X I
3 P
10720 - o xCase 1 | |
#® oCase 2
A aCase 3
10727 1 ! ! ! I]
1072 1072 1077 107t 107°
R(T,)

Fig. 7: Sum over all cascade sizes of absolute values of
errors in DCSUF versus approximate rate when removing
each distinct failure tree

would also be skipped because if T; does not satisfy the
growing condition, then each larger tree built from T
would also not satisfy the growing condition. Thus, using
the tree-rate function R defined in (1), we have that
Q¥ (z,y) = Q(z,y) — R(Ty,x) for each failure transition
(z,y) that includes T3, and Qf(z,y) = Q(z,y) for each
transition (z,y) with « # y not including 7. Also, the diag-
onal entry Qf (z,z) = =3, ., Qf (x,y). We next compare
for each tree T; the values of our dependability measures
for Qf and for the original generator @). This gives us a way
to assess each tree’s importance.

For each tree Ty, Figure 6 plots the % error in the
MTTF for Qf as a function of the approximate rate
R'(T;), where the % error is given by |[MTTF(QF) —
MTTF(Q)|/MTTF(Q). Though not shown, the plots of the
steady-state unavailability error follow the same pattern.
Similarly, Figure 7 (resp., 8) plots the % error in the
computed DCSUF x in (6) as a function of R'(T}), where

the % error is given by Z?:l IX(1,QF) — x(1, Q)| (resp.,
Yo X QF) — x(1, Q)1/x(1, Q)), and x(1,Q) is the value

of x(l) for a generator matrix (). Though not shown,

T
103 | A
®
109 | A A A HORBRRE g
4 tx B B Ry ¥a
) N LB A A
b A A A
€3} 103 |- |
IS
106 |- S x Case 1
B Bx My ¥y oCase 2
A A A MRRREN 2Case 3
-9 U | | | I
1072 10723 107" 1071t 10°%
R7

Fig. 8: Sum over all cascade sizes of absolute values of
relative errors in DCSUF versus approximate rate when
removing each distinct failure tree

the plots of the error in the SSDCS @ in (2) follow the
same pattern. In all three cases, a clear trend shows that
eliminating a tree with a higher approximate rate from
all appropriate transitions in the generator matrix tends
to lead to greater error in the computed dependability
measures. This leads us to conclude that trees with a
higher approximate rate have a greater importance on
the accuracy of the dependability measures, which is in
accordance with our previous findings from Figure 2.
Figure 8 shows a clear grouping of plotted points that
is not found in Figures 6 or 7. In Figure 8, with the
exception of the two leftmost points, which are in fact
eight overlapping points, those in the upper half of the plot
correspond to trees that do not contain a failed component
of type C, while those in the lower half do. This is significant
because the models have only one component of type C,
and there is very small chance that another component
type causes a C to fail (i.e., pa.c = 107% and ¢p,c = 0).
This means that whenever a component of type C' fails
in some tree Ty, and it is not the root of T;, the exact
rate of T} becomes extremely small. When the rate of T
is significantly smaller than the rate of some other tree
of the same cascade size, T; seems to contribute little to
x(1) relative to other trees with larger rates. Note that
the two left-most points do not seem to follow this trend,
as the trees that contribute to those points all contain a
failed component of type C'. This is because for those eight
trees, the cascade has the largest possible size. These eight
trees are the only trees with every single component failing,
including one of type C. This means that no tree has a
rate that is significantly smaller than that of other trees
of the same size due to the effect of including one failed
component of type C. Furthermore, within each of those
groupings (i.e., the top group, the bottom group, and the
group containing the two leftmost points), there is a further
subgrouping, with one band of points above and one below.
The points in the upper (resp., lower) grouping correspond
to trees with a type-A (resp., type-B) component at the
root. For these models we have that Aa/Ap = 10 or 100,
and a similar argument as before explains how eliminating

Fig. 9: Component-affected probabilities ¢;; in a cloud-
computing model.

a tree Ty seems to lead to the error being smaller when T;
has a rate significantly smaller than some other tree of the
same cascade size.

6 CLOuD-COMPUTING MODEL

To test the efficacy and efficiency of our approaches, we
ran numerical experiments on a large-scale model. High
dependability is crucial for cloud-computing services [14],
and we considered a dependability model of a three-
tier cloud-computing system in Figure 9. Each group of
boxes represents a component type, where the labels F'S,
MS, BS, LB, HV and SC, respectively, denote front-
end servers, middle-end servers, back-end servers, load
balancers, hypervisors, and system controllers. There is
a directed edge from component type i to type j if the
failure of a component of type i can probabilistically cause
a component of type j to immediately fail, i.e., j € T}.
The label on an edge from ¢ to j is the component-affected
probability ¢; ;. For example, there are edges from HV to
FS, MS and BS because according to [42], hypervisors
often “cause other system components to fail and certainly
cause server racks to fail because of state corruption.”

The redundancies for the different component types are
rrs = TMs = TBs = 4, rLp = rgw = 5, and r5¢ = 2,
which are depicted in Figure 9 by the multiple boxes for
a component type. We assume the system is operational if
and only if there is at least one component up of each type.
Additionally, the system operates in two environments:
high demand (e = 1) and low demand (¢ = 0). The
resulting state space S of the CTMC has size |S| = 27,000.

20

For the high-demand environment, the component
types have failure rates Apg1 = Apms1 = Aps,1 = 1/8760,
>\LB,1 = /\HV,l = 1/4380, and)\5071 = 1/43800, where the
time unit is hours. Thus, in the high-demand environment,
the mean component lifetime of a server is one year,
each load balancer and hypervisor has a mean lifetime
of 0.5 years, and a system controller has a mean lifetime
of 5 years. In the low-demand environment 0, we set
Asco = Asc1/2 and Ao = A;1/4 for each other com-
ponent type i # SC. These values are roughly comparable
to failure rates given in [16], in which the authors state,
based on discussions with vendor personnel, their numbers
are “reasonable” with respect to actual proprietary values.

In environment 1, the repair rate for failed servers is
1/12, and the load balancer and hypervisor (resp., system
controller) have double (resp., half) that repair rate. In en-
vironment 0, the repair rate is halved for each type, except
for the system controller, which has the same repair rate in
both environments. These values are roughly comparable
to repair rates used in [16]. The environment switches once
every 12 hours on average to the other environment, so
Vg =1V = 1/12 and 5071 = 5170 =1.

Table 4 contains results from running the new version
of DECaF to compute the MTTF and DCSUF of vari-
ous versions of the cloud-computing model. The versieons
differ in the amount of cascading possible: high, low, and
none. The high-cascading version is as described above,
with component-affected sets I'pg = {MS}, T'ys =
{FS,BS,S5C}, I'gs = {MS}, I'p = {FS,MS,BS},
Ty = {FS,MS,BS}, and I'sc = {LB, HV}. Some sets
are smaller in the low-cascading version: I'rg = I'yy =
{MS} and all other I'; are unchanged from the high-
cascading version. Also, the low-cascading version has the
same component-affected probabilities ¢; ; as shown in
Figure 9 for j € I';, and ¢;; = 0 for j ¢ I';. The no-
cascading version has all I'; = § and ¢; ; = 0. For the high-
and low-cascading models, we ran DECaF three times: once
with the complete generator matrix) that includes all
cascading-failure trees, using the algorithms from Section 4;
a second time with generator matrix @', which implements
only the rate threshold 7, from Sections 5 and 5.1; and
the third with generator matrix), which further corrects
the diagonal entries to equal those in @), as described in
Section 5.2. (For the model with no cascading, the methods
from Sections 5.1 and 5.2 do not eliminate any trees, so we
only report the results for @).) The third column of Table 4
shows the number of unique trees that are constructed by

TABLE 4: Numerical results for different versions of the cloud-computing model, including the failure-transition time
(FTT), non-failure transition time (NFTT), fundamental-matrix time (FMT), MTTF time (MTTFT), DCSUF time

(DCSUEFT), and rate-threshold time (RTT).

Casc. | Gen. | Unique Trees % Error CPU Times (seconds)

Amt. | Mat. | Trees | Eval. | MTTF | MTTF [Total | FTT [NFTT | FMT | MTTFT [DCSUFT | RTT
High Q 2.00E08 | 1.93E10 26851 0.0 | 269957.0 | 266205.2 2.1 | 3733.7 0.15 15.87 0
High Q7 2.67TE05 | 3.82E08 42796 59.4 4160.0 442.1 2.2 | 3699.7 0.15 15.86 0.02
High Q7 2.67E05 | 3.82E08 26046 —3.0 4089.9 437.8 1.9 | 3633.4 0.14 16.59 0.02
Low Q 1.04E06 | 3.17E08 49453 0.0 5039.9 1384.0 1.9 | 3638.7 0.14 15.13 0
Low Q’ 2.92E04 | 4.70E07 57674 16.6 4012.0 47.2 2.2 | 3943.0 0.25 19.33 0.03
Low Q7 2.92E04 | 4.70E07 49353 —0.2 3688.7 44.9 1.9 | 3626.8 0.14 14.93 0.02

[None | Q [6.00B00 | 1.28E05 | 67606175 | 00 | 34455 004 10 34284] 014 1498] 0 |

DECaF, where each unique tree may be used several times
for different transitions, as explained in Section 4. Summing
up the number of times each unique tree is used in some
failure transition over all unique trees results in the entries
in the column labeled “Trees Eval.”; thus, the ratio of Trees
Evaluated over Unique Trees gives the average number of
failure transitions for which each unique tree was used. The
fifth column of Table 4 contains the MTTF for the specified
generator matrix @, @' or Q”. As expected, MTTF(Q)
increases (i.e., the system becomes more dependable) as
the amount of cascading decreases. For each model version,
the sixth column shows that the percent error in the MTTF
for Q' is always nonnegative in this model, so @’ results in
a more dependable system, as we had noted is usually the
case in Section 5. Note that Q' produces MTTF's that are
reasonably close to the true value from @, but Q" does
substantially better, resulting in errors of at most a few
percent.

The last seven columns of Table 4 present the CPU
times it took DECaF to perform various computations.
The experiments were performed on the same computer
used to generate the results in Figure 2 (but different
from the one employed for Table 3). The “Total” column
gives the amount of time required to complete an entire
run of DECaF to compute the MTTF and DCSUF. (We
did not compute the SSU nor the SSDCS in this set of
experiments.) As in Table 3, the FTT (resp., NFTT) is the
failure-transition (resp., non-failure transition) time. Note
that NFTT is insignificant compared to Total Time for all
rows in Table 4. The FTT includes the time to perform
the computations corresponding to the columns Unique
Trees and Trees Eval. The FMT is the fundamental-matrix
time, which is the time to compute (I — Py)~*, needed for
computing both the MTTF and DCSUF; see Sections 4.1.2
and 4.1.4. MTTFT is the additional CPU time required
within a run to compute the MTTF after computing the
fundamental matrix. DCSUFT is the extra time to compute
DCSUF after (I — Py)~! has been computed. RTT in the
last column of Table 4 is the rate-threshold time: how
long it took to compute the rate threshold 7, which we
note is minuscule compared to FMT and the Total Time.
Moreover, RTT is always much smaller than FTT, with
orders of magnitude difference when there are many trees.
Thus, the algorithm in Section 5.1 to compute 7; is very
efficient and incurs virtually no overhead.

In the high-cascading version of the model, the use of
the rate threshold decreased the number of unique trees by
a factor of 761, with a 51-fold drop in the trees evaluated.
FTT was lowered by a factor of about 600, and the total
time shrank by over 60-fold. The error in the MTTF from
using only the rate threshold (i.e., Q') is about 60%, and
further applying the diagonal correction (i.e., Q") produced
less than 3% error. Thus, the methods of Sections 5.1 and
5.2 can dramatically reduce computation time with small
error in models with a high level of cascading. For the
low-cascading model version, the unique trees generated
decreased by a factor of 35.6, resulting in a roughly 30-
fold reduction in FTT. The total time does not shrink as
dramatically because FMT now becomes the bottleneck.
(We are currently investigating more efficient techniques to
compute the fundamental matrix.) Compared to the high-

21

Oj‘ \E
s Q]
10—1; B DQI ;

g a . AQ" |
1072 fay,]

54,

~~ I X .
= 103 E oDAaX E
= 0 F ><>< E

= X B
1074 F = X E

B <
0= -

I 0]
10_6?\ ! ! ! iE|

0 5 10 15 20

Cascade size (1)

Fig. 10: DCSUF x(1), ! € [1, 24], for cloud model with high
cascading, where only non-zero values of x(l) are plotted

cascading model, " and Q" for low cascading produce
substantially more accurate values for MTTF, with only
0.2% error for Q.

For the cloud model with the high (resp., low) level of
cascading, Figure 10 (resp., 11) plots (on semilog scale)
the values of the DCSUF x(I) from Section 4.1.4 for the
possible cascade (tree) sizes [for the generator matrices @,
Q' and Q". Although the theoretical largest possible value
of [is 24, which is the sum of all component redundancies,
we have that x(I) = 0 for @ when [> 20 (resp., | > 13)
for the model with high (resp., low) cascading as those
larger trees cannot occur because of limitations imposed
by the component-affected sets I'; and the redundancies.
In Figure 10 we see that the values of x(I) closely match for
all three generators when [is small; the values for Q' and Q
start diverging for the middle range of /; and there are no
values for Q' and Q" for large I. The apparent reason for this
arises from the way we apply the growing criterion with rate
threshold 7, which we recall generates a tree T if and only
if its approximate rate R'(T) = 7. Cascades with small
size | correspond to trees T with relatively large R'(T), so
most of those trees are not eliminated by 7. This leads to
x (1) for Q" and Q" being close to that for @ for small [. The
middle values of [result in trees whose approximate rate
straddle 7, so some portion of them are constructed and
others not. This leads to Q' having substantial error for the
middle range of [, but Q" largely corrects this. Finally, trees
with large size [are completely eliminated by 7, so Q" and
Q" give x(I) = 0. Figure 11, which is for the low-cascading
version, exhibits a similar pattern but without the behavior
on the far right of Figure 10 because, although @’ and Q"
correspond to eliminating some trees in the low-cascading
model, there are still others that are built for each value of
[for which x(I) > 0 for Q.

7 CONCLUDING REMARKS

We developed efficient algorithms and data structures to
construct, analytically solve, and approximate a CTMC
model of a dependability system having cascading failures.

T

1000 4 xQ |
S o0Q ||
107t A AQ" |4
B 4 1
[& -
—2 | & |
= s,
= B &]
10_3§ % X E
i o X
1075 5]
[O B
7\ | | | | | | |

0o 2 4 6 8 10 12

Cascade size

Fig. 11: DCSUF x(1), I € [1, 24], for cloud model with low
cascading, where only non-zero values of x(l) are plotted

We implemented the ideas in a software package called
the Dependability Evaluator of Cascading Failures, DE-
CaF, which builds the CTMC from basic building blocks
describing the system and then solves it to compute var-
ious dependability measures. In addition to the SSU and
MTTF, we also derive two new dependability measures:
the steady-state distribution of cascade size (SSDCS), and
the distribution of cascade size until failure (DCSUF).

In contrast to many studies of CTMCs, simply building
the CTMC in our setting poses tremendous computational
hurdles. The problem arises from the complexity in gener-
ating the cascading-failure trees, and we provided efficient
methods to quickly construct the trees. The new algorithms
led to decreasing the runtime of DECaF by orders of
magnitude compared to the previous version in [22].

But even with efficient methods for generating trees,
the exponential growth in the number of trees limits the
size of models that can be analyzed exactly. Thus, we
also proposed a technique that judiciously generates only a
subset of the trees by using a rate threshold 7. Exploiting
the idea of most likely paths to failure, the approach tries
to generate trees that arise on such paths but omits those
on significantly less probable paths. Because not all trees
are generated, the resulting dependability measures have
some error, but our numerical experiments indicate the
approach can dramatically reduce computation time and
still have very accurate results when we further correct
for the diagonal entries in the generator matrix, especially
when the component-affected probabilities are relatively
small (see Section 5.3).

Our approach in Section 5.1 to specify 7 exploits
approximations based on the system comprising highly
reliable components, i.e., failure rates are much smaller
than repair rates. Section 6 presented numerical results
for a large cloud model with this characteristic, as well
as the ¢; ; not being too large, and our methods reduced
computation time by orders of magnitude with just a few
percent error. Our techniques can also work with models
of other systems satisfying these assumptions in different
applications areas.

22

It would be interesting to see if additional problem
structure can be exploited to obtain more efficient methods
by using e.g., lumping [9], symmetries [10], or continuous
approximations [5].

Another topic for future work is to adapt the approx-
imation based on a subset of the trees for use in a quick
simulation method using importance sampling (IS) [33].
Previously developed IS schemes have applied the concept
of most likely paths to failure in their design for efficiently
simulating dependability systems with limited cascading
failures [23], [33]. We plan to investigate expanding the
idea in our model with more general cascading failures.

ACKNOWLEDGMENTS

This work has been supported in part by the National
Science Foundation under Grants No. CMMI-0926949 and
CMMI-1200065. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of
the National Science Foundation. Additional funding came
from the NJIT Provost Undergraduate Summer Research
program. The authors thank Prasad Tendolkar for his
contributions to the early efforts of the project. Finally, the
authors thank the associate editor and referees for making
numerous suggestions that led to an improved paper.

APPENDIX
Computing a Tree’s Rate Revisited

We reconsider our example in Section 3.2 to show how to
compute 7 from (1) for Figure 1 using the data structure
BFH (breadth-first history). We assume the tree in Fig-
ure 1 was first constructed from several recursive calls to
AddTreeLevel (Algorithm 2), which also built BFH as
follows.

A | @1 B-2 @6 B-7
B | @2 Q-7 A-6
C | A1 @5 A-6 B-7

We have also included the node IDs in BFH to aid in the
following discussion, although the IDs are not part of BFH.

We then proceed to ComputeTreeRate (Algorithm 3)
to compute 7. As in Section 3.2, prior to iterating through
BFH, we have uy = 2, ug = 2 and uc = 1. Iteration
through BFH occurs as specified in ComputeTreeRate in

lines (3>—~9).

o Iteration through the linked list at index A is as
follows. The @-1 means a component of type A has
failed at ID 1, so we then decrement u 4 to 1. Then
for the next entry, because w4 is still positive,
includes a factor (1 — ¢p 4) from B-2 in its product
from the A not failing at ID 4. Next the @-6 means
that a component of type A failed at ID 6, so we then
decrement u 4 to 0. Finally, the B-7 means that the
node of type A at ID 10 has as its parent the node
of type B at ID 7; but because u4 = 0 at this point,
n does not include a factor (1 — ¢ 4) for B-7.

o Iteration through the linked list at index B is as
follows: @-2 and @-7 mean components of type
B have failed at IDs 2 and 7 respectively, so we

decrement ug from 2 to 1 and then from 1 to O.
Because up is now 0, n does not include the factor
(1 — ¢A,B) for A-6.

Iteration through the linked list at index C' is as
follows. Because uc starts out positive (i.e., uc =
1), we include the factor (1 — ¢4,c) from A-1. Next,
@-5 means a component of type C' has failed at ID
5, so we then decrement uc to 0. Because uc = 0
now, we do not include any further factors from this
row in 7.

Multiplying the contributions from each index results in
n=1-¢pa)l—dac)

REFERENCES

(1]

2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]
(10]

(11]

(12]

(13]

14]

(15]

(16]

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing, 1:11—

33, 2004.

C. Beounes, M. Aguera, J. Arlat, S. Bachmann, C. Bourdeau,
J.-E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J. Moreira
de Souza, D. Powell, and P. Spiesser. SURF-2: A program
for dependability evaluation of complex hardware and software
systems. In The Twenty-Third International Symposium on

Fault-Tolerant Computing (FTCS-23) Digest of Papers, pages

668—-673, 1993.

S. Bernson, E. de Souza e Silva, and R. Muntz. A methodology
for the specification of Markov models. In W. Stewart, editor,
Numerical Solution to Markov Chains, pages 11-37, 1991.

A. Blum, P. Heidelberger, S. S. Lavenberg, M. K. Nakayama, and
P. Shahabuddin. Modeling and analysis of system availability us-
ing SAVE. In Proceedings of the 23rd International Symposium
on Fault Tolerant Computing, pages 137—141, 1994.

L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Contin-
uous approximation of collective system behaviour: A tutorial.
Performance Evaluation, 70:317-349, 2013.

H. Boudali, P. Crouzen, and M. Stoelinga. A rigorous, compo-
sitional, and extensible framework for dynamic fault tree analy-
sis. IEEE Transactions on Dependable and Secure Computing,
7(2)7128-143, 2010.

M. Bouissou and J. L. Bon. A new formalism that combines
advantages of fault-trees and Markov models: Boolean logic
driven Markov processes. Reliability Engineering and System
Safety, 82:149-163, 2003.

W. G. Bouricius, W. C. Carter, and P. R. Schneider. Reliability
modeling techniques for self-repairing computer systems. In
Proceedings of the 1969 24th ACM National Conference, pages

295-309. ACM, 1969.

P. Buchholz. Exact and ordinary lumpability in finite Markov
chains. Journal of Applied Probability, 31:59-75, 1994.

P. Buchholz. Hierarchical Markovian models: symmetries and
reduction. Performance Evaluation, 22(1):93-110, 1995.

R. W. Butler. The SURE reliability analysis program. In ATAA
Guidance, Navigation, and Control Conference, pages 198-204,

1986.

B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman.
Critical points and transitions in an electric power transmission
model for cascading failure blackouts. Chaos, 12:985-1076, 2002.
P. Crucitti, V. Latora, and M. Marchiori. Model for cascading
failures in complex networks. Physical Review E, 69:045104,
2004.

S. Distefano, A. Puliafito, and K. S. Trivedi. Guest editors’ intro-
duction: Special section on cloud computing assessment: Metrics,
algorithms, policies, models, and evaluation techniques. IEEE
Transactions on Dependable and Secure Computing, 10:251-252,

S. Goddard, R. Kieckhafer, and Y. Zhang.

2013.
J. B. Dugan and K. S. Trivedi. Coverage modeling for depend-
ability analysis of fault-tolerant systems. IEEE Transactions on

Computers, 28:775-787, 1989.

An unavailabil-
ity analysis of firewall sandwich configurations. In Sixth
IEEE International Symposium on High Assurance Systems

Engineering, pages 139-148, 2001.

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

(33]
[34]
(35]
(36]

(37]

(38]

(39]

23

A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, and P. W.
Glynn. A unified framework for simulating Markovian models of
highly dependable systems. IEEE Transactions on Computers,
C-41:36-51, 1992.

H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur,
and J. Robbins. Failure as a Service (FaaS): A cloud service for
large-scale, online failure drills. Technical Report UCB/EECS-
2011-87, Electrical Engineering and Computer Sciences, U. C.
Berkeley, 2011.

H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria. What bugs live in the cloud? A
study of 3000+ issues in cloud systems. In E. Lazowska, D. Terry,
R. H. Arpaci-Dusseau, and J. Gehrke, editors, Proceedings of the
ACM Symposium on Cloud Computing, pages 7:1-7:14, 2014.

H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar. Why does the cloud stop
computing? Lessons from hundreds of service outages. In M. K.
Aguilera, B. Cooper, and Y. Diao, editors, Proceedings of the
7th ACM Symposium on Cloud Computing, pages 1-16, 2016.

C. Hirel, B. Tuffin, and K. S. Trivedi. SPNP version 6.0. Lecture
Notes in Computer Science, 1786:354—357, 2000.

S. M. Iyer, M. K. Nakayama, and A. V. Gerbessiotis. A
Markovian dependability model with cascading failures. IEEE
Transactions on Computers, 139:1238-1249, 2009.

S. Juneja and P. Shahabuddin. Rare event simulation techniques:
An introduction and recent advances. In S. G. Henderson
and B. L. Nelson, editors, Elsevier Handbooks in Operations
Research and Management Science: Simulation, pages 291-350.

Elsevier, Amsterdam, 2006.
D. E. Knuth. The Art of Computer Programming: Fundamental
Algorithms. Addison-Wesley, Reading, Massachusetts, third

edition, 1997.

G. Krishnamurthi, A. Gupta, and A. K. Somani. The HIMAP
modeling environment. In Proceedings of the 9th International
Conference on Parallel and Distributed Computing Systems,

pages 254-259, 1996.
H. Langseth and L. Portinale. Bayesian networks in reliability.
Reliability Engineering and System Safety, 92:92—-108, 2007.

R. G. Little. Controlling cascading failure: Understanding the
vulnerabilities of interconnected infrastructures. Journal of
Urban Technology, 9:109-123, 2002.

H. M. Markowitz. Portfolio selection. Journal of Finance, 7:77—

91, 1952.

T. McDaniels, S. Chang, K. Peterson, J. Mikawoz, and D. Reed.
Empirical framework for characterizing infrastructure failure
interdependencies. Journal of Infrastructure Systems, 13(3):175—
184, 2007.

S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri.
RADYBAN: A tool for reliability analysis of dynamic fault trees
through conversion into dynamic Bayesian networks. Reliability
Engineering and System Safety, 93:922-932, 2008.

B. Mukherjee, F. Habib, and F. Dikbiyik. Network adapt-
ability from disaster disruptions and cascading failures. IEEE
Communications Magazine, 52(5):230-238, May 2014.

J. K. Muppala, R. M. Fricks, and K. S. Trivedi. Techniques for
system dependability evaluation. In W. K. Grassmann, editor,
Computational Probability, pages 445-480, The Netherlands,

2000. Kluwer.

V. F. Nicola, P. Shahabuddin, and M. K. Nakayama. Techniques
for fast simulation of models of highly dependable systems. IEEE
Transactions on Reliability, 50:246-264, 2001.

A. Peterson. oj! algorithms. http://ojalgo.org/, 2013.

S. M. Ross. Stochastic Processes. Wiley, New York, second
edition, 1995.

R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and
Reliability Analysis of Computer Systems. Kluwer, Boston, 1996.

K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo fault tree
analysis tool. In Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing, pages 232-235, 1999.

K. S. Trivedi. Probability and Statistics with Reliability,
Queueing, and Computer Science Applications. Wiley, New

York, second edition, 2001.

M. Walter, M. Siegle, and A. Bode. Opensesame—the simple
but extensive, structured availability modeling environment.
Reliability Engineering and System Safety, 93:857-873, 2008.

[40] M. Xie, Y. S. Dai, and K.L. Poh. Computing Systems Reliability:
Models and Analysis. Kluwer Academic, New York, 2004.

[41] H. Xu, L. Xing, and R. Robidoux. DRBD: Dynamic reliability
block diagrams for system reliability modeling. International
Journal of Computers and Applications, 31, 2009. DOI:
10.2316/Journal.202.2009.2.202-2552.

[42] M. Ye and Y. Tamir. Rehype: Enabling vm survival across
hypervisor failures. ACM SIGPLAN Notices, 46(7):63-74, 2011.

[43] J.-F. Zheng, Z.-Y. Gao, and X.-M. Zhao. Clustering and
congestion effects on cascading failures of scale-free networks.
Europhysics Letters, 79:58002, 2007.

Mihir Sanghavi received his BS degree in Computer Science and Ap-
plied Mathematics from the New Jersey Institute of Technology in 2013.
He is currently a technology associate at Morgan Stanley rewriting the
platform that supports ultra high-net-worth individuals. He is responsible
for gathering business requirements, designing, proofing and developing
web and mobile software solutions. His current research interest is in
natural language processing and algorithmic trading through dark pools.

Sashank Tadepalli received the BS degree in Computer Science from
the New Jersey Institute of Technology in 2013. He is currently a lead
systems engineer at Kydia Inc, where he is responsible for designing,
engineering and developing web-based software solutions. He has held
a previous position in Tata Consultancy Services as a solutions engineer
and technology consultant. His current research interest is in the study
of high-performance applications in the mobile-web domain.

Timothy J. Boyle Jr. received BS and MS degrees in Computer Science
from the New Jersey Institute of Technology.

Matthew Downey received a BS in Computer Science from the New
Jersey Institute of Technology.

Marvin K. Nakayama is a professor in the Department of Computer
Science at the New Jersey Institute of Technology. He has previously
held positions at Rutgers University’s Graduate School of Management,
Columbia Business School in New York, and at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York. He received
a B.A. in mathematics/computer science from University of California,
San Diego, and an M.S. and Ph.D. in operations research from Stanford
University. Dr. Nakayama won second prize in the 1992 George E.
Nicholson Student Paper Competition sponsored by INFORMS and is
a recipient of a CAREER Award from the National Science Foundation.
He was the simulation area editor for INFORMS Journal on Computing
from 2007-2016, and is an associate editor for ACM Transactions
on Modeling and Computer Simulation. His research interests include
simulation and modeling, applied probability, statistics, dependability
modeling, energy and risk analysis.

24

