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The expected duration of multi-hop paths can be incorporated at different layers in the protocol
stack to improve the performance of mobile ad hoc networks. This article presents two discrete-
time and discrete-space Markov chain based methods, DTMC-CA and DTMC-MFT, to estimate
the duration of multi-hop road-based paths in vehicular ad hoc networks (VANET). The duration
of such paths does not depend on individual nodes because packets can be forwarded by any vehicle
located along the roads forming the path. DTMC-CA derives probabilistic measures based only
on vehicle density for a traffic mobility model, which in this article is the microscopic Cellular
Automaton (CA) freeway traffic model. DTMC-MFT generalizes the approach used by DTMC-CA
to any vehicular mobility model by focusing on the macroscopic information of vehicles rather than
their microscopic characteristics. The proposed analytical models produce performance-measure
values comparable to simulation estimates from the validated CA traffic model. Furthermore, this
article demonstrates the benefits of incorporating expected path durations into a VANET routing
protocol. Simulation results show that the network overhead associated with route maintenance
can be reduced to less than half by using the expected path durations.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Performance attributes; G.3 [Probability
And Statistics]: Markov processes; C.2.2 [Computer-Communication Networks]: Network Protocols
General Terms: Performance, Measurement, Theory

Additional Key Words and Phrases: multi-hop path duration,vehicular ad hoc networks,road-
based routing

1. INTRODUCTION

Vehicular ad hoc networks (VANETS) can provide scalable and cost-effective solutions
for applications such as traffic safety, dynamic route planning, and context-aware adver-
tisement using short-range wireless communication. The highly dynamic nature of these
networks leads to frequent broken paths, which subsequently decrease significantly the
overall network performance (e.g., low throughput, high delay, high overhead, etc.) This
problem could be lessened, however, if VANET protocols could be enhanced with the
ability to determine dynamically the duration of continued multi-hop connectivity. Such
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knowledge can be used at different layers in the protocol stack to answer questions such
as:

—What should be the size of the geographic region to consider in searching for a file in a
VANET peer-to-peer system?

—What are the chances to establish a TCP connection to transfer a 100 MB file from a
certain node?

—When should a new route-discovery process be started in case of a broken route?

Existing work on estimating the duration of connectivity in multi-hop VANETS is mostly
based on simulations [Artemy et al. 2004; 2005]. The RoadSim traffic simulator was used
to generate vehicle movement on an input map, and connectivity properties were then
extracted from the data collected. While this method provides valuable insight into the
connectivity patterns of that specific map, new simulations are likely needed for other
areas of interest.

Analytical approaches, on the contrary, allow for estimation based on the characteristics
of the roads (e.g., traffic density and maximum allowed speeds) that can more easily be ap-
plied to different areas. A number of models have been proposed to estimate path durations
in mobile ad hoc networks (MANETS) [Tseng et al. 2003; Han et al. 2006; Trivino-Cabrera
etal. 2008; Yu et al. 2003; Bai et al. 2003]. One may argue that these models can be applied
to VANETS by constraining the movements of the nodes to road structures and increasing
the node speeds. However, such an approach would create two issues. First, the mobil-
ity models used in these approaches do not accurately approximate VANET mobility. For
instance, the commonly used Random Way-point model [Johnson and Maltz 1996] does
not account for vehicular traffic interactions such as acceleration and slow down due to the
presence of other vehicles.

Second, the MANET models consider node-centric paths, which are defined as fixed
successions of nodes between the source and destination (i.e., the nodes forming the path
do not change once the path is established). In VANETS, on the other hand, many proto-
cols use road-based paths which have been shown to lead to better performance [Naumov
and Gross 2007; Nzouonta et al. 2009]. These paths consist of successions of road inter-
sections that have, with high probability, network connectivity among them. Geographical
forwarding, used along these paths, allows any node present on the road segments forming
the paths to transfer packets between two consecutive intersections. Therefore, the con-
nectivity duration for road-based paths is generally greater than that for node-centric paths
(i.e., fewer broken paths). This difference is illustrated in Figure 1. As such, MANET
models cannot estimate accurately the road-based path durations.

This article presents two analytical (non-simulation) methods to compute the duration
of connectivity for multi-hop road-based paths in VANETSs. Specifically, we present two
Discrete-Time and Discrete-Space Markov Chain (DTMC) based method, DTMC-CA
(Cellular Automata based DTMC) and DTMC-MFT (Mean-Field Theory based DTMC),
to analytically compute connectivity measures between two endpoints along a road-based
VANET path. DTMC-CA is based on the Cellular Automata (CA) freeway traffic model [Nagel
and Schreckenberg 1992], which provides a set of rules governing microscopic movements
of vehicles. We chose the CA model because it has been validated in the literature [Nagel
and Schreckenberg 1992; Simon and Gutowitz 1998; Nagel et al. 1998] and its simplic-
ity makes it attractive to analytical studies of vehicular traffic properties. DTMC-MFT
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Fig. 1. This article considers the expected duration of connectivity for road-based paths, where any node can
be used to forward data along road segments forming the path. For example, a road-based path will maintain
connectivity when the topology changes from case (a) to case (b) because any node can be used to forward data
between S and D. A node-centric (topological) path, on the other hand, will be broken under the same scenario;
the break occurs because the path is fixed and must go through N which is too far from S. The road-based path
is broken only when there is no node to forward the packets, such as in case (c).

generalizes DTMC-CA to any vehicular mobility model by abstracting individual vehicle
information and focusing on the macroscopic view of the road.

Unlike analytical models for node-centric paths, the proposed approaches do not as-
sume independence between successive links in the network. This, however, comes at the
cost of a potentially large state space. To address this issue in DTMC-CA, where we are
interested in steady-state performance measures, we apply two methods to eliminate tran-
sient states [Schadschneider and Schreckenberg 1998] and to lump (i.e., to merge logically
equivalent states of) the Markov chains [Kemeny and Snell 1976]. These methods lead
to a decrease of more than 90% in the size of the state space in DTMC-CA without any
loss of information for the computed measures. DTMC-MFT, on the other hand, generates
smaller state space sizes because it uses approximations to determine vehicles velocities.

To evaluate the models, we compared their analytical results against simulation results
from a (larger) CA traffic model. This evaluation shows that DTMC-CA and DTMC-
MEFT provide results consistent with validated models for expected steady-state duration of
path connectivity and disconnectivity while taking into account the complex and dynamic
interactions between the endpoints and all the intermediate vehicles. Between the models,
DTMC-CA is more precise because it does not rely on Mean-Field theory vehicle speed
approximations while DTMC-MFT is more scalable because it focuses on the macroscopic
properties of the vehicular traffic.

Finally, this article demonstrates the benefits of incorporating path estimates into a
VANET routing protocol. Simulations are performed to assess the impact of including
the expected duration predictions in route maintenance component of the Reactive Road-
Based with Vehicular Traffic (RBVT-R) routing protocol [Nzouonta et al. 2009], and the
results show that the network overhead is reduced by up to half with the inclusion of the
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DTMC-CA predictions.

The rest of this paper is organized as follows. In Section 2, we describe the cellular
automaton traffic model used in our analysis and briefly discuss related work. Section 3
presents the DTMC-CA model, the state-reduction techniques, and examples to illustrate
the concepts. Section 4 presents the DTMC-MFT model as well as examples to illustrate
the concept. Section 5 compares numerical results of both models against simulations.
The use of DTMC-CA predictions in a routing protocol and their benefits are presented in
Section 6. The article concludes in Section 7.

2. BACKGROUND

In this section, we briefly describe the microscopic one-lane freeway cellular automaton
(CA) traffic model [Nagel and Schreckenberg 1992] used in the analysis and then review
related work in the literature.

2.1 Cellular Automaton (CA) traffic model

The CA traffic model is a discrete-time and discrete-space stochastic traffic model, which
we selected because of its computational simplicity. The CA traffic model divides a road
into cells, each of fixed length L. in the direction of traffic (from left to right in Figure 2).
At any point in time, a cell is either empty or occupied by at most one vehicle. Each vehicle
has a speed v € {0,1,..., Umaqs } Which changes over time, where the speed represents the
number of cells advanced by a vehicle in one step (one step corresponds to one unit of
time). The state of the system is updated at discrete time steps by applying the four rules
listed below to all vehicles in parallel. The space interval between vehicle ¢ and the vehicle
just ahead of it is gap(i).

(1) Acceleration: If v(i) < Upmaz, then v(i) = v(i) + 1, where v(¢) represents the speed

of vehicle 1.
(2) Slow down due to other cars: If v(i) > gap(i), then v(i) = gap(i).

(3) Stochastic behavior: If v(i) > 0, then v()
remains the same with probability 1 — p.

v(i) — 1 with probability p and v(7)

(4) Move vehicle: x(i) = x(i) + v(i), where x(4) is the location of vehicle i.

Figure 2 illustrates a step of parallel update of the system. At time ¢ (Figure 2(a)),
vehicles 1, 2 and 3 have speeds of v(1) = 2, v(2) = 2 and v(3) = 1, respectively. At the
end of the update period, vehicles 3 and 2 have their speeds equal to 1 while v(1) = 2.
Vehicle 2 must decrease its speed because of the presence of vehicle 3 (application of rule
2, with gap(2) = 1, results in v(2) = 1). Note that the above rules are valid for single-lane
roads. Rules for multi-lane traffic roads, including vehicle passing can be found in [Rickert
et al. 1995].

2.2 Related Work

Continuous and discrete time/space models have been proposed for estimating path dura-
tions in mobile ad hoc networks. A discrete-time and discrete-space model for MANET
path duration is proposed in [Tseng et al. 2003]. Mobile nodes move on an open 2-
dimensional area according to the Random Way-point (RWP) model. The area is divided
into hexagonal cells of radius 7. A link between two nodes having coordinates (x,y) and
(2',y’) is represented as a vector of the differences of coordinates (' — z,y’ — y). This
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Fig. 2. A single step parallel update using the Cellular Automaton freeway traffic model.

vector also represents the state of the link. A Markov chain is created on this state space
and, assuming independence between consecutive links on a path, the authors derive the
expected duration of paths in the network.

A continuous model for the distribution of residual lifetime of link and path duration in
MANETs using the RWP model is presented in [Han et al. 2006]. By application of Palm’s
theorem, the authors show that path durations converge to an exponential distribution. The
authors also assessed the impact of the assumption of independence between consecutive
links and found a weak correlation between them.

In vehicular networks, link durations and spatial node distributions have been studied
through analytical derivations [Dousse et al. 2002; Khabazian and Mehmet 2008]. The
authors derived the probability of two vehicles being connected at a time ¢ as well as the
distribution of the number of vehicles in communication range. The distribution of dura-
tion of one-hop links is also computed. Similar metrics are measured through simulations
in [Fiore and Harri 2008]. In this paper, we focus on the duration of uninterrupted wireless
connectivity for multihop communications in vehicular networks. A traffic simulator is
used to generate vehicle movements and measure connectivity statistics on a closed loop
road in [Artemy et al. 2004]. The difference of the present work is that we employ an
analytical method to derive those measures.

3. DTMC-CA MODEL

This section presents DTMC-CA, a discrete-time and discrete-space Markov model of traf-
fic movement, based on the Cellular Automata (CA) freeway model. We solve our model
to compute the steady-state expected connectivity duration in vehicular networks. Recall
that road-based path connectivity between two vehicle nodes is maintained as long as in-
termediate nodes can be found to form a multi-hop communication path, independently of
the specific intermediate nodes used. A multi-hop path is a list of nodes such that the dis-
tance between any pair of successive nodes in the list is at most equal to the transmission
range r. While real life wireless transmissions are subject to multipath propagation ir-
regularities such as signal attenuation, interferences, our analytical models assume perfect
transmission within the transmission range r.
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Fig. 3. Invalid states in the DTMC-CA model. On a single lane road, the configurations at time t are not possible
because they would involve vehicles passing each other.

3.1 Description

We consider a road with vehicles moving with velocities from a set {0, 1, ..., Upqs - We
focus on a section of the road located between two endpoints in communication through the
vehicular network. This road section is divided into k cells of fixed length L. as in Figure 2.
A value from the set V' = {0, 1,. .., Uyqz, 00} is associated with each cell. For each cell
i, a finite positive value v; > 0,v; € V, 4 € {1,2,...,k}, corresponds to a vehicle in cell ¢
moving with speed v;. A cell value v; = O represents a stationary vehicle, while a cell value
v; = oo corresponds to an empty cell. The source and destination of the communication
are located near cells z = 0 and ¢ = k + 1 respectively. To simplify the presentation, the
following description assumes that the communication endpoints are stationary. Thus, the
distance between the endpoints will not change during the communication. In the later part
of this section, we discuss how this assumption can be relaxed.

We construct a Markov chain (X, : n > 0) defined by M = (S, P), where S is the
state space S = {s = (v1,v2,...,v%) :v; € V,forall 1 <i <k} and P is the transition
probability matrix. No assumption is made on the distribution of the initial state X of the
Markov chain as only steady-state measures are of interest in this study. As described, the
size of the state space would be |S| = |V'|¥, which grows exponentially in the number &
of cells. However, it is possible to reduce this size considerably (more than 90%) using the
properties of the mobility model as well as techniques such as lumping of Markov chains.

3.2 State Space Reduction

We now discuss two techniques we apply to reduce the size of the state space. Each state
s € S is of the form s = (v, va,...,v;) withv; € V, forall 1 < ¢ < k. To limit the
exponential growth in the state space, first we eliminate invalid (transient) states that violate
the rules (Section 2) of the CA model (i.e., they are not accessible from other states). Then,
we aggregate the remaining states in logically equivalent states using lumping.

3.2.1 Invalid States. The first reduction technique eliminate from S of states that vio-
late the update rules of the mobility model used. These are transient states which cannot
be reached from any other state in the system. For example, considering a road with &k = 6
cells and vy,,4, = 2 (Figure 3), one such invalid state is s = (00, 00,0, 2, 00, 00). This
state is invalid because of the pair of speeds (0,2) located in consecutive cells, which
would require vehicles on a single-lane road to pass each other, which is not allowed in
this model. From the configurations in Figure 3 at time ¢ — 1, application of rule 2 would
result in the vehicle at the left slowing down to speed 0 at time ¢. Using a similar reasoning,
state s = (00,00, 1,00, 3, 00) is also found to violate the rules of the system (because of
the configuration (1,00, 3)). Algorithm 1 outputs a state space set containing only non-
transient states, for a given value of maximum speed v,,,, and number of cells k. This
algorithm does not work by generating all possible states and then removing the invalid
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ones because such approach would run out of memory very quickly (e.g., for k£ = 10 and
Umaz = 5, temporarily generating all possible states would require 719 instances of vectors
of 10 numbers). Instead, we prevent the formation of states known to contain invalid con-
figurations. Lines 2 — 7 show how this is achieved for k£ = 1, 2 and 3. For larger values of k
(lines 9 — 19), a recursive approach is used. The algorithm starts with the state set obtained
for k—1 cells and adds one position to the left of each vector element. Note that the invalid
states concept is an extension of Garden of Eden states described in [Schadschneider and
Schreckenberg 1998].

Table I clearly confirms that removing the invalid states greatly decreases the state space
size, with reduction of 85% or more when k£ = 5. The greater the maximum speed, the
bigger the benefits of removing invalid states from the state space set.

Algorithm 1 Generation of Valid State Space S with length % states and Maximum Speed v a4
Notation:

Sm: State space set with element of the form (vy,va, ..., Up,)

Sm,i,j: Subset of S, with value ¢ at position j

V ={0,1, ..., Vmaz, 00}: Set of possible values of v;

REP(i,m): Replicate value 4, m times

(¢, S),: Add c to beginning of each element of set S

S[i : j]: Extract positions v; through v; of each element of set .S

1: forl < 1,k do

2: if { == 1 then

3: S1=V

4: else if | == 2 then

5: So = {(v1,v2) : v1,v3 € V,ug =0 orvg =ocoorv; =0,ve =0}
6: else if | == 3 then

7: Ss = {(v1,v9,v3) : v1,v2,v3 € V, (11 = 00, (ve,v3) € Sa) or (v1 €

S1,v9 = 00,v3 = 1) or (v; = 0,v3 =0,v3 =0)}
8: else
9: tmva = (O, Sl_170,1)7« U (0700755_17171[2 : €ndD7- U (0,00,51_17172[2 :
end)),

10 tmpvl = tmpv0

11: for e < 2, min(l — 2, vp4,) do

12: tmpvl = tmpvl U (1, REP(00,€), S|—1,eet+1]le + 1 : end)]),
13: end for

14: S = (OO,Sl_l),n;

15: S; = S Utmpv0 U tmpul

16: for e + 2, v,,4, do

17: S; =S U (V(e),tmpvl[2: end]),

18: end for

19: end if
20: end for

21: Return Sy
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Table I. Comparison of state space set sizes. “Potential” sizes represent state space set sizes with invalid states,
while “actual” sizes represent state space sizes without the invalid states. Removing invalid states greatly de-
creases the potential computational cost.

k 1 2 5 7 9 10
|S|, Ymaz = 5, Potential | 7 49 16807 | 823543 79 710
[S], Vmaz = 5, Actual 7 19 321 2080 13460 | 34242
Percent decrease 0% 61% 98% 99.7% 99.97% | 99.99%
|S|, Ymaz = 2, Potential | 4 16 1024 16384 49 410
|S]. Vmaz = 2, Actual 4 10 156 979 6102 15235
Percent decrease 0% | 37.5% | 84.76% 94% 97.7% 98.5%

3.2.2  Lumping the Markov Chain. The next state-reduction technique applies the con-
cept of lumping to create an aggregated Markov chain without losing any information,
for the performance measures of interest. Other aggregation techniques can be found in
the literature (e.g., nearly completely decomposability (NCD) [Courtois 1977; Dayar and
Stewart 1997; P. Buchholz 1995]). In this study, the choice was made to lump the Markov
chain because unlike other methods (e.g., NCD), (ordinary) lumping allows for the exact
calculation of certain stationary and transient measures of the original Markov chain from
the resulting lumped Markov chain [Buchholz 1994].

A lumpable Markov chain is a Markov chain in which some states can be merged
together (their transition probabilities are summed), and the resulting process is also a
Markov chain. A more formal definition is provided below, followed by an application of
the concept in the context of the DTMC-CA model.

Consider a Markov chain X defined with M = (5 , 13), where S is a finite state space
and P = {P(i,]) : i,j € S}) is an irreducible transition matrix. Let # = {7 (i) : i € S}
be a row vector denoting the stationary distribution (7P = 7 and e = 1, where e denotes
the column vector of all 1’s). Also, let L = {Ly, Lo, ..., L,,} represent a partition of the
state space S;i.e., L; N L; = () fori # j,and U" | L; = S.

Definition: The Markov chain X defined by M is (ordinary) lumpable [Kemeny and
Snell 1976] with respect to partition L if, for all L;, L; € L and all¢',i" € L;,

Z P(i/mj/) = Z P(illvj/)'

J'EL, €L,

When the Markov chain defined by M is lumpable with respect to a partition L, then L
can be used to create an aggregated Markov chain defined by M = (L, ]5) in which each
element of L represents a single state. The aggregated Markov chain does not introduce
any error in the computation of stationary and some transient properties [Buchholz 1994].
For example,

#i) = 30 #()).
JEL;

Lumpable states are most easily determined using the matrix of transition probabilities
of the system. However, in the DTMC-CA method, the main reasons for lumping the states
is to reduce spatial and computational costs. Thus, the approach we apply takes advantage
of the characteristics of the system to determine the lumpable states.

ACM Journal Name, Vol. 21, No. 2, April 2011.



On Deriving and Incorporating Multi-hop Path Duration Estimates in VANET Protocols

Considering the system update rules, we note that if two states x, y are equal after the
first two rules of update (Section 2), then row x and row y will be identical in the transition
matrix. Hence, the two states can be lumped together because they are equivalent from
a stochastic view. The connectivity status of each state is considered when creating the
lumps (a state corresponding to disconnected status should not be lumped with a state
corresponding to a connected status). A state s = (vq,va,...,vk) is connected if Fi; <
iy < ... < iy such that m > 2 and v;, € {0,1,2,...,0pmae} Vj = 1,2,...,m and
1; —1;-1 < r,Vj = 2,3,...,m, where r is the transmission range of each vehicle, i.e.
the maximum distance on which a direct wireless transmission is possible between a pair
of vehicle nodes.

To illustrate the method, consider a system with k¥ = 4 and v,,4, = 2. Then, the
following two states result in identical rows in the transition matrix: s; = (00, 1, 00, 00)
and sy = (00,2,00,00). This is because after the first two rules are applied both will
become (00, 2, 00, 00).

Table II presents the reduction in state-space size after equivalent states are lumped,
taking into account the connectivity status of each state. The transmission range r = 4
cells was used for the values in this table. Decreases of more than 80% of the state space
size can be achieved using this technique.

Table II. Benefits of lumping together equivalent states shown by comparing state space set sizes with and without
lumping. The aggregation is performed on the state space set without invalid states.

k 1 2 5 7 9 10
\S|, VUmaz = O, Without lumping 7 19 321 2080 13460 | 34242
|S|, Vvmaz = 5, with lumping 7 12 79 363 1635 3484
Percent decrease 0% | 36.8% | 75.4% 82.5% 87.8% | 89.8%
|S|, Vmaez = 2 without lumping 4 10 156 979 6102 15235
|S|, vmaez = 2, with lumping 4 6 55 246 1103 2336
Percent decrease 0% 40% 64.7% | 74.87% | 81.9% | 84.7%

3.3 Transition Matrix P

Once determined, the aggregated state space is used to compute the matrix of transition
probabilities P = {P(z,y) : x,y € S}, where P(z, y) represents the probability of mov-
ing from state x to state y in one time step. Considering two states x = (1, 2, ..., Tk)
and y = (y1,¥2,-..,Yk), only a few valid transitions from x to y are possible. Below,
we show how to determine the valid successive states y and the corresponding transition
probabilities, given a state . Recall that the stochastic rule of the CA traffic model (third
rule) specifies that a vehicle will choose to decrease its speed, if greater than 0, with prob-
ability p and it will remain at the same speed with probability 1 — p. Let v; represent the
position of the next occupied cell to the right of cell ¢, while ~y; represents the position of
the previous occupied cell to the left of cell . Figure 4 shows some examples. Let vy be
the position of the first occupied cell from the left border and ~y;, be the position of the first
occupied cell from the right border (last occupied cell from the left). The probability p;,
forv =1,2,...,k, is the probability that cell ¢ of state  will not change in the transition
from « to y. Unless modified using the rules below, each cell ¢ has p; = 1.
Foriyy <@ <y — 1:
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Fig. 4. Illustration of expressions used in the computation of the transition probabilities.

—Ifz; = j,j < Upmas and gap(i) > j + 1, then y,4; = j with probability p;, = p and
Yi+j+1 = J + 1 with probability p; = 1 — p.

—If 2; = j, j < Umae and gap(i) < j+1,then y; gap(iy—1 = gap(i) — 1 with probability
pi = p and Y4 gap(iy = gap(i) — 1 with probability p; = 1 — p.

—If x; = j, j = Umas and gap(i) > j, then y;4;_1 = j — 1 with probability p; = p and
Yi+; = j with probability p; =1 — p.

—If 2; = j, j = Umaa and gap(i) < j, then y;4 gapi)—1 = gap(i) — 1 with probability
pi = p and ;4 gap(s) = gap(i) with probability p; = 1 — p.

For the border cells, we also need to take into account how new cars enter the area of
observations. We do this by specifying additional probabilities for where a new car may
first appear on the road segment. On the left border, a new car may enter the area of interest
(through any of the cells 1 through min(v,q., Yo —1)). For example, in Figure 4, a new car
may enter in cell 1 or 2. The probability that a new vehicle enters the area of observation
atcell e € {1,2,...,min(vmqqz, vo — 1)} with speed h is p. 5, which is a user-specified
parameter of the model. For the left border

—Ifx; = co with 1 < i < min(vmaez,vo — 1), theny; = h, 1 < h < v44, and
y; = 00,7 # 1,1 < j < min(vmae, Vo — 1), with probability p; = p; p.

On the right border, the vehicle in position ~; may leave the area of observation (if
Vi > k — vmaz). We also take into account the possibility that the vehicle is blocked from
leaving the area by other vehicles positioned in cells k + 1,. ..,k + ¥;qe — 1 which are
beyond our observed segment. For this, we use pg, which is the probability that a vehicle
is blocked from exiting the area.

—Ifz,, =J,J < Vmaw> Ve < kand v; + j >k, then
() yr =k — vk, yi = 00,y < i <k, with probability p; = ps(1 — p);
() yr—1 =k~ — L,yi = 0o,y <i < k,i# k with probability p; = p(pg);
3) yi = 00, < i < k, with probability p; = (1 — pg).
—Ifz,, =j,J < Vmaaz> Yk < kand y; + j =k, then
(1) yr =k — Yk, y; = 00, < i < k, with probability p; = p(1 — pg) + ps(1 — p);
2) yr—1 =k — v —1,y; = 00,y <@ <k, i # k with probability p; = p(pg);
(3) y; = 00, < i <k, with probability p; = (1 — p)(1 — pg).
—Ifz,, =J,J = Vmaaz> Ve < kandy; +j — 1 =k, then
) yr =k — vk, yi = 00, vk < i < k, with probability p; = p(1 — pg) + pg(1 — p);
2) yh—1 =k — — 1,9, = 00,7, < i <k, i # k with probability p; = p(pg);
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(3) y; = 00, < i <k, with probability p; = (1 — p)(1 — pg).
—Ifz,, =j,j >0,y =k, then
(1) yi = 0, with probability p; = pg;
(2) y; = 00, < < k, with probability p; = (1 — pg).
—Ifx,, =j,j =0, =k, then
(1) yi = 0, with probability p; = p(1 — pg) + ps;
(2) y; = 00,y < i <k, with probability p; = (1 — p)(1 — pg).
—Ifz,, =J,v <kandv; 4+ j + 1 < vpa, < K, then probabilities are computed as in
the case of vy <7 < — 1.

From these individual cells probabilities, the transition matrix entry P(z,y) is computed
k
as P($7y) = Hi:1 Di-
3.4 Probabilistic Measures

The transition matrix is used to compute various probabilistic measures of interest. The
state space is divided in two subsets, S7 and Ss, such that S; U Sy = S and S NSy = 0.
The subset S; contains the states in which the status of the system is connected while
So contains the states corresponding to a disconnected status. The first measure is the
steady-state expected time to disconnection, for which two variations are computed: one
conditional on starting in .S; and the other independent of the connection status of the
starting state. The second measure is the steady-state expected time to connection, for
which two variations are also computed: one conditional on starting in S and the other
independent of the connection status at the start of communication. The final measure is
the steady-state probability of maintaining connectivity for a period longer than a value ¢.
Below is a brief description of how each of these measures is derived from the transition
matrix.

Steady-state Expected Time to Disconnection: Given the transition matrix P, we
first compute another matrix P, = (P.(x,y) : z,y € S) from P as follows. For each
(x,y) € S xS, set P.(z,y) = P(z,y) ify € S, and P.(z,y) = 0if y € Sy. Then
define h = (1,1,...,1), a vector of size |\S| containing all 1’s and compute the vector
g=(9(z) :xz € 8)asg= (I — P.)"'h[Norris 1996]. Thus, g(x) is the expected time
until the DTMC hits So given that it started in a state x € S;. We then average the g(z)
values using the steady-state probabilities 7(x), conditional on starting in .S7. Therefore,
the steady-state expected time to disconnection given that the system starts in a connected
state is given by

Daes, 9(@)7(2)
Zyesl m(y)

Also the steady-state expected time to disconnection independent of the connection status
of the starting state is given by

E[Tconn‘XO S Sl] = (1)

ElTeonn] = Z g(x)m(z). 2

€S

Steady-state Expected Time to Connection: Given the transition matrix P, we first
define another matrix Py = (Pra(z,y) : z,y € S) from P as follows. For the variables
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(x,y) € S x S, set Pr,(x,y) = P(x,y) ify € S, and P, (z,y) = 0ify € S;. h and
go = (I — P,,)~'h are defined as in the case above. Then, the expected time to connection
given that the system starts in a disconnected state is given by

Z;cESz 92 (I)W('I)
ZyeSQ W(y) ’

Also, the steady-state expected time to connection independent of the connection status of
the starting state is given by

E[Tdisconn|X0 S SZ] = (3)

E[Tdisconn] - Z QQ(I)W(I) (4)
€Sy
Steady-state Probability of Connection Duration: The last measure outputs the
probability of maintaining connectivity for more than ¢ time units. In this case too, for
(z,y) € S x S, set P.(z,y) = P(z,y) ify € S1 and P.(z,y) = 0if y € So. Then,

P[T>1 = w(x)Y Pixy). ©)

TES1 yeSs

where P! represents matrix P, raised to the power .

3.5 DTMC-CA Example

We now illustrate the computation of the transition matrix P through a simple example.
Assume k = 4, vy, = 2 and the threshold for connectivity is 7 = 2. The straightforward
computation of the state space S would lead to a size of |S| = 4* = 256 states. By elimi-
nating invalid states, the size becomes |S| = 63, which reduces to |S| = 26 after the states
are lumped together. Table III lists the final set S of states involved in the computation of
transition matrix P. The matrix obtained is a sparse matrix, with 116 non-zero entries out
of the 262 = 676 total entries.

Table III. Sample state space S after state reduction steps. Set S reduced from potentially size |S| = 256 states
to |\S| = 26 states.

(00 00 0 o0) (00 2 00 00) (00 0 20) (00 0 00 00)
(002 00 0) (c02001) (2 0o o0 0) (200 002)
(00 002 00) (0020 00) (00200 (2 000 00)
(0 0o o0 0) Oooool) 20010 (2001 00)
(20 00 00) 20000) 20001) 200 00)
2000 (000000 0) | (coooo00) | (0o oo oo ?2)
(2 00 00 0) (0 00 00 00)

3.6 Bidirectional Traffic

This subsection considers a stretch of a road with two lanes, and traffic moving in dif-
ferent directions. The source and destination endpoints are still stationary. Each lane
of the road section of interest is divided in £ cells of fixed length L., as in the single-
lane case. The cells are juxtaposed on the lanes (see Figure 5). A value from the set
V= {0,1, ..., Umas, 00} is associated with each cell.
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&:?.Sm

Fig. 5. Bidirectional traffic: the road interval is divided in juxtaposed cells of fixed length on each traffic lane of
a bidirectional road.

A Markov chain X = (X,, : n = 0,1,2,...) defined by M = (S, P), with state space
S’ = {é = (U1,1,1}172,...,Ul,k,vgﬁl,...,vzk) LU S V, for i = 1,2 and 1 S j S
k}, where v; ; is the speed of the vehicle in cell j of lane ¢ and P denotes the transition
probability matrix. The movement in each traffic lane is independent of the other lane.
Hence, a state § € S can be considered as a vector of two states § = (s(1), s(2)) with
50 5(2) € S, the state space of the single-lane traffic described in Section 3.1. The
system state on lane 1 is (1), while s(?) is the system state on lane 2.

The matrix of transition probabilities P = {P(x,y) : z,y € S} where P(z,y) repre-
sents the probability of moving from state z = (z W, (2 )) to state y in one time step, is
computed as P(z,y) = P((x(l),x@)),(y(l),y@))) with xM 2@ W) 42 ¢ S And
from the independence of the lanes movements, P(z,y) = P( M y(l)) (), 9?),
where P(z(M) (1)) is the transition probability on lane 1 from state x(l €Sto y(l es.
The decomposition of the state space set S into two disjoint sets S1 and S5 representing,
respectively, the states with connected status and those with disconnected status, is a little
different in this case. Indeed, a state of disconnection on one lane does not translate to a
state of disconnection when both lanes are considered. Thus, recalling that we partitioned
the state space S = 51 U Sy for the original single-lane model, we similarly partition
S§ =8, US,. Foré = (s, s?) € S, we define a function f(3) = (51,52, ..., 5k),

where 5; = 1 if sgl) €{0,1,2,...,Umax} OF s,(f i1 €10,1,2,.. ., Vmas}, and 5; = 00

otherwise. Then § € Sy if and only if f(3) = (51,52,..., sk) satisfies the following:
there exists 47 < ig < -+ < 4y, for some m > 2, 5;, = 1forall j = 1,2,...,m, and
i; —i;_1 <rforall j =2,3,...,m, where r is the transmission range.

3.7 Moving Endpoints and Lane Changes

In this case, the endpoints are moving on the road and the length of the portion of road
between the source and the destination may change even as the connectivity is maintained.
Additional rules, described in [Rickert et al. 1995], are needed to regulate lane changes and
the passing of vehicles. The remaining computations are performed in a fashion similar to
the stationary endpoints previously discussed.

4. DTMC-MFT MODEL

In this section, we present the Mean-Field Theory based DTMC Model (DTMC-MFT),
a discrete-time and discrete-space Markov model of traffic movement built by abstract-
ing the DTMC-CA model (Section 3) and incorporating Mean-Field theory results in the
model [Schreckenberg et al. 1995; Schadschneider and Schreckenberg 1998]. The DTMC-
CA model is designed specifically for the CA traffic model and it incorporates the micro-
scopic properties of this traffic model in its design (e.g., vehicles speeds at each instant).
Contrary to DTMC-CA, the Markov states in the DTMC-MFT model only keep track of
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Phyzical Road
Configuration
Set1

Abstract
State

Phyzical Road
Configuration

Set2

Fig. 6. Schematic view of the computation of transition probabilities in the Mean-Field theory based DTMC
Model (DTMC-MFT). An abstract state is transformed into equivalent physical road configuration states with
appropriate weights based on Mean-Field theory results. The transition probabilities are computed between
physical states and their outputs are stored in the abstract states equivalents.

the presence of vehicles in cells, independently of their speeds. This allows for a more
scalable and more adaptive approach to the computation of steady-state expected connec-
tivity durations in vehicular networks, but at the cost of introducing some approximations.
In the following, a detailed description of this model is presented along with examples to
illustrate the concept.

4.1 Description

As in the DTMC-CA model, we consider a road with vehicles moving with velocities from
aset {0,1,...,Vmas}. We still focus on a section of the road located between two end-
points in communication through the vehicular network and, as before, we divide this road
section into & cells of fixed length L. A value from the set V' = {1, 0o} is associated with
each cell. A cell value v; = 1 identifies the presence of a vehicle in cell ¢ with any speed,
while a cell value v; = oo corresponds to cell ¢ being empty. The source and destination of
the communication are located near cells ¢ = 0 and ¢ = k + 1 respectively. The following
presentation assumes that the distance between the endpoints does not change during the
communication. This assumption can be relaxed in a similar fashion as in the DTMC-CA
model.

We construct a Markov chain (X, : n > 0) defined by M = (S, P), where S is the
state space with S = {s = (v1,ve,...,v;) : v; € V,forall 1 < i < k} and P is the
transition probability matrix. No assumption is made on the distribution of the initial state
Xy of the Markov chain as only steady-state measures are of interest in this study.

DTMC-MFT is a generalization of DTMC-CA with smaller state space sizes than DTMC-
CA. In DTMC-MFT, the size of the state space is independent of the maximum speed of
vehicles ;4. and can be obtained by |S| = |V|*. Furthermore, while the DTMC-CA
model is built around the CA traffic model, the DTMC-MFT model is a more generic
model which can be easily adapted to other discrete-time vehicular traffic models.

4.2 Transition Matrix

The state space .S is used to compute the matrix of transition probabilities P = { P(x,y) :
x,y € S}, where P(x,y) represents the probability of moving from state x to state y in one
time step. A schematic view of the process used to compute the elements of P is shown
on Figure 6. Elements of S do not contain individual vehicle speed values, but rather
only information on the presence or absence of vehicles. This abstract view of the road
is translated into states of physical road configuration, i.e., states where known occupied
cells are replaced with valid vehicle speeds. In the case of the CA freeway traffic model,
the physical states obtained will all be elements of S, the state space of DTMC-CA. Thus,
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Abstract State Physical Road Configurations
LI« [ [x[ [ | |@ lo] [ Jo[ [ ]
c
‘ ’ o fol | [1[ [
e e
- o 1] [ o [ |
The states with a strike over
constitute 1% order and 2™ order (e)| ‘ 1 | ‘ | 1 ‘ | ‘
Garden of Eden States. They (f)| ‘ 1 | ‘ | 2 ‘ | ‘
cannot be attained by a system in
steady state following the rules (Q‘I { t I { I 5 { I {
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Fig. 7. Transformation of abstract state to physical road configurations for the CA traffic model in DTMC-MFT.

the same expressions for the transition probabilities between states of DTMC-CA can be
applied between physical road configurations of DTMC-MFT. Additional information re-
quired is the probability of having a specific speed value in each occupied cell. We ob-
tain this information from published Mean-Field theory results on the physics of vehicular
traffic movements [Schreckenberg et al. 1995; Schadschneider and Schreckenberg 1998;
Chowdhury et al. 2000].

Let 9;, i = 0,1,...,Umqs, represent the steady state probability of having a vehicle
with speed ¢ on the road. For v,,,, > 1, we can obtain the values of 1J; using the following
expressions from [Schreckenberg et al. 1995]:

1+ pd
9o =02
0 1 — pd?
14 d + pd?
V9 =q¥*d ,
) (1)
1+ (g — p)a” qd®
1904 :Wdﬂa_l — Wﬂa_g, for 2 S « S VUmazx — 2
1 — gdvmes »
Dponel = d'mae =9,
maz—1 l_dv7”az(q+pd)q max—2
_ qd”mam
Umax _1 _ qdvm’lz Umaxz—1

where p is the probability that a vehicle decides to decrease its speed (third rule of CA
model), ¢ = 1 — p, the traffic density is ¥ with J = ijg” ¥;,and d = 1 — 9. The
traffic density is the average number of vehicles per unit of distance on the road. Alter-
ations provided in [Schadschneider and Schreckenberg 1998] account for the effects of
Garden of Eden states in these formulas.

We now describe how the values 9;, ¢ = 0,1,...,Unqs, are used in the computa-
tion of the transition probabilities P(z,y) with z,y € S, * = (x1,22,...,7;) and
y = (y1,92,...,yx). Let x5 be an occupied cell of z and let Uy, Uy < v, be the
maximum speed allowed by the traffic model in the cell z,. To determine W, we need
to identify all the positions where the vehicle in x, could have been in the previous time
step. For example, in Figure 7, to determine ¥.,, we observe that there is a vehicle in
c1 and there are two empty spaces between c; and cy. Thus, the maximum speed in ¢y
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is ¥., = 2. Once U, is determined, we compute the transition probabilities from x, as
Z;I;SO 9 ps,; With p, ; corresponding to the transition probability p, value obtained using

the DTMC-CA expressions derived in Section 3.3, given that x5 = 7. Once the matrix of
transition probabilities is obtained, the probabilistic measures of interest are computed as

in DTMC-CA model.

4.3 DTMC-MFT Example

This section details the transformation of an abstract state into equivalent physical road
configurations and the computation of the transition probabilities for occupied cells. The
abstract state in Figure 7 contains two vehicles on a 7-cells area. A subset of the equivalent
physical speed states are shown on Figure 7(ii). Note that because of the CA rules, physical
states (c) and (g) are not valid states (Section 2).

We now illustrate how to compute the transition probabilities between two abstract
states. Suppose, for example, that we are interested in P(x,z) where z is the abstract
state in Figure 7(i). Since the vehicles do not move in this transition, the only physical
speed configuration of interest is the physical configuration (a) from Figure 7(ii). Indeed,
if either occupied cell had a velocity v > 0, then, by the CA rules, that vehicle would
change cell in the next time step because it is not being blocked by any obstacle. Thus
P(z,z) = 22 P(0,0) x 22 P(0,0) where P(0,0) is the DTMC-CA transition probability
for the corresponding cells and speeds.

Similar processing is made for bidirectional traffic roads as well as roads with external
obstacles such as traffic stop-signs.

5. PERFORMANCE EVALUATION

This section presents the evaluation of the DTMC-CA and DTMC-MFT models. The goal
is to verify whether the outputs from these analytical models match statistics from data
collected through simulations of a larger CA traffic model. In the following, we present the
evaluation methodology, the metrics used for assessing the performance, and an analysis
of the results obtained.

5.1 Evaluation Methodology

The analytical models are evaluated using 3 scenarios: a single-lane one-direction scenario,
a two-lane bidirectional road and an intersection operated using a stop-sign. The analyt-
ical results are compared against CA traffic simulations on roads in the form of a closed
rings (Figure 8). The closed ring layout ensures a constant density on the road during the
simulations. Each ring layout contains a large number of cells from which a fixed portion
is selected as the interval between source and destination. Data collection is made only on
this portion of the ring (shaded area on figures). Even though the large system (ring) has
an impact on the connectivity of the shaded area, the analytical models consider only the
selected interval in the computations. However, this evaluation will show that they are able
to account for the impact of the whole ring.

Each road in the layouts is a closed loop with L = 320 cells and there are & cells between
the endpoints. The length of a cell is often considered equal to 7.5m in the literature. This
value is used, in part, because the average vehicle length is about 5m, thus the distance
7.5m accounts for about 2.5m safety distance for both front and rear of vehicle. To mea-
sure the effects of density ¥ = %, the number of vehicles /N on the loop is varied. The first
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Fig. 8. Road layouts used in the simulation scenarios

Table IV.  Simulation Setup

Parameter Value
Simulation area 320 cells. Cell length > 7.5m
Number of vehicles 35-50-75
Transmission range 4-13 cells
Vehicle velocity 2 - 5 cells per second

3600 seconds of simulation time are discarded to eliminate initial transient effects of move-
ment. Next, a total of about 3.2 x 10% CA traffic steps are generated and the statistics of
connectivity are measured. More specifically, for each s = 1,2,..., 1000, we start an ob-
servation at a randomly chosen time point uniformly from the interval [3200¢, 32004 100],
which results in a sample 7;. To ameliorate any remaining autocorrelations present in the
collected observations, we then use the method of batch means (with 10 batches) to con-
struct a 95% confidence interval for the mean. These confidence intervals are shown in the
figures. The simulation parameters are summarized in Table IV. In the intersection with
stop-sign scenario, vehicles come to a full stop at the intersection before being allowed
(if possible) to cross the intersecting road. Note that the two roads share the junction cell
containing the stop-sign signal.

The analytical models are calibrated to the simulations. The CA randomization factor is
set to p = 0.5; Other calibration parameters include p;, the probability that a vehicle enters
the interval of observation (shaded area in Figure 8) with speed ¢, and pg the probability
that a vehicle is blocked from exiting the shaded area. To obtain these parameters, we
proceeded as follows. After eliminating the initial 3600 seconds of simulation time, we
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kept track of where each new vehicle entered the observed segment. The fraction of those
that entered in cell ¢ was then used as our value for p; in our analytical models. We
applied a similar idea for determining a value for pg. For all of the vehicles that tried to
leave the observed segment, we noted the fraction that could not leave because there was
another vehicle in cell k£ 4 1 that prevented the potentially leaving vehicle from actually
leaving because of rule 2 of the CA traffic model. This fraction was then used for pg.
These resulting values obtained function of the density are: for 35 vehicles, p; = 0.012;
p2 = 0.073; p3 = 0.0067; ps = 0.0322; ps = 0.0285; pg = 0.10; for 50 vehicles,
p1 = 0.026; po = 0.0130; ps = 0.0096; ps = 0.0276; ps = 0.023; pg = 0.3060; for 75
vehicles, p; = 0.048; ps = 0.0211; p3 = 0.0131; p4 = 0.0202; p5s = 0.0148; pg = 0.446.

5.2 Metrics

The models are evaluated by varying the threshold connectivity range, the network density,
and the time needed for connectivity. The metrics used to assess the performance are the
following:

—Steady-state expected duration of connectivity. This metric defines the amount of
time a source can expect to communicate with a destination multiple hops away. Two
values of this metric are reported, depending on the existence (or not) of at least one
communication path at initial time. These values correspond to equation (1) and equa-
tion (2) respectively.

—Steady-state expected duration of disconnectivity. This metric defines the amount of
time a source can expect not to be able to communicate with a destination multiple hops
away. Two values of this metric are reported, depending on the non-existence (or not) of
at least one communication path at initial time. These values correspond to equation (3)
and equation (4) respectively.

—Steady-state probability of connectivity duration. This metric defines, in steady-
state, the probability of uninterrupted connectivity lasting at least for a time duration .
It corresponds to equation (5). Using this metric, one can evaluate the independence of
connectivity estimations on adjacent portions of road.

5.3 DTMC-CA Numerical and Simulation Results

Expected Duration of Connectivity: Figure 9 shows that the expected duration of con-
nectivity values obtained using the DTMC-CA model match well with the results from
the CA simulations. Comparing analytical and simulation results for a given density, we
observe that for transmission ranges of 7 cells and greater, the output from the analytical
results are close to the simulation results. Another observation from this figure is that, as
expected, an increase in the transmission (or connectivity) range leads to an increase in the
expected duration of connectivity for a fixed value of k.

Expected Duration of Disconnectivity: Figure 10 shows a very good agreement be-
tween expected duration of disconnectivity values obtained using the DTMC-CA model
and the CA simulation results. Over different densities, the outputs from DTMC-CA are
within 2 seconds of the values obtained through simulations, for transmission ranges of 6
cells and higher. Combined with the expected connectivity duration results, these results
show that the DTMC-CA model provides a good level of accuracy, and it can be used by
protocols at different layers of the protocol stack.

Interestingly, this figure also shows that the expected duration of disconnectivity, given
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Fig. 9. Expected duration of connectivity when the system is initially in a connected
state (or not) with different node densities and different connectivity (transmission) ranges.
Umaz = D cells per time step and & = 12 cells.

5 7 30
2 CA Simulation connfeonn —— ] CA Simulation connfeonn —— CA Simulation connfconn —— |
g a0l imulation conn +--x--+ 8 CA Simulation conn =--x--+ CA Simulation conn +--x--+
\3} DTMC-CA connfconn ---8--- ?L 25F DTMC-CA conn|conn ---8--- Bl DTMC-CA connjconn ---&---
z BTMC CAcom o z BTMCCA conn o BTMC CAcom o
o 25 g
§ g 20F i
H g sl ]
g sp z
I w0t 1 .
5 s g
H ] S —— 9 B S
g | EITege g & T . o g = E I H
H S A [ B .
g i s g o i T S P it T
5 6 7 8 9 10 11 5 6 7 8 9 10 11 6 7 8 9 10 11
‘Connectivity Range (cells) Connectivity Range (cells) Connectivity Range (cells)
(a) 35 vehicles (b) 50 vehicles (c) 75 vehicles

Fig. 10. Expected duration of disconnectivity when the system is initially in a disconnected
state (or not) with different node densities and different connectivity (transmission) ranges.
Umaz = D cells per time step and & = 12 cells.

that the system starts in a disconnected state, does not decrease as the density increases.
This contrasts with Figure 9 where a clear difference in expected connectivity duration val-
ues can be observed as the density increases. Thus, longer periods of network connectivity
do not necessarily translate in shorter periods of network disconnection using the CA traf-
fic model. Further tests are required with other vehicular traffic models to identify whether
this is an artifact of the CA model.

Probability of Connectivity Duration: The probability of connectivity duration rep-
resents the likelihood of uninterrupted connectivity between the endpoints lasting at least
t steps. Figure 11 shows the probabilities corresponding to different transmission range
values and different number of cells k. As expected, longer uninterrupted connectivity pe-
riods are less likely than shorter periods, independent of the number of cells k between the
endpoints. Additionally, the probabilities decrease when the number of cells, &, increases.

5.4 DTMC-MFT Numerical and Simulation Results

Expected Duration of Connectivity: Figure 12 shows that the expected duration of con-
nectivity values obtained using the DTMC-MFT model have an overall good match with
the results from the CA simulations for simple configurations. For more complex sce-
narios, the approximations in DTMC-MFT lead to estimates that are not as accurate, but
the model still provides qualitatively similar results to the simulation outputs. Thus the
DTMC-MFT model, while using only vehicle presence information in each state together
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with Mean-Field theory results, is able to display behavior similar to simulation results.
Comparing analytical and simulation results for the different scenarios, we observe that
the closest matching is obtained in the case of the one-lane one-direction scenario.

Expected Duration of Disconnectivity: Figure 13 shows a close match between ex-
pected duration of disconnectivity values obtained using the DTMC-MFT model and the
CA simulation results. The figures confirm, as one might expect, that the two lanes bidi-
rectional road would lead to smaller average expected disconnection times than the one
lane scenario.

5.5 Approximating Connectivity for Longer Paths

So far, we have shown that the analytical models output expected duration of connectivity
as well as expected duration of disconnectivity with relatively good accuracy when com-
pared with the measures estimated by simulation on the larger CA traffic model on a loop.
This accuracy is obtained without making any assumption of probabilistic independence
between any pairs of communication links between the source, destination, and any in-
termediate vehicles on the observed segment. The cost is high memory and computation
requirements.

In this section, the question addressed is whether probability measures from adjacent
sub-stretches of a road segment can be considered as independent. If sub-stretches are
found independent or weakly correlated, then the probability of connectivity duration of a
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Fig. 14. Probability of connectivity duration greater or equal to different time limits, for
different source-destination lengths. For a distance d and a transmission range r, the prob-
ability of connectivity duration > ¢ is comparable to the square of the same probability for
a distance % and a range r using the DTMC-CA model.

long road stretch can be approximated by simple multiplication of probabilities of smaller
parts.

To verify independence between adjacent sub-stretches of a road segment, two ranges,
r = 4 cells and r = 5 cells, and two number of cells, & = 5 cells and £ = 10 cells are
considered. The values of k were selected so that one is half of the other. For a given
transmission range 7, the values P[T > t]p=10,» and P[T > t];_j . are computed, and
we compare the two values. If adjacent sub-stretches of a road segment are independent,
the two values are equal, so their difference provides a measure of the dependence. If the
difference is small, then it may be reasonable to approximate P[T" > t]x=y, , for large m
by P[T > t]i:m/lr'

Figure 14 shows the results of the comparison of P[T" > t|y—10, and P[T > t]z:&r
using the DTMC-CA model. Both sets of probability values are comparable, though not
equal. Certain values of time steps ¢ lead to closer match between values of P[T" > t]i=10,r
and P[T > t]i:s,w For example, for ¢ = 12 seconds (assuming 1 step is 1 second) and
r = b cells, the expected values for a larger stretch can be approximated from a smaller
sub-stretch (about 0.001 or 2% difference in the probability values). This suggests that
although not exactly independent, smaller sub-stretches can be used to approximate longer
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road stretches with a small error. This can be used to approximate DTMC-CA estimates of
duration of connectivity on longer road segments.

6. A CASE STUDY OF INCORPORATING PATH ESTIMATES IN VANET PRO-
TOCOLS

The path estimates derived using the models presented here can be incorporated at different
layers in the protocol stack to improve VANET performance. This section illustrates this
idea by showing how DTMC-CA path estimates can be used to improve the route mainte-
nance performance of the RBVT-R routing protocol [Nzouonta et al. 2009]. We start this
section with a brief overview of the RBVT-R routing protocol followed by the implemen-
tation and simulation results of the RBVT-R route maintenance using path estimates.

6.1 RBVT-R Routing

RBVT-R is a reactive source routing protocol for VANET which creates road-based paths
using connected road segments between source and destination. A source vehicle which
wishes to communicate with a destination node first broadcasts a route request packet
in the network. Intermediate nodes re-broadcast the route request packet, recording the
traversed road intersections in the packet header. This sequence of intersections constitutes
the RBVT-R road-based path of connected segments between the endpoints. This path
is added to the data packets headers (i.e., road-based source routing) and geographical
forwarding is performed along the individual road segments forming the path.

In case of a route error, (i.e., no forwarding node can be found to reach the next intersec-
tion on the path), the source of communication holds transmissions for a nominal period
of time and then re-attempts, for a number of times, to use the same route. Currently, the
length of the wait time is determined through heuristics. A better strategy is to compute
this waiting time as function of the expected duration of disconnectivity of the path. Thus,
the waiting time will be dynamically estimated for each communication.

DTMC-CA provides the average duration of the disconnectivity on the path. To apply it,
we use a linear increment method. When the source receives a route error, it waits for one
third of the expected duration of disconnectivity, after which it tries to send data packets
through the same path. If the path is still broken, the source increases the waiting time to
% of the average value. A new route discovery is launched after the third failed attempt.

6.2 Simulation Setup and Metrics

We use NS-2 [Network Simulator 2 ] to evaluate the impact of the modified route main-
tenance on RBVT-R routing performance. We simulate a road with a ring-layout and a
circumference of 2400m. An obstacle in the middle prevents communication through the
center of the ring. The endpoints are positioned 600m away and they exchange Constant
Bit Rate (CBR) UDP packets at a rate of 4 packets/sec. The transfer lasts for 600sec. We
vary the transmission range from 100m to 600m and the vehicle densities are varied from
15 vehicles/km to 25 vehicles/km. Each data point is averaged over 5 simulation runs.

The metrics used to assess the performance are the network overhead (i.e., the total
number of control packets associated with the routing protocol), the end-to-end packet
delivery ratio, and the average end-to-end packet delay incurred in the transmissions. The
results compare these metrics for two cases: original RBVT-R, and RBVT-R with path
estimates for route maintenance.
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6.3 Simulation Results

Figure 15 shows a network overhead decrease of up to half for RBVT-R with path esti-
mates versus the original RBVT-R. This is because source nodes are able to use the path
duration estimates to better determine an appropriate amount of waiting time when a route
break occurs. Therefore, many unnecessary control packets associated with new route
discoveries are avoided. We note that this decrease in the overhead does not negatively af-
fect the delivery ratio of successful packets (Figure 16(a)) or the average end-to-end delay
(Figure 16(b)) in the network. The average delay values are comparable because the paths
traversed by the data packets are similar for both the original and modified RBVT-R. The
delivery ratios are comparable as well, as both schemes transfer as much data as possible
during the periods with network connectivity. These results show that integrating the ex-
pected duration of disconnectivity in RBVT-R provides a net gain for the overall protocol
performance.

While these results clearly show the benefits of the proposed analytical methods on road-
based routing protocols, we now discuss two ways by which these analytical methods can
also be used to improve the performance of other classes of VANET routing protocols such
as node-centric protocols. First, for node-centric source-routing protocols in VANETS, a
source node could use the estimates from DTMC-CA or DTMC-MFT to restrict new route
discoveries only to those road segments previously used for communication. This could

ACM Journal Name, Vol. 21, No. 2, April 2011.

00 150 200 250 300 350 400 450 500 550 600 650

23



24 . Josiane Nzouonta et al.

significantly improve the routing overhead of those protocols. Additionally, the knowledge
of the expected road-based path connectivity duration can be used to limit the number of
local recovery attempts on a node-centric path.

From a practical point of view, and independently of the classes of VANET protocols,
the main requirement needed to ensure adequate usage of the analytical path estimates in
VANET protocols is the determination of the traffic density and the probabilities of speed
of entry on the roads. This could be done by using existing transportation sensors placed
at entry points along the roads or by employing road-side wireless sensor networks [Bohli
et al. 2008] to dynamically compute the required values and share them with the passing
cars.

7. CONCLUSIONS

The duration of multi-path connectivity in VANETS is currently mostly determined through
simulations. This article presented two analytical methods to estimate the duration of
connectivity as well as the duration of disconnectivity for road-based paths in VANETS.
DTMC-CA and DTMC-MFT are two discrete-time and discrete-space Markov chain mod-
els that track the evolution of connectivity between the endpoints in communication. The
comparison between analytical results and simulation results showed that these models are
able to estimate, with high accuracy, the duration of path connectivity and disconnectivity.
DTMC-CA provides a greater precision for the CA traffic model while DTMC-MFT is
more scalable and adaptive to other traffic models. Additionally, this article demonstrated
that integrating the path duration estimates derived at application layer into VANET proto-
cols at different layers can improve network performance. Specifically, simulation results
showed that the expected disconnectivity duration can be used to reduce to less than half
the network overhead for a VANET routing protocol.
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