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Economic capital (EC) is a risk measure used by financial firms to specify capital levels to protect (with high

probability) against large unforeseen losses. Defined as the difference between an (extreme) quantile and the

mean of the loss distribution, the EC is often estimated via Monte Carlo methods. While simple random

sampling (SRS) may be effective in estimating the mean, it can be inefficient for the extreme quantile in

the EC. Applying importance sampling (IS) may lead to an efficient quantile estimator but can do poorly

for the mean. Measure-specific IS (MSIS) instead uses IS to estimate only the quantile, and the mean is

independently handled via SRS. We analyze large-sample properties of EC estimators obtained via SRS only,

IS only, MSIS, IS using a defensive mixture, and a double estimator using both SRS and IS to estimate both

the quantile and the mean, establishing Bahadur-type representations for the EC estimators and proving

they obey central limit theorems. We provide asymptotic theory comparing the estimators when the loss

is the sum of a large number of independent and identically distributed random variables. Numerical and

simulation results, including for a large portfolio credit risk model with dependent obligors, complement the

theory.
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1. Introduction

A credit portfolio comprises loans, bonds, and other financial instruments subject to

default. To protect a financial firm against unforeseen large losses of such a portfolio, a risk

manager may employ various risk measures (e.g., Section 2.3 of McNeil et al. (2015) and

Hong et al. (2014)) related to the random loss Y of the portfolio over a given time period

(e.g., one year) to specify capital levels. One risk measure is the p-quantile ξ for p ≈ 1

(e.g., p= 0.999), also known as the value-at-risk (VaR) or the 100pth percentile, where ξ

1



Li, Kaplan, and Nakayama: Monte Carlo Methods for Economic Capital
2 Article accepted by INFORMS Journal on Computing; manuscript no. JOC-2021-09-OA-261.R4

is a constant such that P (Y ≤ ξ) = p. The expected shortfall (alternatively, conditional tail

expectation or conditional VaR) is the conditional expectation of Y given that Y > ξ.

This paper studies the economic capital (EC) η = ξ − µ, the difference between the p-

quantile ξ and the mean loss µ, where p≈ 1; see Klaassen and van Eeghen (2009, p. 5),

Lütkebohmert (2009, Section 2.4), and Scandizzo (2016, p. 194). Also called the credit

(Jorion 2011, p. 595), relative (Jorion 2007, p. 108) or mean-adjusted VaR (McNeil et al.

2015, p. 300), the EC is used to determine capital needed to cover unexpected losses

with high probability. Indeed, Deutsche Bank (2018, p. 63) appears to employ EC with

p= 0.999: “In line with our economic capital framework, economic capital for credit risk is

set at a level to absorb with a probability of 99.9% very severe aggregate unexpected losses

within one year. Our economic capital for credit risk is derived from the loss distribution

of a portfolio via Monte Carlo Simulation of correlated rating migrations.” (The bank used

p= 0.9998 before 2017; see Deutsche Bank (2018, p. 46).)

Monte Carlo simulation with simple random sampling (SRS) may produce noisy EC

estimates because the rarity of extreme losses makes estimating ξ with p≈ 1 difficult. This

motivates applying variance-reduction techniques (VRTs), such as importance sampling

(IS); e.g., see Chapters V and VI of Asmussen and Glynn (2007) and Chapter 4 of Glasser-

man (2004) for overviews. Glasserman and Li (2005) develop IS methods for estimation

of a tail probability of multifactor credit risk models using a Gaussian copula to model

dependencies of default events among obligors (e.g., corporations to which the bank pro-

vided loans). Bassamboo et al. (2008) extend the IS methods to incorporate dependencies

with non-Gaussian copulas.

While IS can be effective in reducing the variance of estimators of tail probabilities and

extreme quantiles, it may produce worse estimators of the mean loss, the other component

of the EC. An IS technique designed to work well for estimating an extreme quantile

typically samples more in the tail of interest and less around the mean, degrading the

mean’s estimator. This motivates separately estimating the quantile and the mean via

different simulation techniques. One strategy uses IS for the estimation of the quantile and

independently applies SRS for estimating the mean. Goyal et al. (1992) call this approach

measure-specific importance sampling (MSIS), which they employ to separately estimate

the numerator and denominator in a ratio of means in which only one mean corresponds

to a rare event. We also consider two more methods that combine IS and SRS in other
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ways. One applies IS with a defensive mixture (ISDM), as developed by Hesterberg (1995),

in which the IS distribution is a mixture of a new distribution and the original one. The

other approach we call a double estimator (DE), which estimates both ξ and µ utilizing

both IS and SRS, combining all estimators with user-specified weights. We establish a

central limit theorem (CLT) for each EC estimator (as the overall sample size n→∞).

When the loss Y is the sum of m independent and identically distributed (i.i.d.) random

variables, we analytically compare the estimators of η, ξ, and µ in terms of their CLTs’

asymptotic variances, in a limiting regime where m→∞ and the quantile level p simulta-

neously approaches 1 exponentially as p= 1− e−βm for fixed β > 0. Originally developed

by Glynn (1996) to analyze SRS and IS estimators of quantiles, this asymptotic framework

has practical relevance for studying EC: bank portfolios can easily be exposed to thousands

or even tens of thousands of obligors, and extreme quantiles are used in industry.

For the i.i.d. sum model, we derive asymptotic expressions (as m→∞) for the relative

errors (REs) of our estimators, where an estimator’s RE (e.g., L’Ecuyer et al. (2010)) is the

ratio of its CLT’s asymptotic standard deviation and the absolute value of the (nonzero)

estimand (see (36) in Section 6.3), so an estimator with smaller RE is preferable, all other

things being equal. Using the asymptotic notation (as m→∞) of exact rate Θ(·) and weak

and strict lower bounds Ω(·) and ω(·) (defined in Section 6.4), Table 1 summarizes the

main findings of Theorem 5 in Section 6.5 on the limiting behavior of the RE of each EC

estimator, where α⋆ > 1 is some constant, and x ∨ y =max(x, y). Thus, for large m, the

Table 1 For the i.i.d. sum model with m summands, the relative errors of the EC estimators using SRS, IS,

and DE with fixed weights grow exponentially in m as m→∞, where α⋆ > 1 and β > 0 are constants. In contrast,

MSIS and DE with optimal weights have vanishing RE as m→∞, and ISDM has bounded RE when µ ̸= 0.

Method RE

SRS ω
(
e(β/2)m−

√
m/

√
m
)

IS Ω
(
α
m/2
⋆ /

√
m
)

DE (fixed weights) Ω
(
[α⋆ ∨ eβ]m/2e−

√
m/

√
m
)

DE (optimal weights) Θ(1/
√
m)

MSIS Θ(1/
√
m)

ISDM (when µ ̸= 0) Θ(1)

MSIS η estimator slightly outperforms ISDM (when the mean is nonzero), and both are
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exponentially better than SRS only, IS only, and DE with fixed weights. We further consider

DE with optimally tuned weights (varying with m), which MSIS can never beat because

MSIS merely specializes DE with one particular (typically suboptimal) choice of weights.

However, determining the optimal DE weights encounters practical challenges as it requires

specifying many parameters, whose values are unknown (although they could be estimated

through a pilot simulation). But Theorem 5 additionally shows (see (57)) that the ratio

of the variances of optimal DE and the much simpler MSIS converges to 1 exponentially

quickly as m→∞ in the i.i.d. sum model, making MSIS a compelling alternative as its

performance rapidly becomes indistinguishable from that of optimal DE. We also provide

numerical (i.e., quadrature, not simulation) results for i.i.d. sums confirming the asymptotic

theory; see Figures 1, A.1, and A.2 in Section 7.1 and Appendix A. (Theorem 5 additionally

analyzes each estimator’s work-normalized RE (WNRE), e.g., as in (37), to further account

for the expected CPU time to generate a single output, which typically grows withm. Each

WNRE behaves asymptotically as its corresponding RE in Table 1 multiplied by
√
m.)

We complement the theoretical and numerical results of the i.i.d. sum model through sim-

ulation experiments with a significantly more complex portfolio credit risk model (PCRM),

further demonstrating the benefits of estimating η when p ≈ 1 via MSIS over SRS, IS,

ISDM, and DE with fixed weights. For the models in Glasserman and Li (2005) and Bas-

samboo et al. (2008), calculating µ may not require simulation because of their models’

tractability. But more complicated stochastic models may preclude analytically evaluating

the mean loss.

The main contributions of our paper are as follows. We analyze several different estima-

tors of the EC. Although many of the techniques have been previously applied successfully

to study problems arising in operations research and management science, some may not

have been used before in a finance context. Our theoretical asymptotic study (see Table 1)

of the i.i.d. sum model (Section 6) provides a rich body of technical analysis, yielding deep

insights into the behavior of the methods observed in simulation experiments with the sub-

stantially more complicated PCRM (with 1000 dependent obligors) in Section 7.2. Another

key result relates to quantile estimation. Quantile estimators often satisfy a CLT in which

the asymptotic variance is a ratio, where the numerator depends on the simulation method

applied and the denominator is the squared density at the quantile. The asymptotic anal-

ysis of SRS and IS quantile estimators for our i.i.d. sum model in Glynn (1996) covers
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only the variances’ numerators, which we extend by also considering the denominators to

provide a fuller understanding of the methods. Furthermore, our analysis for this model

examines the other methods for estimating quantiles (Theorem 7 in Appendix F.2) and

also studies all of our estimators of the EC (Theorem 5) and the mean (Theorem 6 in

Appendix F.1).

The rest of the paper unfolds as follows. Section 2 gives our mathematical framework.

Section 3 presents the SRS estimator of η. It further establishes a type of large-sample

Bahadur (1966) representation for the estimator, and proves a CLT, which we also do for

the other methods considered. Section 4 applies IS to estimate η. Section 5 describes the

methods that combine IS and SRS: MSIS (Section 5.1), ISDM (Section 5.2), and DE (Sec-

tion 5.3). Section 6 provides our theoretical asymptotic analyses of the η estimators when

Y is the sum of m i.i.d. random variables as m→∞ with the quantile level p= 1− e−βm.

Section 7 gives numerical (quadrature) and Monte Carlo results comparing the methods,

with Section 7.1 considering the model from Section 6, and Section 7.2 examining a more

complicated model, an extension of the PCRM from Glasserman and Li (2005). Section 8

gives concluding remarks. Appendices contain additional numerical results (Appendix A),

provide all proofs (Appendices B–F), describe the simulation methodology used on the

PCRM in Section 7.2 (Appendix G), and summarize the main notation and acronyms

(Appendix H). Our theorems on the Bahadur representations and CLTs for the SRS, IS,

and MSIS estimators previously appeared without proofs in Kaplan et al. (2018), which

also describes batching and sectioning methods (Asmussen and Glynn 2007, Section V.5),

briefly covered here, to construct large-sample confidence intervals (CIs) for η. Kaplan et al.

(2018) do not consider any of the material in Sections 5.2, 5.3, 6, 7 and the appendices.

All of the appendices are available in the online supplement. 1

2. Mathematical Framework

Let Y be a random variable for the loss of a credit-portfolio model over a given time horizon,

and let F be its cumulative distribution function (CDF). Assume that F is unknown or

computationally intractable, but we have a simulation model that generates an observation

of Y ∼ F , where ∼ denotes “is distributed as”. Let µ=E[Y ] be the mean of Y ∼ F , where

E[·] is the expectation operator. For a CDF H and 0< q < 1, we define the q-quantile of

1 https://doi.org/10.1287/ijoc.2021.0261
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H as H−1(q) = inf{y : H(y) ≥ q}; e.g., the median µ′ is the 0.5-quantile, also known as

the 50th percentile. Our goal is to use simulation to estimate the EC η = ξ − µ, where

ξ = F−1(p) for a given 0< p < 1. (Note that ξ ≡ ξp and η ≡ ηp depend on p, but we omit

the subscript p to simplify notation.)

Often but not always, we assume that the loss Y has the form

Y = c(X) (1)

for a known function c :ℜd →ℜ with d≥ 1, and random vector X= (X1,X2, . . . ,Xd) having

a specified joint CDF G, where G can allow the components of X to be dependent and non-

identically distributed. We view the function c in (1) as a (complicated) computer code,

transforming an input X ∼ G into a loss Y ∼ F . For example, Section 7.2 will consider

a large multi-factor PCRM with dependent obligors, as in Glasserman and Li (2005),

Bassamboo et al. (2008), and Lütkebohmert (2009), in which the loss Y has a form in (1),

with X having mutually independent components.

3. Simple Random Sampling

We begin with the application of SRS to estimate η, and the results in this section do not

require that the loss Y ∼ F has the form in (1). Let Y1, Y2, . . . , Yn be a random sample of

size n from F ; i.e., Y1, Y2, . . . , Yn are i.i.d. with CDF F . When Y has the form in (1), we

generate X1,X2, . . . ,Xn as i.i.d. copies of X∼G, and let Yi = c(Xi) for each i= 1,2, . . . , n.

In general, define the SRS estimator of the mean µ as the sample mean

µ̂SRS,n =
1

n

n∑
i=1

Yi. (2)

We define the SRS p-quantile estimator ξ̂SRS,n by inverting the empirical CDF F̂SRS,n:

ξ̂SRS,n = F̂−1
SRS,n(p), where F̂SRS,n(y) =

1

n

n∑
i=1

I(Yi ≤ y) =
1

n

n∑
i=1

[
1− I(Yi > y)

]
(3)

with I(·) as the indicator function, equaling 1 (resp., 0) if its argument is true (resp., false).

Then the SRS estimator of the EC η= ξ−µ is

η̂SRS,n = ξ̂SRS,n− µ̂SRS,n. (4)

We can compute ξ̂SRS,n by order statistics. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the sorted

values of Y1, Y2, . . . , Yn, and then ξ̂SRS,n = Y(⌈np⌉), where ⌈·⌉ is the ceiling (i.e., round-up)
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function. For simplicity, we do not consider other SRS quantile estimators (Hyndman and

Fan (1996)), e.g., with an interpolated CDF estimator, which typically share the same

large-sample properties as ξ̂SRS,n.

While the estimator µ̂SRS,n in (2) of the mean is a sample average, the p-quantile estima-

tor ξ̂SRS,n = F̂−1
SRS,n(p) is not, so the EC estimator η̂SRS,n in (4) is also not a sample average,

complicating its analysis. However, Bahadur (1966) shows that ξ̂SRS,n can be well approxi-

mated by a sample average of i.i.d. quantities when the sample size n is large, and we will

do the same for η̂SRS,n. To accomplish this, define f as the derivative (when it exists) of the

CDF F . Also let ⇒ represent convergence in distribution (e.g., Chapter 5 of Billingsley

(1995)). Then if f(ξ)> 0, the p-quantile estimator satisfies

ξ̂SRS,n = ξ− 1

f(ξ)

[
F̂SRS,n(ξ)− p

]
+Rn, (5)

with
√
nRn ⇒ 0 as n→∞; (6)

see Section 2.5 of Serfling (1980). If F is twice differentiable at ξ, then Kiefer (1967) proves

that for either choice of sign below,

limsup
n→∞

± n3/4Rn

(log logn)3/4
=

25/4[p(1− p)]1/4

33/4f(ξ)
with probability 1. (7)

Note that (7) implies (6), and we call (5) with (6) (resp., (7)) a weak (resp., strong) Bahadur

representation for ξ̂SRS,n. The key point of (5)–(7) is that they permit analyzing the large-

sample properties of ξ̂SRS,n through the simpler F̂SRS,n(ξ), which is a sample average of

i.i.d. terms by (3). As next seen, the SRS EC estimator η̂SRS,n has similar Bahadur-type

representations and obeys a CLT, with N(q, s2) denoting a normal random variable with

mean q and variance s2, and Var[·] (resp., Cov[·, ·]) as the variance (resp., covariance)

operator; see Appendix B for the proof.

Theorem 1. Suppose that Y1, Y2, . . . are i.i.d. with CDF F , and F is differentiable at ξ

with f(ξ)> 0.

(i) The SRS EC estimator in (4) then satisfies

η̂SRS,n = η− 1

n

n∑
i=1

(
1

f(ξ)

[
[1− I(Yi > ξ)]− p

]
+
[
Yi −µ

])
+Rn (8)

with Rn from (5), so (6) holds. If also F is twice differentiable at ξ, then (7) further holds.
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(ii) If in addition σ2
SRS ≡Var[Y ]<∞, then

√
n [η̂SRS,n − η]⇒N(0, ζ2SRS) as n→∞, where ζ2SRS =

χ2
SRS

f 2(ξ)
+σ2

SRS − 2
γSRS

f(ξ)
, (9)

χ2
SRS = p(1− p), and γSRS =Cov[I(Y > ξ), Y ] =E[I(Y > ξ)Y ]− (1− p)µ. (10)

The Bahadur-type representations in Theorem 1(i) give useful insight into the large-

sample behavior of η̂SRS,n, showing that approximating η̂SRS,n−η by a sample mean of the

i.i.d. terms results in a remainder Rn that vanishes faster than 1/
√
n by (6) or (7). This

then implies the CLT in (9) when σ2
SRS <∞.

Under an additional assumption that F has a density f and the second derivative of

F is bounded in a neighborhood of ξ, Lin et al. (1980) prove that the SRS estimators of

a quantile and the mean obey a joint CLT, and Ferguson (1999) shows the same under

the weaker additional assumption that the density f is continuous at ξ. While (9) follows

from either result, the Bahadur-type representations in Theorem 1(i) can further be used

to show the asymptotic validity of a sectioning CI for η, as in Kaplan et al. (2018).

4. Importance Sampling

When p≈ 1, estimators of ξ = F−1(p) and the corresponding EC η= ξ−µ may have large

variance, motivating the use of a variance-reduction technique. We consider applying IS,

but other VRTs are also possible. To use IS and the methods in the next section, we assume

Y has the form in (1) from now on.

The mean of Y is then µ= EG[c(X)], where, for any CDF G† on ℜd, EG† (resp., PG†,

VarG†, CovG†) is the expectation (resp., probability, variance, covariance) operator when

X ∼ G†. Let G̃ be a CDF on ℜd such that (the measure of) G is absolutely continuous

(Billingsley 1995, p. 422) with respect to G̃. A change of measure ensures

µ=EG[c(X)] =

∫
ℜd
c(x)dG(x) =

∫
ℜd
c(x)

dG(x)

dG̃(x)
dG̃(x) =EG̃[c(X)L(X)], for L(x) =

dG(x)

dG̃(x)

(11)

as the likelihood ratio (LR), for x ∈ ℜd. To estimate µ via IS, we sample i.i.d. Xi ∼ G̃,

i= 1,2, . . . , n, and

µ̂IS,n =
1

n

n∑
i=1

c(Xi)L(Xi) (12)

is an unbiased estimator of µ by (11). (IS reduces to SRS when G̃=G as then L(x)≡ 1.)
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Suppose that under both G and G̃, the components of X = (X1, . . . ,Xd) are mutually

independent. Then for Gj (resp., G̃j) denoting the marginal CDF of Xj under G (resp.,

G̃), we have G(x) =
∏d

j=1Gj(xj) and G̃(x) =
∏d

j=1 G̃j(xj) for x= (x1, . . . , xd). If we further

suppose that each Gj (resp., G̃j) has a density or probability mass function gj (resp., g̃j),

the likelihood ratio in (11) becomes L(x) =
∏d

j=1
gj(xj)

g̃j(xj)
.

To estimate the p-quantile ξ by IS, we use an approach of Glynn (1996): first apply

IS to estimate the CDF F , and then invert the estimated CDF to obtain the IS quantile

estimator. Specifically, write

1−F (y) =EG[I(c(X)> y)] =EG̃[I(c(X)> y)L(X)] (13)

through a change of measure. By (13), an unbiased estimator of F (y) is F̂IS,n(y), with

F̂IS,n(y) = 1− 1

n

n∑
i=1

I(c(Xi)> y)L(Xi), and ξ̂IS,n = F̂−1
IS,n(p), (14)

where Xi ∼ G̃, i = 1,2, . . . , n, are the same as in (12). We call F̂IS,n(y) and ξ̂IS,n the IS

estimators of F (y) and ξ, respectively. To compute ξ̂IS,n, let Yi = c(Xi), and let Y1:n ≤ Y2:n ≤

· · · ≤ Yn:n be the sorted values of Y1, Y2, . . . , Yn. Defining Xi::n as the Xj corresponding to

Yi:n results in ξ̂IS,n = Yip:n, with ip the greatest integer for which
∑n

ℓ=ip
L(Xℓ::n)≥ n(1− p).

Chu and Nakayama (2012) establish that the quantile estimator obtained via a combination

of IS and stratified sampling obeys a weak Bahadur representation, with ξ̂IS,n in (14) being

a special case of IS only; i.e., their Theorem 4.2 shows that if

there exist constants ϵ > 0 and λ> 0 such that EG̃[I(c(X)> ξ−λ)L2+ϵ(X)]<∞, (15)

then

ξ̂IS,n = ξ− 1

f(ξ)
[F̂IS,n(ξ)− p] + R̃n, with

√
nR̃n ⇒ 0 as n→∞. (16)

The fact that F (y) = EG[I(c(X) ≤ y)] = EG̃[I(c(X) ≤ y)L(X)] suggests another CDF

estimator, F̂ ′
IS,n(y) =

1
n

∑n
i=1 I(c(Xi)≤ y)L(Xi), with each Xi ∼ G̃, which leads to another

p-quantile estimator ξ̂′IS,n = F̂ ′−1
IS,n(p). Theorem 4.1 of Chu and Nakayama (2012) (resp.,

Sun and Hong (2010)) establishes a weak (resp., strong) Bahadur representation for ξ̂′IS,n.

When estimating the p-quantile with p≈ 1 using IS, Glynn (1996) shows that for a simple
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example, the p-quantile estimator ξ̂IS,n in (14) has smaller asymptotic variance than the

estimator ξ̂′IS,n. (But ξ̂
′
IS,n can have smaller asymptotic variance than ξ̂IS,n when p≈ 0.)

The IS estimator of the EC is then

η̂IS,n = ξ̂IS,n− µ̂IS,n, (17)

with both ξ̂IS,n and µ̂IS,n computed from the same i.i.d. sample X1,X2, . . . ,Xn, with each

Xi ∼ G̃. The following result, proven in Appendix C, shows that η̂IS,n has a Bahadur-type

representation and obeys a CLT.

Theorem 2. Suppose that Y ∼ F has the form in (1), and f(ξ) > 0. Suppose that

X1,X2, . . . ,Xn are i.i.d. with CDF G̃, where (the measure induced by) G is absolutely con-

tinuous with respect to G̃. Also suppose that (15) holds for L(x) in (11) and (13). Then

the following hold.

(i) The IS EC estimator in (17) satisfies

η̂IS,n = η− 1

n

n∑
i=1

[
[1− I(c(Xi)> ξ)L(Xi)]− p

f(ξ)
+ c(Xi)L(Xi)−µ

]
+ R̃n (18)

with
√
nR̃n ⇒ 0 as n→∞.

(ii) If in addition σ2
IS ≡VarG̃[c(X)L(X)]<∞, then

√
n [η̂IS,n − η]⇒N(0, ζ2IS) as n→∞,

where

ζ2IS =
χ2
IS

f 2(ξ)
+σ2

IS − 2
γIS
f(ξ)

, with χ2
IS ≡VarG̃[I(c(X)> ξ)L(X)], and (19)

γIS ≡CovG̃[I(c(X)> ξ)L(X), c(X)L(X)] =EG[I(c(X)> ξ)c(X)L(X)]− (1− p)µ. (20)

5. Methods that Combine SRS and IS

Section 4 estimates ξ and µ from the same data generated from IS distribution G̃, but the

resulting estimator of η = ξ − µ can have large variance. When p ≈ 1, ξ is a property of

the right tail of F , whereas µ typically measures the distribution’s central tendency. Thus,

while SRS can often effectively estimate the mean µ of F , a VRT designed to analyze only

the tail of F may fare poorly in estimating µ.

When p≈ 1, the heuristic reason that an IS CDF G̃ for X designed to estimate only ξ

can do badly for µ arises from the LR in (11) often being immense. To see why, first express

the second moment of the IS estimator of µ as m2 ≡ EG̃[c
2(X)L2(X)] = EG[c

2(X)L(X)]
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by a change of measure. The original CDF G usually assigns much of its probability to

points x with c(x) near the mean µ. But G̃ shifts most of that mass to values x′ with

c(x′)≈ ξ, making points x with c(x)≈ µ rare under G̃. Thus, the LR L(x) = dG(x)/dG̃(x)

is enormous for these common x under G, leading tom2 =EG[c
2(X)L(X)] and the variance

σ2
IS =VarG̃[c(X)L(X)] of the IS estimator of µ being large (µ is unchanged by (11)).

5.1. Measure-Specific Importance Sampling (MSIS)

To address these issues, MSIS estimates only ξ by IS and independently estimates µ using

SRS. Goyal et al. (1992) apply MSIS to estimate a ratio of means, in which only one

corresponds to a rare event and is thus handled via IS, and the other (non-rare) mean is

simulated independently without IS. More generally, we can use one VRT to estimate ξ

and another to estimate µ, where VRTs other than IS may instead be employed.

We next give the details of MSIS. For an overall sample size n, we specify a fraction

0< δ < 1 of the sample size to estimate ξ by IS, and we use SRS to estimate µ with the

rest of the sample size. Let δn be the sample size estimating ξ via IS, and (1− δ)n be the

sample size estimating µ by SRS, both assumed to be integer-valued; if not, replace δn and

(1− δ)n by ⌊δn⌋ and ⌊(1− δ)n⌋, respectively, where ⌊·⌋ is the floor function. Let F̂IS,δn be

the IS CDF estimator in (14) but with sample size δn instead of n, and ξ̂IS,δn = F̂−1
IS,δn(p)

is the resulting p-quantile estimator. Also let µ̂SRS,(1−δ)n be the SRS estimator of µ in (2)

with sample size (1− δ)n instead of n. Then the MSIS estimator of η is

η̂MSIS,n = ξ̂IS,δn− µ̂SRS,(1−δ)n. (21)

The next result, proven in Appendix D, gives a weak Bahadur-type representation and

CLT for η̂MSIS,n.

Theorem 3. Suppose that Y ∼ F has the form in (1), f(ξ) > 0, (15) holds, and (the

measure induced by) G is absolutely continuous with respect to G̃. Then the following hold

for any fixed 0< δ < 1.

(i) The MSIS EC estimator in (21) satisfies

η̂MSIS,n = η− 1

f(ξ)
[F̂IS,δn(ξ)−p]−(µ̂SRS,(1−δ)n−µ)+R̃n,δ, with

√
nR̃n,δ ⇒ 0 as n→∞. (22)

(ii) If in addition σ2
SRS <∞, then for χ2

IS from (19),

√
n [η̂MSIS,n − η]⇒N(0, ζ2MSIS) as n→∞, where ζ2MSIS =

χ2
IS

δf 2(ξ)
+
σ2
SRS

1− δ
. (23)
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In contrast to (9) and (19), (23) has no covariance term as MSIS estimates ξ and µ inde-

pendently. Also, the value of ζ2MSIS depends on δ, with δ∗ = [χIS/f(ξ)]/[σSRS + (χIS/f(ξ))]

minimizing ζ2MSIS. But the values of σ2
SRS, χ

2
IS and f(ξ) are unknown. However we can

employ a two-stage procedure, with a pilot run to roughly estimate the unknown parame-

ters, which are used in the second stage with the resulting estimated δ∗.

5.2. Importance Sampling with a Defensive Mixture Distribution (ISDM)

To estimate simultaneously multiple metrics (including the mean and a tail probability),

Hesterberg (1995) develops ISDM, which applies IS, as in Section 4, with X ∼ G̃ISDM ≡

δG∗+(1−δ)G, where G∗ (resp., G) is a new (resp., original) joint CDF for X, and 0≤ δ≤ 1

is a user-specified constant. We can sample X from the mixture G̃ISDM by generating X

from G∗ (resp., G) with probability δ (resp., 1− δ). The ISDM EC estimator has the form

(17) based on (12) and (14), with the LR in (11) and (13) as

LISDM(x) =
dG(x)

dG̃ISDM(x)
=

dG(x)

δdG∗(x)+ (1− δ)dG(x)
, so LISDM(x)≤

1

1− δ
for all x. (24)

Thus, for δ ∈ (0,1), ISDM prevents the LR from being too big (Section 5), making G̃ISDM

a defensive mixture. A special case of IS, the ISDM EC estimator obeys Theorem 2, where

δ ∈ (0,1) ensures the assumed absolute continuity and (15) hold. When δ= 0 (resp., δ= 1),

ISDM reduces to SRS (resp., IS with X∼G∗).

CDF G∗ itself can be a mixture of r CDFs, so then G̃ISDM mixes r + 1 CDFs. Other

works using a mixture for IS include Owen and Zhou (2000) and Glasserman and Juneja

(2008).

5.3. Double Estimator

A double estimator (DE) provides another way of combining IS and SRS to estimate the

EC. As with MSIS, DE generates an IS (resp., SRS) sample of size δn (resp., (1− δ)n),

with the two samples independent. But in contrast to MSIS, DE employs both the IS and

SRS samples to estimate both ξ and µ. More specifically, we use the IS sample of size

δn to construct estimators ξ̂IS,δn and µ̂IS,δn in (14) and (12), respectively. Also, we form

estimators ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n in (3) and (2), respectively, from the SRS sample of

size (1− δ)n. For user-specified constants υ1, υ2 ∈ [0,1], we define the DE EC estimator as

η̂DE,n =
[
υ1ξ̂IS,δn+ υ′1ξ̂SRS,(1−δ)n

]
−
[
υ2µ̂IS,δn+ υ′2µ̂SRS,(1−δ)n

]
≡ ξ̂DE,n− µ̂DE,n, (25)
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where υ′1 = 1−υ1 and υ′2 = 1−υ2. When υ1 = υ2, η̂DE,n is a weighted sum of two independent

EC estimators: η̂IS,δn of (17) with an IS sample of size δn and weight υ1 = υ2, and η̂SRS,(1−δ)n

of (4) with an SRS sample of size (1−δ)n and weight υ′1 = υ′2. But (25) also allows υ1 ̸= υ2,

and DE becomes MSIS when υ1 = 1 and υ2 = 0. Also, DE reduces to SRS (resp., IS) when

υ1 = υ2 = δ= 0 (resp., υ1 = υ2 = δ= 1). The following, whose proof appears in Appendix E,

gives a Bahadur-type representation and CLT for η̂DE,n.

Theorem 4. Suppose that Y ∼ F has the form in (1) and f(ξ) > 0. Suppose that

X1,X2, . . . ,X(1−δ)n are i.i.d. with CDF G, and X′
1,X

′
2, . . . ,X

′
δn are i.i.d. with CDF G̃ and

independent of X1,X2, . . . ,X(1−δ)n, where (the measure induced by) G is absolutely contin-

uous with respect to G̃, which satisfies (15). Then the following hold for any δ, υ1, υ2 ∈ [0,1].

(i) The DE estimator η̂DE,n in (25), constructed from X1,X2, . . . ,X(1−δ)n and

X′
1,X

′
2, . . . ,X

′
δn, satisfies

η̂DE,n = η−

[(
υ1
δn

δn∑
i=1

[1− I(c(X′
i)> ξ)L(X

′
i)]− p

f(ξ)

)
+

 υ′1
(1− δ)n

(1−δ)n∑
i=1

[1− I(c(Xi)> ξ)]− p

f(ξ)


−

(
υ2
δn

δn∑
i=1

[c(X′
i)L(X

′
i)−µ]

)
+

(
υ′2

(1− δ)n

(1−δ)n∑
i=1

[c(Xi)−µ]

)]
+(υ1R̃δn+ υ′1R(1−δ)n),

with
√
n(υ1R̃δn+ υ′1R(1−δ)n)⇒ 0 as n→∞, (26)

where R̃δn is from (16) and R(1−δ)n from (5).

(ii) If also σ2
IS <∞ and σ2

SRS <∞, then
√
n [η̂DE,n− η]⇒N(0, ζ2DE) as n→∞, where

ζ2DE =

[
υ21
δ

χ2
IS

f 2(ξ)
+

υ′21
1− δ

χ2
SRS

f 2(ξ)

]
+

[
υ22
δ
σ2
IS +

υ′22
1− δ

σ2
SRS

]
− 2

[
υ1υ2
δ

γIS
f(ξ)

+
υ′1υ

′
2

1− δ

γSRS

f(ξ)

]
(27)

with χ2
IS, σ

2
IS, and γIS from (19)–(20), and χ2

SRS, σ
2
SRS and γSRS from (9)–(10). For a fixed

δ ∈ (0,1), the optimal choice of (υ1, υ2) to minimize ζ2DE is

(υ∗1, υ
∗
2) =

(
a1
a0
,
a2
a0

)
, where (28)

a0 =V
(ξ)
SRSV

(µ)
IS −C2

IS − 2CISCSRS−C2
SRS+V

(ξ)
IS V

(µ)
IS +V

(ξ)
IS V

(µ)
SRS+V

(ξ)
SRSV

(µ)
SRS,

a1 =V
(ξ)
SRSV

(µ)
IS +V

(ξ)
SRSV

(µ)
SRS−V

(µ)
IS CSRS+V

(µ)
SRSCIS −CISCSRS−C2

SRS, and

a2 =V
(ξ)
IS V

(µ)
SRS+V

(ξ)
SRSV

(µ)
SRS−V

(ξ)
IS CSRS +V

(ξ)
SRSCIS −CISCSRS −C2

SRS,

with V
(ξ)
IS =

χ2
IS

δf2(ξ)
, V

(ξ)
SRS =

χ2
SRS

(1−δ)f2(ξ)
, V

(µ)
IS =

σ2
IS

δ
, V

(µ)
SRS =

σ2
SRS

1−δ
, CIS =

γIS
δf(ξ)

, and CSRS =
γSRS

(1−δ)f(ξ)
.
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6. Asymptotic Analysis of i.i.d. Sum

We now provide a theoretical comparison of the EC estimators from Sections 3–5, showing

MSIS (Section 5.1) is a compellingly simple and effective approach. Our study considers

the loss Y as a sum of m i.i.d. random variables (i.e., a random walk, often a building

block in more complex models) in an asymptotic regime of Glynn (1996), where m→∞

with the quantile level p simultaneously approaching 1 exponentially fast in m, i.e.,

p≡ pm = 1− e−βm, for some constant β > 0. (29)

In addition to its theoretical convenience, the framework also has practical relevance: bank

portfolios are commonly exposed to thousands of obligors (i.e., large m), and as noted in

Section 1, Deutsche Bank (2018, p. 46), e.g., has used p= 0.999 and p= 0.9998 in its EC

computations. Although the analysis in this section is for an i.i.d. sum model, the dependent

sum in the more complicated PCRM (Section 7.2) can be reduced to an independent (but

not necessarily identically distributed) sum via conditioning arguments (Glasserman and

Li (2005), Bassamboo et al. (2008)). Thus, the i.i.d. sum asymptotics provide insights

about how exponential twisting may behave for factor models with dependence.

6.1. Model and Assumptions

Throughout the rest of Section 6, the loss Y in (1) has d=m≥ 1 with

Y = c(X) =
m∑
j=1

Xj, where X= (X1,X2, . . . ,Xm)∼G has m i.i.d. components. (30)

Each Xj has marginal CDF G0, where G0 does not depend on m and has mean µ0 ≡

E0[Xj] =
∫
xdG0(x), and variance σ2

0 ≡Var0[Xj] =E0[(Xj − µ0)
2], for E0 and Var0 as the

expectation and variance operators, respectively, when Xj ∼G0.

Assumption 1. Each i.i.d. summand Xj ∼G0 has σ2
0 > 0, and its moment generating

function (MGF) M0(θ) =E0[e
θXj ] =

∫
eθx dG0(x), θ ∈ℜ, has domain ∆= {θ ∈ℜ :M0(θ)<

∞} with interior ∆◦ containing 0.

Since M0(0) = 1, the domain ∆ of M0 always contains 0, but its interior ∆◦ may not,

as for heavy-tailed distributions, such as the lognormal or Pareto (Asmussen and Glynn

2007, Section VI.3), both having ∆= (−∞,0]. Thus, Assumption 1’s stipulation that 0 ∈

∆◦, which often appears in the large-deviations literature (e.g., Section 2.2.1 of Dembo
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and Zeitouni (1998)), restricts us to light-tailed summands (Asmussen and Glynn 2007,

Section VI.2), e.g., normal or gamma. In this case (Billingsley 1995, p. 278), all moments of

Xj ∼G0 are finite, and M0(θ) has derivatives of all orders for θ ∈∆◦; let M ′
0(θ) =

d
dθ
M0(θ)

and M ′′
0 (θ) =

d2

dθ2
M0(θ).

Define Q0(θ) = lnM0(θ) as the cumulant generating function (CGF) of Xj ∼ G0, with

Q′
0(θ) =

d
dθ
Q0(θ) and Q

′′
0(θ) =

d2

dθ2
Q0(θ) as its first two derivatives. For F = Fm as the CDF

of the i.i.d. sum Y , let f = fm be its derivative (when it exists).

Assumption 2. The characteristic function C0(θ)≡M0(θ
√
−1), θ ∈ℜ, of Xj ∼G0 sat-

isfies ∫
ℜ
|C0(θ)|q0 dθ <∞ for some q0 ≥ 1. (31)

For β > 0 in (29),

there exists θ= θ⋆ ∈∆◦ with θ⋆ > 0 and − θ⋆Q
′
0(θ⋆)+Q0(θ⋆) =−β. (32)

Also, fm exists at the pm-quantile ξ = ξm = F−1
m (pm), with fm(ξm)> 0.

In contrast to Assumption 1’s requirement that 0∈∆◦, which constrains G0 to be light-

tailed, Assumption 2’s condition (31) on the characteristic function C0(θ) of each i.i.d.

summand relates instead to the smoothness of G0. As |C0(θ)| ≤ 1 for all θ ∈ ℜ (Durrett

1996, p. 92), the class of distributions G0 with
∫
ℜ |C0(θ)|q0 dθ <∞ shrinks as q0 decreases.

For example, if G0 is a normal distribution or a gamma with shape parameter α0 > 1,

its (Lebesgue) density is continuous on all of ℜ, and (31) holds for all q0 ≥ 1. But for a

gamma distribution with α0 ∈ (0,1] and unit scale parameter, whose density gα0 has a

discontinuity at the origin (since gα0(x) = 0 for all x < 0, so at x = 0, gα0 has a jump,

infinitely large when α0 < 1), (31) requires q0 > 1/α0 ≥ 1 as C0(θ) = (1− θ
√
−1)−α0. If G0

has a (Lebesgue) density g0 with
∫
[g0(x)]

r0 dx<∞ for some r0 ∈ (1,2], then (31) holds with

q0 = r0/(r0−1)≥ 2 by the Hausdorff-Young inequality (Theorem 1.2.3 of Jensen (1995) or

Theorem IX.8 of Reed and Simon (1975)). While the marginal CDF G0 is guaranteed to

have a (Lebesgue) density when (31) is true for some q0 ∈ [1,2], G0 can be singular (i.e.,

G0 is continuous but has no Lebesgue density) when (31) holds for only some q0 > 2 but

not for any q0 ∈ [1,2] (Kawata 1972, p. 438).

But for the CDF Fm of the i.i.d. sum Y =
∑m

j=1Xj, (31) secures the existence of its

(Lebesgue) density fm for all m≥ q0; see (91) in Appendix F.3. The asymptotic variance of
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each EC estimator has at least one term that includes fm(ξm) in the denominator, as seen

in (9), (19), (23), and (27). Thus, Assumption 2 further imposes fm(ξm)> 0, as required

by the CLTs in Theorems 1–4, and this holds if, e.g., G0 has a density and the support of

G0 is a single (possibly infinitely long) interval, as for a normal or gamma. Our analysis

handles fm through a saddlepoint approximation (Jensen 1995, Chapter 2), given in (105)

of Appendix F.3, which will be justified under Assumptions 1 and 2; see Lemma 2 in

Appendix F.3.

Glynn (1996) shows that if there is a θ⋆ > 0 solving (32), it is unique. When the CGF

Q0 is “steep” (i.e., limθ→∂∆:θ∈∆◦ |Q′
0(θ)|=∞, where ∂∆ is the boundary of ∆ (Dembo and

Zeitouni 1998, p. 44)), a unique θ⋆ > 0 satisfies (32). For example, Q0 is steep for the

normal or gamma, but when Q0 is not steep, then (32) can have no root for some values

of β > 0. For example, if G0 is the “perverted exponential” (Durrett 1996, p. 74), which

has density g0(x) = c0x
−3e−xI(x≥ 1) and ∆= {θ≤ 1}, where c0 ≡ 1/

∫∞
1
x−3e−x dx

.
= 9.116,

then it can be shown that there exists θ⋆ > 0 with θ⋆ ∈ ∆◦ solving (32) if and only if

0< β < 2− ln(c0/2)
.
= 0.483. The last paragraph of Section 6.2 below will provide further

discussions on (32).

We sometimes (but not always) emphasize the dimension m of X in (30) by writing,

e.g., X=Xm, η = ηm for the EC, F = Fm as the CDF of Y , ξ = ξm = F−1
m (pm) as the pm-

quantile of Y , and µ= µm =EG[Y ] =EG[c(X)]. As in Section 3, SRS samples i.i.d. copies

of c(X) with X∼G. Some of our asymptotic analysis will account for the computational

effort to construct an EC estimator, and we assume that the computation (CPU) time to

generate a single c(X) with X∼G is a random variable (a constant being a special case)

with expectation mτSRS for some constant τSRS ∈ (0,∞).

6.2. Importance Sampling via Exponential Twisting

A common IS approach applies exponential twisting, also called exponential tilting or an

exponential change of measure (Asmussen and Glynn 2007, Section VI.2). The exponential

twist G̃0,θ of the marginal CDF G0 of Xj is given by

dG̃0,θ(x) =
eθx dG0(x)

M0(θ)
= eθx−Q0(θ) dG0(x), x∈ℜ, θ ∈∆◦, (33)

and setting θ= 0 reduces G̃0,θ to G0. We next describe methods IS(θ), MSIS(θ), ISDM(θ),

and DE(θ), which correspond to Sections 4, 5.1, 5.2, and 5.3, respectively, and utilize
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twisting with parameter θ in various ways, where we often (but not always) will choose

θ= θ⋆ from (32).

� IS(θ) applies exponential twisting with parameter θ ∈ ∆◦. Specifically, under IS(θ),

random vector X has joint CDF G̃θ such that the components X1, . . . ,Xm of X are i.i.d.,

where the marginal CDF of each Xj is the exponential twist G̃0,θ of G0 in (33). For the

resulting LR

Lθ(x)≡
dG(x)

dG̃θ(x)
=

m∏
j=1

dG0(xj)

dG̃0,θ(xj)
= exp

(
mQ0(θ)− θ

m∑
j=1

xj

)
= [M0(θ)]

me−θc(x) (34)

in (11), we assume that the expected time to generate (c(X),Lθ(X)), X∼ G̃θ, is mτIS(θ)

for a constant τIS(θ) ∈ (0,∞).

� ISDM(θ)≡ ISDM(θ, δ) corresponds to IS that samples

X∼ G̃ISDM(θ) ≡ δG̃θ +(1− δ)G (35)

for θ ∈∆◦ and fixed δ ∈ (0,1). For LR LISDM(θ)(x)≡ dG(x)/dG̃ISDM(θ)(x) in (24), we assume

that the expected time to generate (c(X),LISDM(θ)(X)), X ∼ G̃ISDM(θ), is mτISDM(θ) for a

constant τISDM(θ) ∈ (0,∞).

� MSIS(θ) ≡ MSIS(θ, δ) and DE(θ) ≡ DE(θ, δ, υ1, υ2) use IS(θ) as their IS, with fixed

δ ∈ (0,1) and fixed υ1, υ2 ∈ [0,1].

In our asymptotic regime with m→∞ and pm as in (29), Glynn (1996) employs IS(θ⋆)

with θ⋆ from (32) to estimate the pm-quantile ξm, motivated by the following heuristic

argument. Large-deviations analysis (Durrett 1996, Section 1.9) suggests that when X∼G

and x is large (i.e., x≥m(µ0+ϵ) for any constant ϵ > 0), the tail probability P (c(X)>x)≈

exp[−m(θxQ
′
0(θx)−Q0(θx))] for θx as the root of the equation mQ′

0(θx) = x. When X∼ G̃θ

with parameter θ ∈∆◦, each Xj has mean Q′
0(θ) (see p. 72 of Durrett (1996) or (96) of

Appendix F.3), so the sum c(X) has mean mQ′
0(θ). The pm-quantile ξm of c(X) satisfies

P (c(X)> ξm) = 1−pm = e−βm by (29), so equating the two tail probabilities results in the

twisting parameter θ⋆ in (32) shifting the mean of c(X) under G̃θ⋆ to about ξm. Hence,

IS(θ⋆) often samples X so that c(X) is around ξm, leading to more efficient estimation of

ξm.
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6.3. Relative Error and Work-Normalized Relative Error

We will compare our EC estimators in terms of their relative errors (e.g., L’Ecuyer et al.

(2010)). We explain this idea in a general context of a Monte Carlo method M (e.g., SRS,

IS(θ), MSIS(θ), ISDM(θ), or DE(θ)) for an estimand φ≡φm (e.g., η, ξ, or µ) of a sequence

of stochastic models indexed by a parameter m (e.g., dimension of X). Let φ̂M,n ≡ φ̂M,n,m

be the M estimator of φ based on a total sample size n. For each fixed m, assume the

estimator obeys a CLT
√
n[φ̂M,n −φ]⇒N(0, ς2M) as n→∞, where ς2M ≡ ς2M,m <∞ is the

asymptotic variance. When φ ̸= 0, the relative error (RE) of the M estimator of φ is

REM,m[φ] =
ςM
|φ|

≡ ςM,m

|φm|
, (36)

which we will study as m→∞ and fixed (large) n. (Our definition of RE ignores that φ̂M,n

may be biased, as is often the case when φ = ξ or φ = η. But when applying SRS with

fixed dimension m, the simplification is reasonable because as n→∞, the SRS quantile

estimator’s mean-squared error is determined primarily by its asymptotic variance, with

negligible contribution from the bias (Avramidis and Wilson 1998, Theorem 2).)

To motivate the study of RE, consider a 95% confidence interval (φ̂M,n±1.96ςM/
√
n) for

φ based on the CLT for φ̂M,n. (In practice, ςM is typically unknown, and the CI replaces

it with a consistent estimator.) Suppose that we want to determine a sample size n so

that the CI is roughly (φ̂M,n ± ε|φ̂M,n|) for a specified desired relative precision ε > 0;

e.g., if ε= 0.1, then the desired CI has 10% relative half-width. Thus, we seek n so that

1.96ςM/
√
n≈ ε|φ|, or equivalently, n≈ (1.96REM,m[φ]/ε)

2. If REM,m[φ] is bounded (resp.,

grows to ∞) as m→∞, then the sample size n needed to achieve a fixed relative precision

ε remains bounded (resp., blows up) as m increases. L’Ecuyer et al. (2010) and Asmussen

and Glynn (2007, Chapter VI) review a variety of simulation methods M that achieve the

desirable property of bounded or even vanishing RE when estimating some parameter φ

for various stochastic models and asymptotic regimes.

As m grows, the computation (CPU) time to generate one output for method M often

increases with m. For example, the end of Section 6.1 specifies mτSRS as the expected CPU

time to generate an SRS output c(X) for X ∈ ℜm with X ∼G, and Section 6.2 imposes

similar structure for IS(θ) and ISDM(θ). For a method M that estimates φ through a single

i.i.d. sample of size n (as for SRS, IS(θ), and ISDM(θ)), let mτM be the expected CPU

time to generate one output, with τM ∈ (0,∞) a constant. To account for the CPU time
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for such a method M, we define the work-normalized RE (WNRE) of the M estimator of

φ ̸= 0 as

WNREM,m[φ] =

√
mτM ςM
|φ|

≡
√
mτM ςM,m

|φm|
=
√
mτMREM,m[φ]; (37)

see L’Ecuyer et al. (2010). To motivate the WNRE, suppose that we have a (large) CPU

budget b0 > 0. Within our budget b0, method M obtains a sample of size approximately

nM,b0 ≡ ⌊b0/(mτM)⌋. When nM,b0 ≥ 1, the resulting M estimator of φ based on budget b0

is then roughly φ̂M,nM,b0
, whose variance is approximately ς2M/nM,b0 ≈ mτMς

2
M/b0, which

we can express through the CLT
√
b0[φ̂M,nM,b0

− φ]⇒N(0,mτMς
2
M) as b0 →∞. (We can

formalize this argument through a random-time-change CLT, e.g., see (Chung 2001, Theo-

rem 7.3.2).) Thus, the budget-constrained estimator’s standard deviation is roughly scaled

by the square root of the expected time to generate one output, which leads to the definition

of the WNRE in (37).

While (37) is appropriate when M utilizes only a single i.i.d. sample, MSIS(θ) and DE(θ)

instead collect multiple samples, and we will define their WNRE by slightly adjusting

how these estimators are constructed. Consider estimating φ = µ or φ = ξ via DE(θ),

which takes two independent samples: one with IS(θ) and the other with SRS. Rather

than dividing the total sample size n between IS(θ) and SRS using allocation parameter

δ ∈ (0,1), as in the DE(θ) estimator in (25), we instead split the CPU budget b0 when

considering WNRE, where δb0 (resp., (1−δ)b0) of the budget is for IS(θ) (resp., SRS). Then
the IS(θ) and SRS samples have approximately sizes n′

b0,1
≡ ⌊δb0/(mτIS(θ))⌋ and n′

b0,2
≡

⌊(1−δ)b0/(mτSRS)⌋, respectively, so the variances of the budget-constrained IS(θ) and SRS

estimators of φ are roughly ς2IS(θ)/n
′
b0,1

and ς2SRS/n
′
b0,2

. We form the budget-constrained

DE(θ) estimator of φ as a weighted average of the budget-constrained IS(θ) and SRS

estimators of φ using respective weights υ and υ′ = 1 − υ, where υ = υ1 when φ = ξ,

and υ = υ2 when φ = µ, with υ1 and υ2 as in (25). As DE(θ) applies IS(θ) and SRS

independently, the variance of the budget-constrained DE(θ) estimator of φ is roughly
υ2ς2

IS(θ)

n′
b0,1

+
υ′2ς2SRS

n′
b0,2

≈ m
b0

[
τIS(θ)υ

2ς2
IS(θ)

δ
+

τSRSυ
′2ς2SRS

1−δ

]
. This motivates defining the WNRE for the

DE(θ) estimator of φ ̸= 0 for φ= ξ or µ as

WNREDE(θ),m[φ] =
1

|φ|

[
m

(
τIS(θ)υ

2ς2IS(θ)
δ

+
τSRSυ

′2ς2SRS

1− δ

)]1/2
. (38)

Appendix F.6 will similarly define WNREDE(θ⋆),m[η] and WNREMSIS(θ⋆),m[η] in (134) and

(135), respectively.
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6.4. Asymptotic Notation and Properties

For our i.i.d. sum model (30), Theorem 5 in Section 6.5 below will derive asymptotic

expressions for the RE and WNRE of estimators of the EC ηm = ξm − µm as m→ ∞,

building on analogous results (Appendix F) for the mean µm and pm-quantile ξm. The lim-

iting results will adopt the following asymptotic notation. For functions r1(m) and r2(m),

we write r1(m) =O(r2(m)) (resp., r1(m) = Ω(r2(m))) as m→∞ if there are constants d0

and m0 > 0 such that |r1(m)| ≤ d0|r2(m)| (resp., |r1(m)| ≥ d0|r2(m)|) for all m ≥m0, so

d0|r2(m)| provides an asymptotic upper (resp., lower) bound for |r1(m)|. Also, r1(m) =

Θ(r2(m)) if both r1(m) = O(r2(m)) and r1(m) = Ω(r2(m)). Moreover, r1(m) = o(r2(m))

means r1(m)/r2(m)→ 0 as m→∞, and r1(m) = ω(r2(m)) denotes that r2(m) = o(r1(m)).

We next review some (mainly asymptotic) properties that will arise in our analysis. Let

b1, b2, c1, c2 ∈ ℜ be constants, and let m ≥ 1. For x, y ∈ ℜ, define x ∨ y = max(x, y) and

x∧ y =min(x, y). If b1, b2 > 1, then b−m
1 ∨ b−m

2 = [b1 ∧ b2]−m. If c1 > 0, then for any c2 and

for each c3 ∈ (0, c1), we have that e
c1m+c2

√
m = ω(ec3m) as m→∞ because ec1m+c2

√
m/ec3m =

ec1mec2
√
m/[ec1me(c3−c1)m] = e(c1−c3)m+c2

√
m →∞ as m→∞ since c1− c3 > 0; thus, ec1m+c2

√
m

grows exponentially quickly in m. Similarly, c1 > 0 implies for any c2 and each c3 ∈ (0, c1)

that e−c1m+c2
√
m = o(e−c3m) as m→∞, so e−c1m+c2

√
m shrinks exponentially fast in m. If a

function r1(m) satisfies r1(m) = eo(
√
m) as m→∞, then there exists some function r2(m)

such that r1(m) = er2(m) with r2(m)/
√
m→ 0 as m→∞; for each t∈ℜ, this then implies,

as m→∞, that rt1(m) = eo(
√
m), rt1(m) = o(ec1

√
m), and rt1(m) = ω(e−c1

√
m) for each c1 > 0.

6.5. Estimating EC

For method M equaling SRS, IS(θ⋆), MSIS(θ⋆), or ISDM(θ⋆), the asymptotic variance

ζ2M ≡ ζ2M,m in (9), (19), and (23) of the resulting ηm estimator has the form

ζ2M =ΛMκ
2
M +Λ†

Mσ
2
M − 2

γM
fm(ξm)

(39)

for constants ΛM and Λ†
M depending on the method M but not on m. In (39), κ2M ≡ κ2M,m

denotes the asymptotic variance of the method-M estimator of the pm-quantile ξm, where

κ2M =
χ2
M

f 2
m(ξm)

, (40)

as seen through Theorems 1, 2, and 3, and will be more fully developed for our i.i.d. sum

model in Theorem 7 of Appendix F.2. Also, σ2
M ≡ σ2

M,m in (39) represents the asymptotic
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variance of method M’s estimator of the mean µm, which Theorem 6 of Appendix F.1 will

analyze, and γM/fm(ξm) with γM ≡ γM,m is the asymptotic covariance of the estimators of

ξm and µm. For example, (39) and (40) for M= IS(θ⋆) have ΛIS(θ⋆) =Λ†
IS(θ⋆)

= 1 and χ2
IS(θ⋆)

,

σ2
IS(θ⋆)

, and γIS(θ⋆) as in (19) and (20) with LR in (34) and twisting parameter θ= θ⋆ from

(32). For the other methods M, the specific forms of the terms in (39) and (40) will be

given explicitly in the proof of Theorem 5 in Appendix F.6, but they can be inferred from

(9) and (10) for M= SRS, from (23) for M=MSIS(θ⋆) (where γMSIS(θ⋆) = 0, as ξ and µ

are estimated independently), and from (19) and (20) for M= ISDM(θ⋆) (since ISDM(θ⋆)

is a special case of IS, sampling X as in (35) with θ = θ⋆). In the right side of (40), the

numerator χ2
M ≡ χ2

M,m depends on M, but the denominator does not; both depend on m

for our model (30), as do ζ2M, κ2M, σ2
M and γM in (39).

For M = DE(θ⋆), we can also write its asymptotic variance from (27) to fit into (39),

but to handle its WNRE, defined in (134) of Appendix F.6, it is more convenient to treat

it differently as

ζ2DE(θ⋆) =
1

δ

(
υ21κ

2
IS(θ⋆) + υ22σ

2
IS(θ⋆) − 2υ1υ2

γIS(θ⋆)
fm(ξm)

)
+

1

1− δ

(
υ′21 κ

2
SRS+ υ′22 σ

2
SRS− 2υ′1υ

′
2

γSRS

fm(ξm)

)
.

(41)

Studying the asymptotic properties of the RE and WNRE of the estimators of ηm =

ξm − µm entails examining the two components of ηm and each term in (39), but several

challenges arise with ξm and the denominator fm(ξm) in (39) and (40). As the CDF Fm

of the sum c(X) is a convolution, an explicit expression for Fm is generally analytically

intractable for large m. This complicates deriving the exact values of ξm and fm(ξm),

but we manage to analyze their asymptotic behaviors via the following ideas. Lemma 1

of Appendix F.3 will show that the pm-quantile ξm = F−1
m (pm) satisfies ξm =mQ′

0(θ⋆) +

o(
√
m) as m→∞, for Q′

0 as the derivative of the CGF of G0 and θ⋆ in (32). Lemma 2 of

Appendix F.3 handles fm through a saddlepoint approximation (Jensen 1995, Chapter 2),

which when approximating fm(x) can be viewed as first exponentially twisting (Section 6.2)

the distribution of c(X) so its mean is x, and then applying an Edgeworth expansion

(Jensen 1995, Section 1.5).

Recall that (υ∗1, υ
∗
2) = (a1

a0
, a2
a0
) in (28) minimizes ζ2DE in (27) for fixed δ ∈ (0,1). Letting

(a0, a1, a2) = (a0,m, a1,m, a2,m) now depend on m leads to (υ∗1,m, υ
∗
2,m) = (a1,m

a0,m
, a2,m
a0,m

). Since the

value of ηm does not depend on υ1 and υ2, minimizing the asymptotic variance ζ2DE(θ⋆)
or
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REDE(θ⋆),m[η] results in the same optimal value (υ∗1,m, υ
∗
2,m). Define DE∗(θ⋆) as the method

DE(θ⋆) with optimally varying weights (υ∗1,m, υ
∗
2,m), and let ζ2DE∗(θ⋆)

be the asymptotic

variance of the corresponding DE∗(θ⋆) estimator η̂DE∗(θ⋆),n of ηm, as in (25). We also define

the optimal value (υ∗∗1,m, υ
∗∗
2,m) of (υ1, υ2) that minimizes WNREDE(θ⋆),m[η] defined in (134)

of Appendix F.6, and let DE∗∗(θ⋆) be the method DE(θ⋆) using weights (υ∗∗1,m, υ
∗∗
2,m), with

ζ2DE∗∗(θ⋆)
as the asymptotic variance of the DE∗∗(θ⋆) estimator of ηm.

As Table 1 (Section 1) previously summarized, Theorem 5 below shows that when esti-

mating the EC ηm, the methods SRS, IS(θ⋆), and DE(θ⋆) with fixed weights behave poorly

as m→∞, with exponentially increasing RE and WNRE; see parts (i), (ii), and (v). In

contrast, ISDM(θ⋆) performs well, yielding bounded (resp., vanishing) RE when µ0 ̸= 0

(resp., µ0 = 0) (part (iv)). MSIS(θ⋆) and optimal DE∗(θ⋆) can do even better, producing

vanishing RE (parts (iii) and (vi)) for all µ0, the latter when (56) holds.

Theorem 5. For the i.i.d. sum model (30) withm≥ 1 summands, suppose that Assump-

tions 1 and 2 hold. Also, assume that θ⋆ ∈∆◦ in (32) further satisfies −θ⋆ ∈∆◦ for meth-

ods M= IS(θ⋆), DE(θ⋆), DE∗(θ⋆), and DE∗∗(θ⋆) (but not necessarily for SRS, ISDM(θ⋆),

and MSIS(θ⋆)). Then for the EC η ≡ ηm = ξm − µm, the method-M estimators η̂M,n with

asymptotic variance ζ2M ≡ ζ2M,m satisfy the following as m→ ∞, with β > 0 from (29),

α⋆ ≡M0(θ⋆)M0(−θ⋆)> 1 for M0 as the MGF of G0, and Υm = eo(
√
m) (defined in (110) of

Appendix F.3).

(i) The M=SRS estimator η̂SRS,n in (4) satisfies limm→∞
1
m
ln ζ2SRS = β,

ζ2SRS =
Θ(meβm)

Υ2
m

= ω(meβm−
√
m), (42)

RESRS,m[η] = ω

(
e(β/2)m−

√
m

√
m

)
→ ∞, and WNRESRS,m[η] = ω(e(β/2)m−

√
m) → ∞. (43)

(ii) The M= IS(θ⋆) estimator η̂IS(θ⋆),n in (17) has

ζ2IS(θ⋆) =Ω(mαm
⋆ ), (44)

REIS(θ⋆),m[η] = Ω(αm/2
⋆ /

√
m)→∞, and WNREIS(θ⋆),m[η] = Ω(αm/2

⋆ )→∞. (45)

(iii) The M=MSIS(θ⋆) estimator η̂MSIS(θ⋆),n in (21) has

ζ2MSIS(θ⋆) =Θ(m), (46)

REMSIS(θ⋆),m[η] = Θ(1/
√
m) → 0, and WNREMSIS(θ⋆),m[η] = Θ(1). (47)
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(iv) The M= ISDM(θ⋆) estimator η̂ISDM(θ⋆),n in (17) has

ζ2ISDM(θ⋆) =O(m2), (48)

REISDM(θ⋆),m[η] = O(1), and WNREISDM(θ⋆),m[η] =O(
√
m). (49)

If µ0 ̸= 0, then

ζ2ISDM(θ⋆) =Θ(m2), (50)

REISDM(θ⋆),m[η] =Θ(1), and WNREISDM(θ⋆),m[η] =Θ(
√
m). (51)

If µ0 = 0, then

ζ2ISDM(θ⋆) =O(m), REISDM(θ⋆),m[η] =O(1/
√
m)→ 0, and WNREISDM(θ⋆),m[η] =O(1). (52)

(v) The M = DE(θ⋆) estimator η̂DE(θ⋆),n in (25) with any fixed δ, υ1, υ2 ∈ (0,1) satisfies

lim infm→∞
1
m
ln ζ2SRS ≥ s0, where s0 ≡ s0(θ⋆, β) = α⋆ ∨ eβ > 1. Also, as m→∞,

ζ2DE(θ⋆) =Ω(msm0 e
−
√
m), (53)

REDE(θ⋆),m[η] = Ω

(
[s

1/2
0 ]me−

√
m

√
m

)
→ ∞, and WNREDE(θ⋆),m[η] = Ω([s

1/2
0 ]me−

√
m) → ∞.

(54)

(vi) For the M = DE∗(θ⋆) estimator η̂DE∗(θ⋆),n in (25) with optimal weights (υ∗1, υ
∗
2) =

(υ∗1,m, υ
∗
2,m) in (28) that vary with m but with the sampling-allocation parameter δ ∈ (0,1)

still fixed,

(υ∗1,m, υ
∗
2,m)→ (1,0) exponentially fast as m→∞. (55)

If in addition

eβ <α4
⋆, (56)

then for DE∗(θ⋆) and MSIS(θ⋆) with the same fixed δ ∈ (0,1),

ζ2DE∗(θ⋆)

ζ2MSIS(θ⋆)

→ 1 exponentially fast as m→∞, (57)

so REDE∗(θ⋆),m[η] = Θ(1/
√
m) as m→∞ by (47). Moreover, if we replace (υ∗1,m, υ

∗
2,m) and

ζ2DE∗(θ⋆)
with (υ∗∗1,m, υ

∗∗
2,m) and ζ2DE∗∗(θ⋆)

, respectively, for minimizing WNREDE(θ⋆),m[η], then

(55) and (57) still hold, the latter under (56), so WNREDE∗∗(θ⋆),m[η] =Θ(1) as m→∞ by

(47).
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The assumption (56) can restrict the choices of β > 0 in (29) for certain G0. While always

true when G0 is normal, (56) holds for G0 as Erlang if and only if β < β̄ for some β̄ > 0.

For example, an Erlang with s≥ 1 stages, each with mean 1, has β̄
.
= 6.6029s.

In the case that δ, υ1, υ2 ∈ (0,1) are fixed, we now sketch Theorem 5’s proof, which is in

Appendix F.6. For a method-M estimator of ηm = ξm − µm, the growth rate (as m→∞)

of its asymptotic variance ζ2M in (39)–(41) is governed by the largest growth rate of the

variances of its constituent estimators of µm and ξm, analyzed in Theorem 6 (Appendix F.1)

and Theorem 7 (Appendix F.2). (Covariance terms in ζ2M are nondominant, by the Cauchy-

Schwarz inequality.) Also, ηm grows linearly in m (see (93) in Appendix F.3).

Applying these insights to SRS shows that its exponential growth in (42) and (43) is

due to that same behavior of the SRS quantile estimator, by Theorem 7(i). For IS(θ⋆),

the exponential behavior in (44) and (45) arises from that of the mean estimator by

Theorem 6(ii). As DE(θ⋆) uses both SRS and IS(θ⋆) to estimate both ξm and µm, its ηm

estimator’s behavior with any fixed weights υ1, υ2 ∈ (0,1) is determined by the worst of

those estimators; the base s0 of the dominant exponential term sm0 in (53)–(54) is the larger

of the SRS base eβ > 1 of (eβ)m in (42), which comes from Theorem 7(i), and the IS(θ⋆)

base α⋆ > 1 in (44), resulting from Theorem 6(ii).

In contrast, the MSIS(θ⋆) and ISDM(θ⋆) estimators of ηm = ξm−µm behave polynomially

in m because the same holds for its constituent estimators of ξm and µm, where Theo-

rem 7(ii)–(iii) cover the ξm estimators, and parts (i) and (iii) of Theorem 6 analyze the µm

estimators. Specifically, Theorem 5(iii)–(iv) establish that asm→∞, MSIS(θ⋆) has vanish-

ing RE and bounded WNRE by (47), and ISDM(θ⋆) does the same when µm = 0 by (52).

But when µm ̸= 0, ISDM(θ⋆) has only bounded (but not vanishing) RE and unbounded

WNRE (but growing only as Θ(
√
m)) by (51), strictly worse than MSIS(θ⋆).

When the optimal DE weights (υ1, υ2) = (υ∗1,m, υ
∗
2,m) to minimize ζ2DE and REDE(θ⋆),m[η]

vary with m (but δ is still fixed), (55) establishes that (υ∗1,m, υ
∗
2,m) converges exponentially

quickly to (1,0) as m→∞. Appendix F.6.8 also shows the same when instead minimiz-

ing WNREDE(θ⋆),m[η]. Moreover, (57) analyzes the DE variance with weights (υ∗1,m, υ
∗
2,m),

showing that the ratio of the variances of optimal DE∗(θ⋆) and MSIS(θ⋆) converges to

1 exponentially quickly as m→∞. Thus, even though MSIS(θ⋆) can never beat optimal

DE∗(θ⋆) as MSIS(θ⋆) is a special case of DE(θ⋆) that uses just a particular (typically sub-

optimal) choice of DE weights, MSIS(θ⋆) provides a compelling alternative because it is
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much simpler to implement but does virtually the same as optimal DE∗(θ⋆) for large m by

(57).

7. Numerical and Simulation Results

We next present results for two models of a loss Y = c(X) as in (1), but with different

definitions for c and X = (X1, . . . ,Xd). Section 7.1 studies the random-walk model (30)

of Section 6, so c(X) =
∑d

j=1Xj has i.i.d. summands with d=m; we take the summand

CDF G0 as exponential, which permits numerical computation using exact analytics and

quadrature (not simulation). Section 7.2 examines a more complicated portfolio credit risk

model, which we instead simulate. We compare EC estimators for SRS (Section 3), IS

(Section 4), MSIS (Section 5.1), ISDM (Section 5.2), and DE (Section 5.3). For MSIS,

ISDM, and DE (with fixed weights), we let δ = υ1 = υ2 = 1/2. Section 7.1 also considers

DE with optimal weights (υ∗1,m, υ
∗
2,m) in (28) and (55) that vary with m but with δ = 1/2

still fixed. For each model, we specify below the joint CDF G̃ of X for IS, MSIS, and DE,

and we use this same CDF as G∗ in ISDM; see (24). Although the PCRM is much more

complex with dependent obligors, the results will show that the methods behave similarly

on the two models. Thus, our theory in Section 6.4 for the i.i.d. sum provide considerable

insight into the methods. All of the codes that produced the numerical and simulation

results are available at a GitHub repository (Li et al. (2023)).

7.1. Exact Relative Error for i.i.d. Sum

As in Section 6, we define here the loss as Y =
∑m

j=1Xj, with the Xj as i.i.d. with marginal

CDF G0, and the quantile level p≡ pm satisfies (29). Theorem 5 establishes that asm→∞,

the relative errors of the estimators of the EC η ≡ ηm using SRS, IS(θ⋆), and DE(θ⋆)

(with fixed weights) grow exponentially, but MSIS(θ⋆) and DE(θ⋆) with optimally varying

weights (resp., ISDM(θ⋆)) has RE that shrinks to 0 (resp., is Θ(1) for µ0 ̸= 0). For each EC

estimator, we want to investigate numerically (no simulation) the behavior (asm increases)

of the exact RE in (36) (based on (9), (19), (23), or (27)) to show that our asymptotic

theory in Theorems 5–7 (the latter two in Appendix F) accurately captures the behavior

of the exact values as m grows. We present here results for G0 as exponential with mean

µ0 = 1. Appendix A provides other results when G0 is N(1,1) and Erlang (s= 8 stages).

Figure 1 gives log-log plots of the exact RE of our estimators of η, ξ, and µ as functions

of the dimension m. Lemma 1 (Appendix F.3) will establish that ηm, ξm, and µm share
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the same growth rate: linear in m. Thus, the RE and WNRE of η, ξ, and µ are directly

comparable. As m grows, the top left panel shows that the estimators of η using SRS,

IS(θ⋆), and DE(θ⋆) (with fixed weights (υ1, υ2) that do not vary with m) have exponentially

increasing RE, in line with our asymptotic theory in (43), (45), and (54). For SRS (resp.,

IS(θ⋆)) the RE of the η estimator grows exponentially because the same holds for ξ (resp., µ)

by (78) (resp., (71)) of Appendix F; see bottom panels. Also, as explained after Theorem 5,

when DE(θ⋆) uses fixed weights, the RE of the DE(θ⋆) estimator of η is governed by the

worst of the SRS and IS(θ⋆) estimators of ξ and µ, which in this case is the SRS estimator

of ξ, as seen in the bottom panels of Figure 1. (For other G0 in Appendix A, the IS(θ⋆)

estimator of µ is worst.)

In contrast, Figure 1 also shows that the MSIS(θ⋆) and ISDM(θ⋆) estimators of η have

decreasing RE as m grows; see (47) and (51) for RE. As m gets large, MSIS(θ⋆) is a

bit better than ISDM(θ⋆) when estimating η, with MSIS(θ⋆) continually decreasing, but

ISDM(θ⋆) flattening out. The reason becomes apparent from the bottom right panel: the

estimator of µ using SRS (which is how MSIS(θ⋆) estimates µ) has shrinking RE as m

grows by (67) of Theorem 6 in Appendix F.1, while the ISDM(θ⋆) estimator of µ does not;

(73) of Theorem 6 applies here because µ0 ̸= 0 and θ⋆ > 0, as explained in the penultimate

paragraph of Section 6.5.

Figure 1 also plots the RE of the DE∗(θ⋆) estimator of η using the optimal weights

(υ∗1,m, υ
∗
2,m) in (28) that vary with m. Now the DE∗(θ⋆) estimator has vanishing RE. Zoom-

ing in on the top left panel reveals that the optimal DE∗(θ⋆) does slightly better than

MSIS(θ⋆) when m is small, but the difference rapidly vanishes as m increases. This agrees

with (57), which shows that the ratio of their variances converges to 1 exponentially quickly

as m→ ∞. Additional results for G0 as exponential (not presented) appear to indicate

that (57) remains valid even when condition (56) does not hold, so it may be possible to

weaken (56).

7.2. Portfolio Credit Risk Model

We next present Monte Carlo results from estimating EC for a large credit portfolio with

dependent obligors. We consider a multi-factor portfolio-credit-risk model as in Glasserman

and Li (2005), Bassamboo et al. (2008), and Lütkebohmert (2009), in which the loss Y has a

form in (1), with mutually independent components in X, defined as follows. The portfolio

has m≥ 1 obligors, and dependence among the default events across obligors is induced
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Figure 1 For G0 as exponential (mean 1) and β = 1.1 in (29) the log-log plots show the exact RE computed

numerically (i.e., not estimated via simulation), as functions of the dimension m, of estimators of the

EC η (top left panel), the p-quantile ξ (bottom left panel), and the mean µ (bottom right). The bottom

panels do not give results for MSIS(θ⋆), which uses IS(θ⋆) (resp., SRS) to estimate ξ (resp., µ).

through common factors. Let Z= (Z1, . . . ,Zr) be a column vector of r≥ 1 systematic risk

factors, which are i.i.d. N(0,1) random variables, modeling global, country, and sector

factors that impact all obligors. For each k = 1,2, . . . ,m, let ϵk be another independent

N(0,1) random variable denoting the idiosyncratic risk associated with obligor k. The

loading factors are specified constant row vectors ak = (ak,j : j = 1,2, . . . , r), k= 1,2, . . . ,m,

satisfying aka
⊤
k ≤ 1 for each k, where ⊤ denotes transpose. Let bk = (1 − aka

⊤
k )

1/2, so

akZ+bkϵk ∼N(0,1) for each k. Let S > 0 be another independent random variable denoting

a common shock affecting all obligors. For each k = 1,2, . . . ,m, obligor k defaults if and

only if (akZ + bkϵk)/S > wk for a constant wk chosen so that obligor k has a specified

marginal default probability ṗk. Glasserman and Li (2005) and Bassamboo et al. (2008)

assume that the loss given default (LGD) of obligor k is a constant ck, but they state their

methods also allow LGD to be stochastic, which we need to ensure F is differentiable at

ξ and f(ξ)> 0, as required by our theorems. For obligor k, let Jk be another independent

random variable, and define the LGD for obligor k as vk(Z, S, ϵ1, . . . , ϵm, Jk) for a given

function vk :ℜr+m+2 →ℜ+. Therefore, the LGD may depend on Jk, as well as the systematic

and idiosyncratic risk factors and common shock, as in Andersen and Sidenius (2005) and

Farinelli and Shkolnikov (2012). Finally, let X = (Z, S, ϵ1, . . . , ϵm, J1, . . . , Jm), which has
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d= r+2m+1 independent components, and the function c in (1) for the total loss is

c(X) =
m∑
k=1

vk(Z, S, ϵ1, . . . , ϵm, Jk) I

(
akZ+ bkϵk

S
>wk

)
. (58)

Our experiments have m= 1000 obligors and r = 10 factors. As in Glasserman and Li

(2005), we take the common shock to be S ≡ 1. LetDk = I(akZ+bkϵk >wk) be the indicator

function in (58) that obligor k defaults. Because akZ+bkϵk ∼N(0,1), if we set wk =Φ−1(1−
ṗk) for some constant 0< ṗk < 1, where Φ(·) is theN(0,1) CDF, then obligor k has marginal

default probability P (Dk = 1) = ṗk. Our experiments used ṗk = 0.01 ·(1+sin(16πk/m)), k=

1, . . . ,m, as in Glasserman and Li (2005). For each obligor k= 1,2, . . . ,m, the constant LGD

in Glasserman and Li (2005) is modified to Ck = vk(Z, S, ϵ1, . . . , ϵm, Jk) = Jk ∼Unif(0, βk),

where βk = 2 · (⌈5k/m⌉)2 and Unif(c0, c1) denotes a continuous uniform distribution on

(c0, c1). As in Glasserman and Li (2005), we randomly generated the loading factors ak,j

in (58) once as independent Unif(0,1/
√
r), and used these values in all experiments.

We ran simulation experiments to estimate this model’s EC η for p = 0.999. For this

model we can compute analytically the mean as µ= 104.02, but this may not be possible for

more complicated models, and our simulation experiments treat µ as unknown, requiring

estimation. The value of ξ is not analytically tractable, and we obtained its “true” value

as ξ = 1885.9 from an SRS simulation with sample size 107, giving the “true” value for EC

as η= 1781.9.

We construct nominal 95% confidence intervals for η using two approaches: batching

and sectioning. For an estimation method M and total overall sample size n, we first

construct b ≥ 2 i.i.d. estimators η̂
(j)
M,n/b, j = 1,2, . . . , b, of η, each based on a sample size

n/b. Batching uses their sample average η̄M,b,n = (1/n)
∑b

j=1 η̂
(j)
M,n/b and sample variance

S2
M,b,n = (1/(b−1))

∑b
j=1[η̂

(j)
M,n/b− η̄M,b,n]

2 to build an approximate α= 0.95-level CI IM,b,n =

(η̄M,b,n ± tb−1,0.95SM,b,n/
√
b), where tb−1,α = H−1

b−1(1 − α/2), and Hb−1 the Student-t CDF

with b−1 degrees of freedom. Sectioning (Asmussen and Glynn 2007, Section V.5) replaces

η̄M,b,n in S2
M,b,n and IM,b,n with the overall point estimator η̂M,n to get a CI JM,b,n, centered

at η̂M,n. Because η estimators are biased, with the bias shrinking (nonmonotonically) as the

sample size increases, the sectioning CI can have better coverage (but not always; see He

and Lam (2021)) than IM,b,n as JM,b,n is better centered on average (Kaplan et al. (2018)).

Table 2 gives results of coverage experiments to construct batching and sectioning CIs

for η using SRS, ISφ (explained below), MSIS, ISDM, and DE, each with overall sample
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size n= 2000. We take b= 10, as suggested by Nakayama (2014). From 103 independent

replications, we estimated the batching and sectioning CIs’ coverage and average relative

half width (ARHW), and the point estimators’ root-mean-squared relative error (RMSRE),

defined as
√
E[(η̂− η)2]/η for a generic estimator η̂ of η. When the coverage is low, the

ARHW and RMSRE results may not be reliable.

For SRS, the batching CI has poor coverage, while the coverage for sectioning is reason-

ably close to nominal, for the reasons explained before. Also, for sectioning, the ARHW

(resp., RMSRE) for SRS is about 7 (resp., 13) times larger than for MSIS.

ISφ is a modification of a method of Glasserman and Li (2005) for estimating a tail

probability λx ≡ P (Y > x) for a given large threshold x to estimate λφ, where φ is either η

or ξ, and then use the generated IS data to compute an estimator of η. But as these choices

for φ are unknown, we cannot directly apply the Glasserman and Li (2005) IS algorithm

to estimate λφ. Rather, when φ = ξ, we first run j0 = 5 pilot IS simulations, each with

small sample size n0 = 100, to estimate λx at j0 different thresholds x, and interpolate to

obtain a crude approximation ξ̊ to ξ. Then ISξ runs another IS simulation with sample size

n−j0n0 to estimate λξ̊, finally employing the generated IS data to estimate both ξ and µ to

obtain an estimator of η. Each independent replication repeated these steps. Appendix G

gives the approach’s full details for φ= ξ. For ISDM, the only difference from ISξ is that

we sample X∼ G̃ISDM = δG∗+(1− δ)G in Section 5.2, where G∗ corresponds to ISξ.

For ISφ with φ= η, we execute an additional pilot SRS simulation with sample size n0

to produce an approximation µ̊ to µ, and compute η̊ = ξ̊ − µ̊ as an approximation to η.

Then ISφ for φ= η runs an IS simulation with sample size n− (j0+1)n0 to estimate λφ for

φ= η̊, and employs the resulting IS data to compute estimators of both ξ and µ, resulting

in our final estimator of η.

Table 2 shows that for each choice of φ, the ISφ CI does poorly, with coverage near 0.

This occurs because in ISφ, we apply the same IS data from estimating ξ to also estimate

µ, leading to the problems discussed in Section 5 and the poor coverage for our CIs. In

particular, the average across 103 replications of the ISη estimator of µ is about 11.1, quite

far from the true value 104.02. As noted on pp. 134–135 of Asmussen and Glynn (2007),

these types of discrepancies can occur with IS when the sample size is not sufficiently

large, especially when an IS approach is applied inappropriately for the estimand. (To

investigate this further, we ran additional simulations (not reported) verifying that the
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ISφ CIs approach nominal coverage with larger sample size n for p = 0.95. For larger p,

rather than conducting converge experiments, which would require a massive sample size

and extremely long CPU time (several months), we did experiments showing that the ISφ

estimators of η appear to converge to its “true” values as n gets larger, indicating that the

CIs should approach nominal coverage with a large enough sample size.) Also, the ARHW

and RMSRE results for ISφ may not be reliable because of the poor coverages.

For MSIS, we use a total sample of size j0n0 for computing the crude quantile approx-

imation ξ̊, as is done with ISξ; then generate an IS sample of size δ(n− j0n0) to estimate

λξ̊, and use the resulting IS data to estimate ξ; and finally employ an SRS sample of size

(1− δ)(n− j0n0) for the estimation of µ. Table 2 shows that MSIS sectioning and batching

CIs achieve nominal coverage, with about the same ARHW, but with the sectioning point

estimator having roughly 10% smaller RMSRE. MSIS outperforms SRS for both batching

and sectioning, with the mean-squared error (MSE) for sectioning being reduced by a fac-

tor of (2.276e–01/1.801e–02)2 ≈ 160. In our python implementations, the IS code, including

the pilot runs to obtain the crude quantile approximation ξ̊, requires about thrice the CPU

time as SRS to execute. Taking this into account, MSIS improves work-normalized MSE

by about a factor of 50 compared to SRS. DE and MSIS differ only in computing their

estimator of η from the generated data; see (25) and (21). For simplicity, we consider DE

with only fixed weights for the PCRM.

We next compare the methods (MSIS, ISDM, DE of Section 5) that combine SRS and

IS. For the i.i.d. sum model in Section 6, recall that Theorem 5 and Figure 1 (Section 7.1)

established the following properties for the methods’ RE of η:

� MSIS does better than ISDM (but not by a lot);

� Both MSIS and ISDM greatly outperform DE; and

� DE (with fixed weights) behaves about the same as the worse of ISξ and SRS.

For the more complicated PCRM, Table 2 shows that the methods perform similarly

in terms of ARHW and RMSRE. First, comparing MSIS and ISDM shows that MSIS

has about 30% smaller ARHW and RMSRE than ISDM for sectioning; while MSIS and

ISDM produce CIs achieving close to nominal coverage, MSIS perhaps does a bit better.

Second, relative to MSIS, DE has about 5 (resp., 10) times larger ARHW (resp., RMSE)

for sectioning. While DE has sectioning coverage for η reasonably close to nominal, it is

not as good as MSIS. We expect DE to do about the same as the worse of SRS and ISξ,
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and the ARHW and RMSRE of DE are reasonably close to those of SRS for sectioning,

but ISξ has very poor coverages so its ARHW and RMSRE results may not be reliable.

The coverages of batching and sectioning for DE differ substantially, which is similar to

what we see for SRS for the same reasons. Both ISDM and DE incur about the same CPU

time as MSIS. Thus, the methods exhibit the same behavior for the PCRM as we saw for

the i.i.d. sum model. Also compared to SRS, MSIS improved precision by reducing the

ARHW of the sectioning CI from roughly 0.3 to only 0.04.

Table 2 We ran 103 independent replications of the PCRM to estimate the coverage and average relative half

width (ARHW) of sectioning and batching CIs with nominal 95% confidence level for the EC η for p= 0.999

estimated with sample size n= 2000. We also give the root-mean-squared relative error (RMSRE). Numbers

marked with ∗ may not reliable due to very low coverage.

Batching Sectioning

Method Coverage ARHW RMSRE Coverage ARHW RMSRE

MSIS 0.921 0.038 2.016e–02 0.956 0.041 1.801e–02

ISDM 0.867 0.060 5.199e–02 0.915 0.060 2.574e–02

DE 0.076 0.136∗ 2.274e–01∗ 0.884 0.220 1.803e–01

SRS 0.365 0.273∗ 2.633e–01∗ 0.892 0.292 2.276e–01

ISη 0.096 0.024∗ 7.253e–02∗ 0.087 0.024∗ 7.370e–02∗

ISξ 0.074 0.027∗ 5.212e–02∗ 0.047 0.028∗ 5.356e–02∗

8. Concluding Remarks

The economic capital is a risk measure, which is used to determine capital levels (e.g.,

Deutsche Bank (2018)). Defined as the difference between the p-quantile ξ and the mean

µ of the loss distribution, the EC in practice takes p≈ 1, in which case SRS, which typ-

ically estimates µ well, is ineffective for ξ. Applying IS to estimate both ξ and µ can be

detrimental for µ, leading to a poor estimator of η. We thus also considered methods that

combine SRS and IS to estimate η in various ways: MSIS, which applies IS to estimate

ξ only, and independently employs SRS to estimate µ only; ISDM, which samples from a

mixture of IS and SRS; and DE, which estimates both ξ and µ using both IS and SRS,

and takes a weighted linear combination of all the estimators. For DE, we considered both

fixed weights and optimal weights to minimize the η estimator’s asymptotic variance. Our

asymptotic theory (Theorem 5 of Section 6.5) for the i.i.d. sum model withm summands as
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m→∞ shows that SRS alone, IS alone, and DE with fixed weights do poorly in estimating

η. In contrast, ISDM, MSIS, and DE with optimal weights perform well, with ISDM being

slightly outperformed when µ ̸= 0 by the latter two, whose asymptotic variances quickly

become indistinguishable asm→∞. Hence, MSIS provides a compelling simple alternative

to DE with optimal weights, which is more complicated to implement. Our numerical and

simulation studies (Section 7) provide results agreeing with the theory, even for a more

complicated portfolio credit risk model, with dependent obligors.

As a measure of central tendency, the median µ′ ≡ F−1(1/2) is sometimes adopted instead

of µ as a location parameter. This motivates a modified EC, denoted EC′, defined as the

difference ξ−µ′. Typically analytically intractable for nontrivial models, µ′ often lies below

µ for positively skewed distributions, as can be the case for a portfolio loss. Thus, EC′ can

be a more conservative risk measure than EC, which may be of interest to regulators. We

can also apply the methods in our paper to construct EC′ estimators, which for SRS are

special cases of L-estimates or L-statistics (Chapter 8 of Serfling (1980)).

While our theoretical results for EC estimators for the i.i.d. sum model (Section 6 and

Appendix F) provide deep insights for problems in rare-event simulation and financial risk

management, they also have implications for techniques that reuse simulation data (Liu and

Zhou (2020), Dong et al. (2018)), which is also called “green simulation” (Feng and Staum

(2017)). To estimate mean performances when parameters of underlying distributions in

the same simulation model differ across experiments, green simulation reuses outputs from

previous experiments by weighting them with likelihood ratios. In estimating a mean,

as has been the focus of green simulation, our Theorem 6 in Appendix F.1 shows that

IS can result in estimators with an extremely large variance when a single simulation

run requires generating many independent random variables, so resuing simulation data

through likelihood ratios may be less effective in such contexts. Feng and Staum (2017) and

Dong et al. (2018) further apply (a slight variation of) ISDM in green simulations when

estimating mean performances, and our Theorem 6 also reveals that ISDM can be quite

effective to control the variance but slightly worse than SRS when the mean is nonzero.
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A: Further Numerical Study of Relative Error for i.i.d. Sum Model (30)

Recall that Section 7.1 presented numerical results for the RE for the model in Section 6 when the i.i.d.

summands have marginal distribution G0 that is exponential. We now present some additional results for

G0 as normal N(1,1) and Erlang (s= 8 stages, scale parameter 1).

For G0 as N(1,1) (resp., Erlang), Figure A.1 (resp., Figure A.2) provides log-log plots of the exact RE for

estimators of η, ξ, and µ. These two figures mostly exhibit the same basic trends that we saw in Figure 1

when G0 is exponential: the η estimators have exponentially increasing RE as m grows for SRS, IS(θ⋆), and

DE(θ⋆) with fixed weights; and decreasing RE for MSIS(θ⋆), ISDM(θ⋆), and DE∗(θ⋆) with optimal weights,

where MSIS(θ⋆) and DE∗(θ⋆) rapidly become indistinguishable as m grows. But one difference is that for

RE[η] for large m, SRS is the worst for exponential G0, whereas IS(θ⋆) is the worst for G0 as N(1,1) and

Erlang. Also, as noted in the two paragraphs after Theorem 5, the behavior of RE[η] for DE(θ⋆) with fixed

weights is governed by the worst of the SRS and IS(θ⋆) estimators of ξ and µ, which, comparing the scales

in the bottom panels of the figures shows, is the SRS estimator of ξ in Figure 1 and the IS(θ⋆) estimator of

µ in Figures A.1 and A.2.

B: Proof of Theorem 1

Ghosh (1971) proves (5) and (6) hold when f(ξ)> 0. Further assuming that F is twice differentiable at ξ,

Kiefer (1967) (see also p. 100 of Serfling (1980)) derives the exact rate of convergence of Rn, given in (7),

improving on the original result of Bahadur (1966) (also see Theorem 2.5.1 of Serfling (1980)). In all cases,

putting (5), (3), and (2) into (4) then leads to

η̂SRS,n = ξ− F̂SRS,n(ξ)− p

f(ξ)
+Rn− µ̂SRS,n = ξ−µ− 1

f(ξ)

[
1

n

n∑
i=1

[
1− I(Yi > ξ)

]
− p

]
+Rn−

1

n

n∑
i=1

Yi+µ,

which equals (8), establishing part (i).

We next prove part (ii). Rearranging (8) and scaling by
√
n leads to

√
n [η̂SRS,n− η] =−

√
n

[
1

n

n∑
i=1

([
1− I(Yi > ξ)

f(ξ)
+Yi

]
−
[

p

f(ξ)
+µ

])]
+
√
nRn. (59)

Let A= [(1−I(Y > ξ))/f(ξ)]+Y and Ai = [(1−I(Yi > ξ))/f(ξ)]+Yi. Now Ai, i= 1,2, . . . , n, are i.i.d. copies

of A, where ϕ≡ E[A] = [p/f(ξ)] + µ as f(ξ)> 0 ensures E[1− I(Y > ξ)] = E[I(Y ≤ ξ)] = F (ξ) = p. Hence,

the right side of (59) equals −
√
n[ 1

n

∑n

i=1Ai−ϕ] +
√
nRn. Also, Var[1− I(Y > ξ)] = p(1− p) = χ2

SRS implies

Var[A] = Var[(1− I(Y > ξ))/f(ξ)] +Var[Y ] + 2Cov[(1− I(Y > ξ))/f(ξ), Y ] = ζ2SRS



Li, Kaplan, and Nakayama: Monte Carlo Methods for Economic Capital
Article accepted by INFORMS Journal on Computing; manuscript no. JOC-2021-09-OA-261.R4 37

100 101
10−2

107

1016

m

R
E
m
[η
]

SRS

IS(θ⋆)

MSIS(θ⋆)

ISDM(θ⋆)

DE(θ⋆) fixed weights

DE∗(θ⋆) optimal weights

100 101
10−2

102

106

m

R
E
m
[ξ
]

100 101
10−2

107

1016

m

R
E
m
[µ
]

Figure A.1 For G0 as N(1,1) and β = 1.1 in (29), the log-log plots show the RE, computed numerically (i.e.,

not estimated via simulation), as functions of the dimension m. The plots display the exact RE of

estimators of the EC η (top left panel), the p-quantile ξ (bottom left panel), and the mean µ (bottom

right panel). The bottom panels do not give results for MSIS(θ⋆), which uses IS(θ⋆) (resp., SRS) to

estimate ξ (resp., µ).
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Figure A.2 For G0 as Erlang (s= 8 stages, scale parameter 1) and β = 1.1 in (29), the log-log plots show RE,

computed numerically (i.e., not simulation), as functions of dimension m. The plots display the exact

RE of estimators of the EC η (top left panel), the p-quantile ξ (bottom left panel), and the mean µ

(bottom right panel). The bottom panels do not give results for MSIS(θ⋆), which uses IS(θ⋆) (resp.,

SRS) to estimate ξ (resp., µ).

by (9) as Cov[(1− I(Y > ξ))/f(ξ), Y ] = [−E[I(Y > ξ)Y ]+µ(1− p)]/f(ξ) =−γSRS. We assumed that σ2
SRS <

∞ and f(ξ)> 0, so ζ2SRS <∞ by the Cauchy-Schwarz inequality. Thus, the ordinary CLT ensures that

−
√
n

[
1

n

n∑
i=1

Ai−ϕ

]
⇒N(0, ζ2SRS) as n→∞. (60)
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As the limit in (6) is deterministic, the left sides of (60) and (6) jointly converge to their respective limits

by Theorem 11.4.5 of Whitt (2002). Hence, applying the continuous-mapping theorem (e.g., Theorem 3.4.3

of Whitt (2002)) establishes (9). □

C: Proof of Theorem 2

Put the first part of (16) and (12) into (17) and use the second part of (16). This establishes part (i).

We next prove part (ii). The sum in (18) has i.i.d. summands, where each summand has mean 0 and

variance ζ2IS. From the first part of each summand, we have that VarG̃[1−I(c(X)> ξ)L(X)] =VarG̃[I(c(X)>

ξ)L(X)] =EG̃[(I(c(X)> ξ)L(X))2]− (1− p)2, and

EG̃[I(c(X)> ξ)L2(X)]≤EG̃[I(c(X)> ξ−λ)(L2+ϵ(X)+ 1)]<∞ (61)

by (15), so χ2
IS <∞. Also, we assumed that σ2

IS <∞, so the Cauchy-Schwarz inequality ensures that γIS is

finite, implying the same is true for ζ2IS because f(ξ)> 0. Thus, rearranging (18) and scaling it by
√
n leads

to
√
n[η̂IS,n− η] satisfying part (ii) by (16) and Slutsky’s theorem (e.g., p. 19 of Serfling (1980)). □

D: Proof of Theorem 3

Put (16) with n1 = δn replacing n into (21) to get

η̂MSIS,n = ξ−µ− F̂IS,δn(ξ)− p

f(ξ)
+ R̃n,δ − µ̂SRS,(1−δ)n+µ,

so (22) follows. This establishes part (i).

We next prove part (ii). Rearrange (22) and scale by
√
n to get

√
n [η̂MSIS,n− η] =−

√
n

f(ξ)

[
F̂IS,δn(ξ)− p

]
−
√
n
[
µ̂SRS,(1−δ)n−µ

]
+
√
nR̃n,δ.

As we showed in (61), (15) implies that χ2
IS <∞, so f(ξ)> 0 ensures that

√
n[F̂IS,δn(ξ)− p]⇒N ′

1 ∼N

(
0,

χ2
IS

δf2(ξ)

)
, (62)

where the δ appears in the denominator of the asymptotic variance because the left side of (62) scales by
√
n rather than

√
n1, and the sample size used to construct F̂IS,δn is n1 = δn. Also,

√
n[µ̂SRS,(1−δ)n−µ]⇒N ′

2 ∼N

(
0,
σ2
SRS

1− δ

)
as n→∞ (63)

since σ2
SRS <∞, where the 1− δ appears in the denominator of the asymptotic variance because the scaling

in (63) is
√
n rather than

√
n2. Under MSIS, µ̂SRS,(1−δ)n is independent of ξ̂IS,δn and F̂IS,δn, guaranteeing

the joint convergence of (62) and (63) as n→∞ by Theorem 11.4.4 of Whitt (2002). Moreover, because the

limit in (22) is deterministic, it follows that

(
√
n
[
F̂IS,δn(ξ)− p

]
,
√
n
[
µ̂SRS,(1−δ)n−µ

]
,
√
nR̃n,δ)⇒ (N ′

1,N
′
2,0) as n→∞

by Theorem 11.4.5 of Whitt (2002), where N ′
1 and N ′

2 are independent. Finally, applying the continuous-

mapping theorem completes the proof. □
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E: Proof of Theorem 4

By (25), we have η̂DE,n = υ1ξ̂IS,δn+υ
′
1ξ̂SRS,(1−δ)n−υ2µ̂IS,δn−υ′

2µ̂SRS,(1−δ)n, where ξ̂IS,δn and µ̂IS,δn are from

(17), and ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n are from (4). Use the corresponding expressions for ξ̂IS,δn and µ̂IS,δn

from (18), and expressions for ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n from (8), and then rearrange these to get (26).

To prove part (ii), employ (25) to split
√
n [η̂DE,n− η] into terms based on IS and terms based on SRS,

which will be analyzed separately. For the IS estimators, modify the proof of Theorem 2(ii) to get the CLT

√
n
([
υ1ξ̂IS,δn− υ2µ̂IS,δn

]
− [υ1ξ− υ2µ]

)
⇒N1 (64)

as n→∞, where N1 ∼N(0,ψ2
IS,δ,υ1,υ2

) and

ψ2
IS,δ,υ1,υ2

=
1

δ

[
υ2
1

χ2
IS

f2(ξ)
+ υ2

2σ
2
IS − 2υ1υ2

γIS
f(ξ)

]
.

Similarly, for the SRS estimators, we modify the proof of Theorem 1(ii) to get the CLT

√
n
([
υ′
1ξ̂SRS,(1−δ)n− υ′

2µ̂SRS,(1−δ)n

]
− [υ′

1ξ− υ′
2µ]
)
⇒N2 (65)

as n→∞, where N2 ∼N(0,ψ2
SRS,δ,υ1,υ2

) and

ψ2
SRS,δ,υ1,υ2

=
1

1− δ

[
υ′2
1

χ2
SRS

f2(ξ)
+ υ′2

2 σ
2
SRS − 2υ′

1υ
′
2

γSRS

f(ξ)

]
.

Hence,
√
n [η̂DE,n− η] equals the sum of the left sides of (64) and (65) by (25). The estimators in (64) and (65)

are independent, so the CLTs in (64) and (65) hold jointly with N1 and N2 independent (Whitt 2002, Theo-

rem 11.4.5). Thus, the continuous-mapping theorem (Whitt 2002, Theorem 3.4.3) implies
√
n [η̂DE,n− η]⇒

N1 +N2 ∼N(0,ψ2
IS,δ,υ1,υ2

+ψ2
SRS,δ,υ1,υ2

) as n→∞, proving (27).

Next we prove for fixed δ ∈ (0,1), the optimal value of υ1 and υ2 is as in (28). The partial derivative of

ζ2DE with respect to υ1 is
∂ζ2DE

∂υ1
= 2V

(ξ)
IS υ1 − 2V

(ξ)
SRS(1−υ1)+2[−CISυ2 +CSRS(1−υ2)]. The partial derivative

of ζ2DE with respect to υ2 is
∂ζ2DE

∂υ2
= 2V

(µ)
IS υ2 − 2V

(µ)
SRS(1− υ2) + 2[−CISυ1 +CSRS(1− υ1)]. By setting these

two partial derivatives equal to 0 and solving, we get (υ∗
1, υ

∗
2) in (28). □

F: Proofs and Additional Results for i.i.d. Sum Model of Section 6

Theorem 5 in Section 6.5 specifies the asymptotic behavior of the estimators of the EC ηm = ξm − µm. Its

proof in Appendix F.6 builds on analogous properties for the mean µm and the pm-quantile ξm, which we will

establish in this appendix. Appendices F.1 and F.2 will first state the results about µm and ξm in Theorems 6

and 7, which are later proved in Appendices F.4 and F.5 after first securing several lemmas in Appendix F.3.

F.1. Estimating µm

We want to analyze the asymptotic behavior (as m→∞) of estimators of the mean µ≡ µm =EG[c(X)] =

EG̃θ
[c(X)Lθ(X)] =mµ0 for methods M=SRS (also used by MSIS(θ)), IS(θ), ISDM(θ), and DE(θ). The next

result, proven in Appendix F.4, provides expressions and bounds for the estimators’ exact variances, the RE

in (36) with φ= µm, and the WNRE in (37)–(38), where we recall Q0(θ) = lnM0(θ) is the CGF of Xj ∼G0,

with Q′
0(θ) =

d
dθ
Q0(θ) and Q

′′
0(θ) =

d2

dθ2
Q0(θ).

Theorem 6. Under Assumption 1 for the i.i.d. sum model (30) with m≥ 1 summands, the following hold

for method-M estimators of µ≡ µm =EG[c(X)].
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(i) The M=SRS estimator µ̂SRS,n in (2) has variance σ2
SRS/n, with

σ2
SRS =VarG[c(X)] = σ2

0m and σ2
0 ∈ (0,∞), (66)

so when µ0 ̸= 0,

RESRS,m[µ]=

(
σ0

|µ0|

)
1√
m

→ 0 as m→∞, and WNRESRS,m[µ]=

√
τSRS σ0

|µ0|
for all m. (67)

All of the remaining parts consider any θ ̸= 0 with θ ∈∆◦, where methods M = IS(θ) and DE(θ) (but not

ISDM(θ)) also require that −θ ∈∆◦. In particular, the following hold for θ= θ⋆ > 0 in (32) of Assumption 2

(when also −θ⋆ ∈∆◦ for IS(θ⋆) and DE(θ⋆)), although this choice of θ is not required.

(ii) The M= IS(θ) estimator µ̂IS(θ),n in (12) has variance σ2
IS(θ)/n, with

σ2
IS(θ) ≡VarG̃θ

[c(X)Lθ(X)] =m[α(θ)]m
(
m[Q′

0(−θ)]2 +Q′′
0(−θ)

)
− (mµ0)

2, (68)

where α(θ)≡M0(θ)M0(−θ)∈ (1,∞) and Q′′
0(−θ)> 0, (69)

so

σ2
IS(θ) =O(m2[α(θ)]m) and σ2

IS(θ) =Ω(m[α(θ)]m) as m→∞. (70)

If in addition µ0 ̸= 0, then as m→∞,

REIS(θ),m[µ] = Ω([α(θ)]m/2/
√
m) → ∞, and WNREIS(θ),m[µ] = Ω([α(θ)]m/2) → ∞. (71)

(iii) The M= ISDM(θ) estimator µ̂ISDM(θ),n in (12) has variance σ2
ISDM(θ)/n, with

σ2
ISDM(θ) ≡VarG̃ISDM(θ)

[c(X)LISDM(θ)(X)]≤ δµ2
0

1− δ
m2 +

σ2
0

1− δ
m. (72)

If µ0 ̸= 0, then as m→∞,

σ2
ISDM(θ) =

δµ2
0

1− δ

[
1+ o(1)

]
m2 =Θ(m2), (73)

REISDM(θ),m[µ] =Θ(1), and WNREISDM(θ),m[µ] =Θ(
√
m). (74)

If µ0 = 0, then σ2
ISDM(θ) ≤

σ2
0

1−δm by (72).

(iv) For any fixed weight υ2 ∈ (0,1), the M=DE(θ) estimator µ̂DE(θ),n in (25) has variance σ2
DE(θ)/n, with

σ2
DE(θ) ≡

υ2
2

δ
σ2
IS(θ) +

υ′2
2

1− δ
σ2
SRS =Ω(m[α(θ)]m) as m→∞, (75)

so REDE(θ),m[µ] = Ω([α(θ)]m/2/
√
m) →∞ and WNREDE(θ),m[µ] = Ω([α(θ)]m/2) →∞. (76)

Theorem 6 shows that when we estimate µm via SRS or ISDM(θ), the variance, RE, and WNRE behave

polynomially in m as m→∞, by (66), (67), (72), (73), and (74). But IS(θ) with any fixed θ ̸= 0 results in

exponential growth, by (70) and (71). As seen in (75), DE(θ) with fixed weight in υ2 ∈ (0,1) takes on the

asymptotic characteristics of the worse of SRS and IS(θ). For some stochastic models of fixed dimension

m, Hesterberg (1995), who proves a generalization of (72) (not just for an i.i.d. sum), provides numeri-

cal/simulation results showing that an IS method designed to estimate only a tail probability leads to poor

mean estimators compared to SRS. Our Theorem 6(ii) provides supporting theory for the setting of a sum of

m i.i.d. random variables as m→∞. While ISDM(θ) leads to a much smaller asymptotic variance than IS(θ)

(compare the polynomial behavior of (72) and the exponential behavior in (70)), ISDM(θ) does worse than

SRS by a factor of m when µ0 ̸= 0 and θ ̸= 0 (compare (73) and (66)). Thus, compared with SRS, ISDM(θ)

with θ ̸= 0 incurs some penalty in estimating µm ̸= 0.
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F.2. Estimating ξm

Next we analyze the asymptotic behavior (as m→∞) of the pm-quantile ξm = F−1
m (pm) for pm satisfying

(29). For the methods M described in Sections 6.1 and 6.2, when fm(ξm)> 0 (Assumption 2), the asymptotic

variance ς2M = κ2
M ≡ κ2

M,m of the resulting estimator ξ̂M,n has the form κ2
M = χ2

M/f
2
m(ξm) in (40), as can be

seen through Theorems 1–4, and will be more explicitly explained in Theorem 7 below. While the numerator

χ2
M ≡ χ2

M,m of (40) depends on M, the denominator f2
m(ξm) does not, but both depend on m.

We now want to study the RE and WNRE of the SRS, IS(θ⋆) (also used by MSIS(θ⋆)), ISDM(θ⋆), and

DE(θ⋆) estimators of ξ ≡ ξm = F−1
m (pm) when F ≡ Fm as m→∞ for quantile level p≡ pm as in (29). Glynn

(1996) analyzes (only) the numerator χ2
M in (40) for M=SRS and IS(θ⋆) in this asymptotic regime, proving

that limm→∞(1/m) ln(χ2
SRS) = −β and limsupm→∞(1/m) ln(χ2

IS(θ⋆)
) ≤ −2β. This indicates that IS(θ⋆) can

produce substantial variance reductions.

Further analyzing the quantile estimators’ RE and WNRE in (36)–(38) for φ= ξm requires understanding

the asymptotic properties of ξm and the denominator f2
m(ξm) in (40). Section 6.5 noted several technical

challenges in studying these terms (e.g., Fm is generally an intractable convolution), which are resolved in

the following result, whose proof appears in Appendix F.5.

Theorem 7. Under Assumptions 1 and 2 for the i.i.d. sum model (30) with m≥ 1 summands, the fol-

lowing hold for method-M estimators of ξ ≡ ξm = F−1
m (pm) for all sufficiently large m, where β > 0 is from

(29), Q′′
0(θ⋆)> 0 for θ⋆ in (32), and Υm > 0 is defined in (110) of Appendix F.3 with Υm = eo(

√
m) as m→∞

(so Υt
m = ω(e−

√
m) for each t∈ℜ).

(i) For the M = SRS estimator ξ̂SRS,n in (3), the asymptotic variance κ2
SRS = χ2

SRS/f
2
m(ξm) in (40), with

χ2
SRS = pm(1− pm) from (10), satisfies limm→∞

1
m
lnκ2

SRS = β, and

κ2
SRS =

2πQ′′
0(θ⋆)

[
1+ o

(
1√
m

)]
meβm

Υ2
m

=
Θ(meβm)

Υ2
m

= ω(meβm−
√
m) (77)

as m→∞. If Q′
0(θ⋆) ̸= 0, then as m→∞,

RESRS,m[ξ] = ω

(
e(β/2)m−

√
m

√
m

)
→ ∞ and WNRESRS,m[ξ] = ω

(
e(β/2)m−

√
m
)
→ ∞. (78)

(ii) For the M = IS(θ⋆) estimator ξ̂IS(θ⋆),n from (14), the asymptotic variance κ2
IS(θ⋆)

= χ2
IS(θ⋆)

/f2
m(ξm) in

(40), with χ2
IS(θ⋆)

=VarG̃θ⋆
[Lθ⋆(X)I(c(X)> ξm)] as in (19), satisfies

κ2
IS(θ⋆)

≤
[
2πQ′′

0(θ⋆)
][
1+ o(1)

]
m=O(m) (79)

as m→∞. If Q′
0(θ⋆) ̸= 0, then

REIS(θ⋆),m[ξ] = O(1/
√
m) → 0 and WNREIS(θ⋆),m[ξ] = O(1) as m→∞. (80)

(iii) For the M = ISDM(θ⋆) estimator ξ̂ISDM(θ⋆),n from Section 5.2 the asymptotic variance κ2
ISDM(θ⋆)

=

χ2
ISDM(θ⋆)

/f2
m(ξm) in (40), with χ2

ISDM(θ⋆)
=VarG̃ISDM(θ⋆)

[LISDM(θ⋆)(X)I(c(X)> ξm)] as in (19), satisfies

κ2
ISDM(θ⋆)

≤
[
2π

δ2
Q′′

0(θ⋆)

][
1+ o(1)

]
m=O(m), (81)

as m→∞. If Q′
0(θ⋆) ̸= 0, then

REISDM(θ⋆),m[ξ] = O(1/
√
m) → 0 and WNREISDM(θ⋆),m[ξ] = O(1) as m→∞. (82)



Li, Kaplan, and Nakayama: Monte Carlo Methods for Economic Capital
42 Article accepted by INFORMS Journal on Computing; manuscript no. JOC-2021-09-OA-261.R4

(iv) For the M = DE(θ⋆) estimator ξ̂DE(θ⋆),n from (25) with fixed weight υ1 ∈ (0,1), the asymptotic

variance κ2
DE(θ⋆)

= χ2
DE(θ⋆)

/f2
m(ξm) in (40), with χ2

DE(θ⋆)
=

υ2
1

δ
χ2
IS(θ⋆)

+
υ′2
1

1−δχ
2
SRS as in (27), satisfies

limm→∞
1
m
lnκ2

DE(θ⋆)
= β. Also, as m→∞,

κ2
DE(θ⋆)

=

[
υ′2
1

1− δ

]
2πQ′′

0(θ⋆)
[
1+ o

(
1√
m

)]
meβm

Υ2
m

=
Θ(meβm)

Υ2
m

= ω(meβm−
√
m). (83)

If Q′
0(θ⋆) ̸= 0, then as m→∞,

REDE(θ⋆),m[ξ] = ω

(
e(β/2)m−

√
m

√
m

)
→ ∞, and WNREDE(θ⋆),m[ξ] = ω(e(β/2)m−

√
m) → ∞. (84)

Theorems 6 and 7 show that SRS and IS(θ⋆) have opposite effects when estimating µm and ξm. SRS (resp.,

IS(θ⋆)) leads to polynomial (resp., exponential) behavior (in m, as m→∞) for the (asymptotic) variance,

RE, and WNRE when estimating µm, by Theorem 6(i)–(ii), but the estimator of ξm behaves exponentially

(resp., polynomially), by Theorem 7(i)–(ii). For estimating ξm, ISDM(θ⋆) inflates the upper bound of the

asymptotic variance of IS(θ⋆) by a factor of 1/δ2 (compare (79) and (81)), but as the parameter δ ∈ (0,1)

is fixed, ISDM(θ⋆) still has polynomial behavior. By (83), DE(θ⋆) with fixed weight υ1 ∈ (0,1) adopts the

limiting characteristics of the worse of SRS and IS(θ⋆) in (77) and (79).

F.3. Lemmas for the i.i.d. Sum Model of Section 6

The proofs of Theorems 5 and 7 require getting a handle on the true pm-quantile ξm = F−1
m (pm), which we

will approximate by

ξ̆m =mQ′
0(θ⋆), for θ⋆ ∈∆◦ in (32). (85)

Glynn (1996, Theorem 2) shows that (ξ̆m− ξm)/m→ 0 as m→∞, which (92) and (98) below sharpen. The

next lemma derives asymptotic (m→∞) properties of the mean µm, the pm-quantile ξm, and the EC ηm.

Lemma 1. Suppose that Assumption 1 holds for the i.i.d. sum model (30) with m≥ 1 summands. Then

µm = µ0m with |µ0|<∞, so µm =Θ(m) as m→∞ when µ0 ̸= 0; (86)

σ2
0 ∈ (0,∞). (87)

Also, for ∆◦ as the interior of the domain of the MGF M0(θ) =E0[e
θXj ] of each summand Xj ∼G0,

θ1, θ2 ∈∆◦ implies ϱθ1 +(1− ϱ)θ2 ∈∆◦ for all ϱ∈ (0,1). (88)

Moreover, for Q0(θ) = lnM0(θ) as the CGF of G0,

M0(θ) and Q0(θ) have derivatives of all orders for θ ∈∆◦, with (89)

Q′′
0(θ)> 0, for each θ ∈∆◦. (90)

Furthermore, if Assumptions 1 and 2 hold, then

Fm has a (Lebesgue) density fm for all m≥ q0, for q0 in (31), (91)
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and as m→∞,

ξm =Q′
0(θ⋆)m+ o(

√
m), so ξm =Θ(m) when Q′

0(θ⋆) ̸= 0; (92)

ηm = [Q′
0(θ⋆)−µ0]m+ o(

√
m) =Θ(m), where Q′

0(θ⋆)−µ0 > 0; (93)

there exists a convex and compact set Ψ⊂∆◦ with θ⋆ in its interior Ψ◦, and

for all m sufficiently large, there exists θm ∈Ψ◦ such that ξm =mQ′
0(θm); (94)

√
m(θm− θ⋆)→ 0. (95)

Proof. The condition that 0 ∈∆◦ in Assumption 1 ensures G0 has finite moments of all orders (Billingsley

1995, p. 278), so |µ0| <∞ and σ2
0 <∞. As a consequence, (86) holds because c(X) is the sum of m i.i.d.

random variables, each with mean µ0. Also, Assumption 1 stipulates that σ2
0 > 0, verifying (87).

Now consider any θ1, θ2 ∈∆◦ and any ϱ∈ (0,1). Hölder’s inequality then implies thatM0(ϱθ1+(1−ϱ)θ2) =

E0[(e
θ1Xj )ϱ(eθ2Xj )1−ϱ]≤ (E0[e

θ1Xj ])ϱ(E0[e
θ2Xj ])1−ϱ <∞, so ϱθ1 + (1− ϱ)θ2 ∈∆ and also in ∆◦, confirming

(88); also see (Dembo and Zeitouni 1998, Lemma 2.2.5). As 0 ∈∆◦ by Assumption 1, it follows (Billingsley

1995, p. 278) that the MGF M0(θ) has derivatives of all orders for θ ∈∆◦, so the same holds for the CGF

Q0(θ) = lnM0(θ), establishing (89). For proving (90), the exponential twist G̃0,θ in (33) of G0 has mean and

variance (Durrett 1996, pp. 72–73)∫
xdG̃0,θ(x) =

1

M0(θ)

∫
xeθx dG0(x) =

M ′
0(θ)

M0(θ)
=Q′

0(θ) and (96)∫
x2 dG̃0,θ(x)− [Q′

0(θ)]
2 =

1

M0(θ)

∫
x2eθx dG0(x)− [Q′

0(θ)]
2 =

M ′′
0 (θ)

M0(θ)
−
[
M ′

0(θ)

M0(θ)

]2
=Q′′

0(θ). (97)

As G0 is nondegenerate by (87), G̃0,θ also is (they share the same support by (33)), securing (90).

To prove (91), note that the i.i.d. sum c(X) has characteristic function Cm(θ) = [C0(θ)]
m (Billingsley 1995,

eq. (26.12)). Now |C0(θ)| ≤ 1 always holds for all θ (Durrett 1996, p. 92), implying that |C0(θ)|m ≤ |C0(θ)|q0

for each m≥ q0 and all θ. Thus,
∫
ℜ |Cm(θ)|dθ=

∫
ℜ |C0(θ)|m dθ≤

∫
ℜ |C0(θ)|q0 dθ <∞ by (31), so the inversion

theorem (Durrett 1996, p. 97) guarantees the density fm exists (and is bounded and continuous) for m≥ q0.

We next establish (92), which by (85) is equivalent to

ξm− ξ̆m√
m

→ 0 as m→∞. (98)

First fix any ϵ > 0, and suppose for a contradiction that |ξm − ξ̆m|> ϵ
√
m infinitely often. Without loss of

generality, suppose that

∃ infinite subsequence m1 <m2 <m3 < · · · such that ξmi
− ξ̆mi

> ϵ
√
mi for all i= 1,2,3, . . . . (99)

Now (99) and (85) imply that ξmi
>miQ

′
0(θ⋆) + ϵ

√
mi for all i= 1,2, . . .. Let PG (resp., PG̃θ⋆

) denote the

probability measure when X = (X1,X2, . . . ,Xmi
) ∼ G (resp., X ∼ G̃θ⋆), and the likelihood ratio is given

by (34) for θ = θ⋆ and x = X. Note that ξmi
is the true (1 − eβmi)-quantile of c(X) =

∑mi

j=1Xj , with
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Fmi
(ξmi

) = 1− eβmi (rather than ≥) because Fmi
is continuous at ξmi

since the derivative fmi
exists there

by Assumption 2. We then get

e−βmi = PG (c(X)> ξmi
) ≤ EG [I (c(X)>miQ

′
0(θ⋆)+ ϵ

√
mi)] (100)

=EG̃θ⋆
[I (c(X)>miQ

′
0(θ⋆)+ ϵ

√
mi)Lθ⋆(X)]

=EG̃θ⋆

[
I
(
c(X)>miQ

′
0(θ⋆)+ ϵ

√
mi

)
exp

(
miQ0(θ⋆)− θ⋆c(X)

)]
≤ exp

[
mi

(
Q0(θ⋆)− θ⋆Q

′
0(θ⋆)

)
− θ⋆ϵ

√
mi

]
EG̃θ⋆

[
I
(
c(X)>miQ

′
0(θ⋆)+ ϵ

√
mi

)]
= e−βmie−θ⋆ϵ

√
miPG̃θ⋆

(
c(X)>miQ

′
0(θ⋆)+ ϵ

√
mi

)
, (101)

where the second line applies a change of measure, the third line uses (34), and the fourth line follows because

θ⋆ > 0 by (32), which also justifies the last line. For the probability term in (101), note that X1, . . . ,Xm are

i.i.d. under G̃θ⋆ , each with mean Q′
0(θ⋆) and variance Q′′

0(θ⋆)∈ (0,∞) by (96)–(97). Thus, their sum c(Xm)

obeys a CLT

c(Xm)−mQ′
0(θ⋆)√

mQ′′
0(θ⋆)

G̃θ⋆⇒ N(0,1) as m→∞,

where
G̃θ⋆⇒ denotes convergence in G̃θ⋆ -distribution, and the same holds along the subsequence mi. Hence, by

the portmanteau theorem (Billingsley 1995, Theorem 25.8), the probability in (101) satisfies

PG̃θ⋆

(
c(Xmi

)>miQ
′
0(θ⋆)+ ϵ

√
mi

)
= PG̃θ⋆

(
c(Xmi

)−miQ
′
0(θ⋆)√

miQ′′
0(θ⋆)

>
ϵ√

Q′′
0(θ⋆)

)
→ 1−Φ

(
ϵ√

Q′′
0(θ⋆)

)
as i→∞, with Φ(·) denoting the N(0,1) CDF, so the limit is a constant in (0,1/2). Moreover, e−θ⋆ϵ

√
mi → 0

as i→∞ in (101) because θ⋆ > 0 by (32). We thus see a contradiction between (100) and (101), so (99) cannot

hold; i.e., ξm− ξ̆m ≤ ϵ
√
m for allm sufficiently large. An analogous argument also shows that ξm− ξ̆m ≥−ϵ

√
m

for all m sufficiently large. As ϵ > 0 was arbitrary, we have then verified (98) and (92).

To establish (93), note that ηm = ξm − µm = [Q′
0(θ⋆)− µ0]m+ o(

√
m) by (92), where µ0 =Q′

0(0) by (96)

for θ = 0. The strict convexity of Q0(·) on ∆◦ by (90) ensures that Q′
0(·) is strictly increasing there, where

both 0 and θ⋆ belong to ∆◦ by Assumption 1 and (32), so Q′
0(θ⋆)>Q

′
0(0) = µ0 since θ⋆ > 0 by (32), securing

(93).

For showing (94), note that (85) and (98) ensure

ξm
m

−Q′
0(θ⋆) =

ξm− ξ̆m
m

→ 0 as m→∞. (102)

Since θ⋆ ∈∆◦ by (32), all θ close enough to θ⋆ also lie in ∆◦. Moreover, Q′
0(θ) is continuous and strictly

increasing on ∆◦ by (89)–(90), so (102) secures the existence of θm ∈∆◦ such that Q′
0(θm) = ξm/m for all

sufficiently large m. Consequently, using ξ̆m =mQ′
0(θ⋆) by (85) and (98) yield

√
m [Q′

0(θm)−Q′
0(θ⋆)] =

ξm− ξ̆m√
m

→ 0 as m→∞, (103)

implying Q′
0(θm)−Q′

0(θ⋆)→ 0 as m→∞. Now Q′
0(θ) is strictly increasing on ∆◦ by (90), leading to

θm→ θ⋆ as m→∞, (104)
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so by (88), there is a convex and compact set Ψ⊂∆◦ with both θ⋆ and θm in its interior Ψ◦ for all large

enough m, verifying (94).

To strengthen (104) to (95), note that θ⋆ ∈∆◦ by (32) and θm ∈∆◦ for all sufficiently large m by (94), so

(88) implies the line segment connecting them lies in ∆◦, on which Q′
0(·) is differentiable by (89). Thus, the

mean-value theorem ensures
√
m[Q′

0(θm)−Q′
0(θ⋆)] =Q′′

0(θm,⋆)
√
m(θm − θ⋆) for some θm,⋆ ∈∆◦ between θ⋆

and θm. Also, Q
′′
0(θm,⋆)→Q′′

0(θ⋆)> 0 as m→∞ since θm,⋆ → θ⋆ as m→∞ and Q′′
0(θ) is continuous on ∆◦

by (89). Thus, (103) yields (95). □

The asymptotic variances in (40) and (39) of the pm-quantile estimator and the EC estimator, respectively,

involve fm(ξm), where the density fm exists by (91) for all m≥ q0, for q0 in (31). To get a handle on fm(ξm),

we will approximate the true density f(x) = fm(x) of c(X) using a saddlepoint approximation (Jensen 1995,

Chapter 2), given by

f̆(x)≡ f̆m(x) =
1√

2πmQ′′
0(θx)

exp [mQ0(θx)−xθx] , for θx ∈∆◦ satisfying mQ′
0(θx) = x. (105)

Lemma 2. For the i.i.d. sum model (30) with m≥ 1 summands, suppose Assumptions 1 and 2 hold. Then

for all m sufficiently large,

fm(ξm) = f̆m(ξm)

[
1+O

(
1

m

)]
=

exp
[
mQ0(θm)−mθmQ

′
0(θm)

]√
2πmQ′′

0(θ⋆)

[
1+ o

(
1√
m

)]
(106)

=
e−βm√

2πmQ′′
0(θ⋆)

Υm[1+ o(1/
√
m)] =Θ(m−1/2e−βmΥm), (107)

where θm is from (94) and Υm > 0 satisfies Υm = eo(
√
m) as m→∞, so for each t∈ℜ and each c1 > 0,

Υt
m = eo(

√
m) = o(ec1

√
m) and Υt

m = ω(e−c1
√
m) as m→∞. (108)

Proof. Assume throughout the proof thatm is sufficiently large so that (94) holds. For each x such that there

exists θ = θx ∈∆◦ with mQ′
0(θx) = x, eq. (2.2.4) of Jensen (1995) expresses the (relative) error of f̆m(x) in

(105) in terms of θ= θx, specifically, the cumulants of the twisted CDF G̃0,θx in (33). Proposition 2.3.1 and

Lemmas 2.3.3–2.3.5 of Jensen (1995) establish that the error in the saddlepoint approximation is uniform

for θ ∈Ψ under our conditions 0∈∆◦ and (31) in Assumptions 1 and 2, so (94) secures the first equality in

(106).

To get the second equality of (106), use (105) with x= ξm =mQ′
0(θm) by (94) to arrive at

fm(ξm) =
exp [mQ0(θm)−mθmQ

′
0(θm)]√

2πmQ′′
0(θm)

[
1+O

(
1

m

)]
. (109)

In the denominator, Q′′
0(·) has continuous derivative Q′′′

0 (·) on Ψ by (89), so for each m sufficiently large, the

mean-value theorem ensures that there exists θm,⋆ between θ⋆ and θm, all in Ψ◦ by (88), such that

Q′′
0(θm) =Q′′

0(θ⋆)+ (θm− θ⋆)Q
′′′
0 (θm,⋆) =Q′′

0(θ⋆)

[
1+ (θm− θ⋆)

Q′′′
0 (θm,⋆)

Q′′
0(θ⋆)

]
as Q′′

0(θ⋆)> 0 by (90). Now (95) implies that θm−θ⋆ = o(1/
√
m) and Q′′′

0 (θm,⋆) =Q′′′
0 (θ⋆)[1+o(1)] as m→∞

since |θm,⋆− θ⋆|< |θm− θ⋆| → 0, so Q′′
0(θm) =Q′′

0(θ⋆)[1+o(1/
√
m)] in the denominator of (109). Putting this

into (109) yields the the second relation of (106) as 1/
√
1+ o(1/

√
m) = 1+ o(1/

√
m).
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To show (107), write the numerator of (106) as emh(θm) for h(θ) =Q0(θ)− θQ′
0(θ), which satisfies h(θ⋆) =

−β by (32) and has derivative h′(θ) ≡ d
dθ
h(θ) = −θQ′′

0(θ) for all θ ∈∆◦ by (89). Now θ⋆, θm ∈ Ψ ⊂∆◦ by

(94), so (88) and the convexity of Ψ ensure the line segment connecting them lies in Ψ, on which h(·) is

differentiable. Thus, by the mean-value theorem, there is some θ′m,⋆ between between θ⋆ and θm such that

h(θm) = h(θ⋆) + (θm − θ⋆)h
′(θ′m,⋆) = −β + (θ⋆ − θm)θ

′
m,⋆Q

′′
0(θ

′
m,⋆). Multiplying by m, exponentiating, and

writing m=
√
m
√
m to apply (95) yields

emh(θm) = exp
(
−βm

)
exp

(√
m
[√

m(θ⋆− θm)
]
θ′m,⋆Q

′′
0(θ

′
m,⋆)

)
≡ e−βmΥm. (110)

Now
√
m(θ⋆− θm) = o(1) as m→∞ by (95), implying θ′m,⋆ = θ⋆[1+ o(1/

√
m)]> 0 for all m sufficiently large

because |θ⋆ − θ′m,⋆| ≤ |θ⋆ − θm| = o(1/
√
m) with θ⋆ > 0 by (32). Hence, we get Υm = eo(

√
m) > 0 from the

continuity of Q′′
0(·)> 0 on Ψ⊂∆◦ by (89) and (90), so (108) follows. Therefore, (107) holds by (106) and

(110). □

The next result establishes asymptotic upper bounds for

ϑj,k,m ≡EG

[
I(c(X)> ξm)c

j(X)Lkθ⋆(X)
]

(111)

for j, k ∈ {0,1}. To see how ϑj,k,m arises, note that the asymptotic variance of the IS(θ⋆) estimator of the

pm-quantile ξm is κ2
IS(θ⋆)

= χ2
IS(θ⋆)

/f2
m(ξm) in (40), with χ2

IS(θ⋆)
= VarG̃θ⋆

[I(c(X)> ξm)Lθ⋆(X)] by (19) and

Theorem 7(ii). The numerator χ2
IS(θ⋆)

=EG̃θ⋆
[I(c(X)> ξm)L

2
θ⋆
(X)]− (1− pm)2 =EG[I(c(X)> ξm)Lθ⋆(X)]−

(1− pm)2 by a change of measure, so ϑ0,1,m is the second moment in the variance in the numerator. Further

dividing by f2
m(ξm) as in κ2

IS(θ⋆)
motivates studying (113) below. Also, for j = 1, ϑ1,k,m with k = 0 (resp.,

k= 1) corresponds to the first term in the SRS (resp., IS(θ⋆)) covariance term γSRS in (10) (resp., γIS(θ⋆) as

in (20)), which are also further divided by fm(ξm), as in (113).

Lemma 3. Under Assumptions 1 and 2 for the i.i.d. sum model (30) with m ≥ 1 summands, ϑj,k,m in

(111) satisfies the following for j, k ∈ {0,1} as m→∞:

ϑj,k,m =O
(
mje−(k+1)βm

)
eo(

√
m), (112)

ϑj,k,m
f2−j
m (ξm)

=O
(
m(2+j)/2e(1−j−k)βm

)
Ξm, (113)

where

Ξm =

{
1 if j = 1− k,
eo(

√
m) if j = k.

(114)

Proof. We first establish the asymptotic upper bounds in (112). Note that for all m sufficiently large,∣∣ϑj,k,m∣∣≤EG
[
I(c(X)> ξm)

∣∣cj(X)
∣∣Lkθ⋆(X)

]
=EG̃θ⋆

[
I(c(X)> ξm)

∣∣cj(X)
∣∣Lk+1

θ⋆
(X)

]
=EG̃θ⋆

[
I(c(X)> ξm)

∣∣cj(X)
∣∣ exp((k+1)

[
mQ0(θ⋆)− θ⋆c(X)

])]
≤ exp

[
(k+1)m

(
Q0(θ⋆)− θ⋆Q

′
0(θm)

)]
EG̃θ⋆

[
I(c(X)> ξm)

∣∣cj(X)
∣∣ ]≡ d1,k,md2,j,m, (115)
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where the second step applies a change of measure, the third step employs (34), and the last step uses

ξm =mQ′
0(θm) by (94) and θ⋆ > 0 by (32). For d2,j,m, the Cauchy-Schwarz inequality and I2(·)≤ 1 imply

d2,j,m ≤
(
EG̃θ⋆

[
I2(c(X)> ξm)

]
EG̃θ⋆

[
c2j(X)

])1/2
≤
(
EG̃θ⋆

[
c2j(X)

])1/2
≡ d3,j,m =

{
1 for j = 0,(
mQ′′

0(θ⋆)+
[
mQ′

0(θ⋆)
]2)1/2

for j = 1,
(116)

where the case j = 1 follows from (96)–(97) because VarG̃θ⋆
[c(X)] =mQ′′

0(θ⋆) as X1, . . . ,Xm are i.i.d. with

mean Q′
0(θ⋆) under G̃θ⋆ . Note that d3,j,m = O(mj) for j ∈ {0,1}. For d1,k,m in (115) and Ψ in (94), Q′

0(θ)

is differentiable for all θ ∈Ψ⊂∆◦ by (89), where (94) ensures that Ψ contains θ⋆, θm (for all m sufficiently

large), and the line segment connecting them. Then by the mean-value theorem, there exists θm,⋆ between

θ⋆ and θm such that Q′
0(θm) =Q′

0(θ⋆)+ (θm− θ⋆)Q
′′
0(θm,⋆). Thus, in (115), for all sufficiently large m,

d1,k,m = exp
(
(k+1)m

[
Q0(θ⋆)− θ⋆Q

′
0(θ⋆)

])
exp

(
(k+1)mθ⋆(θ⋆− θm)Q

′′
0(θm,⋆)

)
= e−(k+1)βmd4,k,m (117)

by (32), where

d4,k,m = exp
(
(k+1)

√
m
[√

m(θ⋆− θm)
]
θ⋆Q

′′
0(θm,⋆)

)
= eo(

√
m) (118)

as m→∞ by (95) and the facts that θm,⋆→ θ⋆ > 0 and Q′′
0(·)> 0 is continuous at θ⋆ by (89) and (90). Using

(116)–(118) in (115) gives
∣∣ϑj,k,m∣∣≤ e−(k+1)βmeo(

√
m)d3,j,m for all sufficiently large m, verifying (112) because

d3,j,m =O(mj) for j ∈ {0,1}. Multiplying (112) by 1/f2−j
m (ξm) =Θ(m(2−j)/2e(2−j)βm)/Υ2−j

m from (107), with

Υm = eo(
√
m) from (108), yields (113) for the case that j = k in (114) as eo(

√
m)/Υ2−j

m = eo(
√
m)−o(

√
m) = eo(

√
m).

Next we establish (113) when j = 1−k in (114), in which case d1,k,m in (115) has k+1= 2− j. For fm(ξm)
given by (106) and θm in (94) for all m sufficiently large, dividing d1,k,m by f2−j

m (ξm) leads to

d1,k,m
f2−j
m (ξm)

=
[
2πmQ′′

0(θ⋆)
](2−j)/2

exp
(
(2− j)m

[[
Q0(θ⋆)−Q0(θm)

]
−Q′

0(θm)(θ⋆− θm)
])[

1+ o
( 1√

m

)]j−2

.

(119)

For the exponential term in (119), Taylor’s theorem with Lagrange remainder gives Q0(θ⋆) − Q0(θm) =

(θ⋆− θm)Q
′
0(θm) +

1
2
(θ⋆− θm)

2Q′′
0(θm,⋆) for some θm,⋆ between θ⋆ and θm, with θm, θ⋆, θm,⋆ ∈Ψ⊂∆◦ for all

m sufficiently large by (94) and the convexity of Ψ. Combining with the rest of the exponent in (119) yields

exp
(
(2− j)m

[[
Q0(θ⋆)−Q0(θm)

]
−Q′

0(θm)(θ⋆− θm)
])

= exp

[
2− j

2
m(θ⋆− θm)

2Q′′
0(θm,⋆)

]
= 1+ o(1)

(120)

as m→∞ by (95) and because Q′′
0(θm,⋆) =Q′′

0(θ⋆) [1+ o(1)] by the continuity of Q′′
0 on Ψ⊂∆◦ from (89)

and |θm,⋆− θ⋆| ≤ |θm− θ⋆| → 0 as m→∞ by (95). Thus, putting (120) into (119) and using (115) and (116)

yield

|ϑj,k,m|
f2−j
m (ξm)

≤ d1,k,md3,j,m
f2−j
m (ξm)

=
[
2πmQ′′

0(θ⋆)
](2−j)/2[

1+ o(1)
]
d3,j,m (121)

as m→∞, verifying (113) for the case that j = 1− k in (114) because d3,j,m =O(mj) for j ∈ {0,1}. □

F.4. Proof of Theorem 6

Part (i): SRS. When we apply SRS, (66) holds because c(X) =
∑m

j=1Xj , where X1,X2, . . . ,Xm are i.i.d.

with variance σ2
0 ∈ (0,∞) by (87). As µ=mµ0 by (86), (67) follows, where the WNRE result uses in (37) that

the expected CPU time (end of Section 6.1) to generate a single SRS output c(X) is mτSRS for a constant

τSRS ∈ (0,∞), proving part (i).
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Part (ii): IS(θ). Now consider IS(θ) with G̃θ as described in Section 6.2, with θ ̸= 0 and ±θ ∈ ∆◦, as

assumed. By (11) and a change of measure, we can write the variance in (68) as

σ2
IS(θ) =EG̃θ

[c2(X)L2
θ(X)]−µ2 =EG[c

2(X)Lθ(X)]− (mµ0)
2,

giving the second term of (68). By (34), the second-moment term becomes

EG[c
2(X)Lθ(X)] = [M0(θ)]

mEG
[
c2(X)e−θc(X)

]
, (122)

which we next show equals the first term in (68) via derivatives of the MGFs and CGFs of Xj ∼ G0 and

c(X)∼ Fm. Let MFm
(θ) =EG[e

θc(X)], θ ∈ℜ, be the MGF of Y = c(X) =
∑m

j=1Xj . As the components of X

are i.i.d., we have

MFm
(θ) =EG

[
m∏
j=1

eθXj

]
=

m∏
j=1

E0

[
eθXj

]
= [M0(θ)]

m, (123)

so MFm
(θ)<∞ for θ ∈∆◦. We assumed that ±θ ∈∆◦, in which case M0(θ) and M0(−θ) have derivatives of

all orders by (89), and the same holds for MFm
(θ) and MFm

(−θ) by (123). The second derivative of MFm

satisfies M ′′
Fm

(θ) =EG

[
d2

dθ2
eθc(X)

]
=EG[c

2(X)eθc(X)], so (122) becomes

EG[c
2(X)Lθ(X)] = [M0(θ)]

mM ′′
Fm

(−θ). (124)

Next we use (123) to express the first derivative M ′
Fm

(θ) =m[M0(θ)]
m−1M ′

0(θ) and

M ′′
Fm

(θ) =m(m− 1)[M0(θ)]
m−2[M ′

0(θ)]
2 +m[M0(θ)]

m−1M ′′
0 (θ)

=m[M0(θ)]
m

[
(m− 1)

(
M ′

0(θ)

M0(θ)

)2

+
M ′′

0 (θ)

M0(θ)

]
=m[M0(θ)]

m
[
m[Q′

0(θ)]
2 +Q′′

0(θ)
]

(125)

by (96) and (97). As a consequence, substituting (125) in (124) yields

EG[c
2(X)Lθ(X)] =m[M0(θ)M0(−θ)]m

[
m[Q′

0(−θ)]2 +Q′′
0(−θ)

]
,

giving the first term of (68). (When θ= 0, which corresponds to SRS, we have G̃θ =G andM0(0) = α(0) = 1.

Also, M ′
0(0) = µ0 and M ′′

0 (0) =E0[X
2
j ], so (68) equals (66) by (96)–(97).)

For the results in (69), the second one follows from (90) because we assumed that −θ ∈∆◦. We next show

α(θ)≡M0(θ)M0(−θ) ∈ (1,∞) in (69) for all θ ̸= 0 with ±θ ∈∆◦, which ensures that α(θ)<∞. Also, (90)

implies that Q0(θ) is strictly convex on ∆◦; also see, e.g., (Durrett 1996, p. 73). Hence, Jensen’s inequality

yields

α(θ) = exp

[
2

(
1

2
Q0(θ)+

1

2
Q0(−θ)

)]
> exp

[
2Q0

(
1

2
θ− 1

2
θ

)]
= e2Q0(0) = 1 (126)

because Q0(0) = 0, proving the first result of (69).

We next verify (70) for any θ ̸= 0 with ±θ ∈ ∆◦, so α(θ) > 1 by (126). The asymptotic upper bound

in (70) follows immediately from (68). It is possible in (68) to have Q′
0(−θ) = 0, but Q′′

0(−θ)> 0 by (90),

so σ2
IS(θ) ≥mQ′′

0(−θ)[α(θ)]m −m2µ2
0, securing the asymptotic lower bound in (70). Moreover, we have that

µ =mµ0. Thus, as m→ ∞, the RE of the IS(θ) estimator of µ with θ ̸= 0 asymptotically grows at rate
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(ignoring constants) at least [α(θ)]m/2/
√
m (and at faster rate [α(θ)]m/2 whenM ′

0(−θ) ̸= 0 because then (96)

implies [Q′
0(−θ)]2 > 0 in (68)), establishing the RE result in (71). Similarly, the WNRE result in (71) follows

from (37) by multiplying the same lower bound for VarG̃θ
[c(X)Lθ(X)] by the expected computation time

mτIS(θ) with constant τIS(θ) ∈ (0,∞) to generate (c(X),Lθ(X)) under X∼ G̃θ (Section 6.2).

For θ = θ⋆ > 0 in Assumption 2 as the root of (32) with ±θ⋆ ∈∆◦, it is clear that θ⋆ remains fixed as m

grows because the marginal CDF G0 does not vary with m and β is a constant in (29). Moreover, (71) holds

when θ= θ⋆ because θ⋆ > 0 so α(θ⋆)> 1 by (126), completing the proof of part (ii).

Part (iii): ISDM(θ). We apply arguments from Hesterberg (1995) to establish (72) for any θ ∈∆◦. Remov-

ing either term in the denominator of LISDM(θ)(X) = dG(X)

δdG̃θ(X)+(1−δ)dG(X)
yields

LISDM(θ)(X)≤ Lθ(X)

δ
and LISDM(θ)(X)≤ 1

1− δ
. (127)

Then use a change of measure and exploit the second relation in (127) to get

σ2
ISDM(θ) =EG̃ISDM(θ)

[
c2(X)L2

ISDM(θ)

]
−µ2 =EG

[
c2(X)LISDM(θ)

]
−µ2 (128)

≤ 1

1− δ
EG
[
c2(X)

]
−µ2 =

1

1− δ

[
σ2
SRS +µ2

]
−µ2 =

δµ2
0

1− δ
m2 +

σ2
0

1− δ
m (129)

by (66) and because µ=mµ0 by (86), proving (72) (previously shown in Hesterberg (1995)).

To establish (73) when µ0 ̸= 0 and θ ̸= 0, we will show that σ2
ISDM(θ) is asymptotically bounded below

by the m2 term of the upper bound in (129). By (128), we have that σ2
ISDM(θ) = ν#ISDM(θ),m − µ2

0m
2 for

ν#ISDM(θ),m ≡ EG
[
c2(X)LISDM(θ)

]
, on which we now focus. Recall that δ ∈ (0,1) is fixed, and consider any

δ0 ∈ (0, δ). Also, consider any ϵ∈ (0, |µ0|), and without loss of generality, assume µ0 > 0 and θ > 0. Then

ν#ISDM(θ),m =EG

[
c2(X)

dG(X)

δdG̃θ(X)+ (1− δ)dG(X)

]
=EG

c2(X)
1

δ dG̃θ(X)

dG(X)
+1− δ


=EG

[
c2(X)

1

δ exp[−mQ0(θ)+ c(X)θ] + 1− δ

]
≥EG

[
c2(X)

I(c(X)∈ [m(µ0 − ϵ),m(µ0 + ϵ)])

δ exp[−mQ0(θ)+ c(X)θ] + 1− δ

]
≥m2(µ0 − ϵ)2EG

[
I(c(X)∈ [m(µ0 − ϵ),m(µ0 + ϵ)])

δ exp[−mQ0(θ)+ c(X)θ] + 1− δ

]
≥ m2(µ0 − ϵ)2

δ exp(−m[Q0(θ)− (µ0 + ϵ)θ]) + 1− δ
PG (c(X)∈ [m(µ0 − ϵ),m(µ0 + ϵ)]) , (130)

where the second equality holds as G̃θ and G are absolutely continuous with respect to each other, the third

step follows from (34), and the last step exploits the assumed θ > 0.

For the exponential term in (130), the strict convexity of Q0 by (90) along with Q0(0) = 0, Q′
0(0) = µ0,

and θ > 0 ensures that Q0(θ) > (µ0 + ϵ)θ for all sufficiently small ϵ > 0. Thus, the exponential term in

(130) vanishes as m→∞ for all small enough ϵ > 0. Moreover, δ0 ∈ (0, δ) implies that (µ0−ϵ)2

1−δ >
µ2
0

1−δ0
for all

sufficiently small ϵ > 0. Using these results in (130) yields that the ratio (without the m2) satisfies

lim inf
m→∞

(µ0 − ϵ)2

δ exp
(
−m[Q0(θ)− (µ0 + ϵ)θ]

)
+1− δ

≥ (µ0 − ϵ)2

1− δ
>

µ2
0

1− δ0
(131)

for all sufficiently small ϵ > 0.
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For the probability term in (130), the weak law of large numbers (under G) ensures that for any ϵ > 0,

PG (c(X)∈ [m(µ0 − ϵ),m(µ0 + ϵ)])→ 1 as m→∞. Putting this and (131) into (130) implies that the second-

moment term in (128) satisfies lim infm→∞ ν#ISDM(θ),m/m
2 >µ2

0/(1− δ0) as m→∞ since ϵ > 0 was arbitrary

(and small). For the full variance σ2
ISDM(θ) = ν#ISDM(θ),m−µ2

0m
2, it then follows from (129) that

δµ2
0

1− δ
= lim
m→∞

1

m2

[
δµ2

0

1− δ
m2 +

σ2
0

1− δ
m

]
≥ limsup

m→∞

σ2
ISDM(θ)

m2
≥ lim inf

m→∞

σ2
ISDM(θ)

m2
>

µ2
0

1− δ0
−µ2

0 =
δ0µ

2
0

1− δ0
. (132)

As δ0 ∈ (0, δ) can be taken arbitrarily close to δ from below in (132), we see that limm→∞
σ2
ISDM(θ)

m2 =
δµ2

0

(1−δ) ,

verifying (73) when µ0 > 0 and θ > 0. The cases when µ0 < 0 or θ < 0 (or both) can be handled similarly.

Thus, for any µ0 ̸= 0 and θ ̸= 0, (74) then follows from (86), where the WNRE result uses in (37) that the

expected computation time to generate (c(X),LISDM(θ)(X)) for X∼ G̃ISDM(θ) as in (35) is mτISDM(θ) with

constant τISDM(θ) ∈ (0,∞) (Section 6.2).

When µ0 = 0, the bound in (72) shows that σ2
ISDM(θ⋆)

=O(m) as m→∞, verifying the last statement of

part (iii).

Part (iv): DE(θ). Note (75) holds by (66) and (70), and (76) easily follows, also using (38). □

F.5. Proof of Theorem 7

First note that (90) implies Q′′
0(θ⋆)> 0 because θ⋆ ∈∆◦ by (32). Also, for the WNRE in (37) of estimators of

ξm, the end of Section 6.1 specifies that the expected CPU time to generate a single SRS output c(X) ismτSRS

for a constant τSRS ∈ (0,∞). Similarly, Section 6.2 stipulates that for IS(θ⋆) (resp., ISDM(θ⋆)), the expected

CPU time to generate (c(X),Lθ⋆(X)) under X∼ G̃θ⋆ (resp., (c(X),LISDM(θ⋆)(X)) for X∼ G̃ISDM(θ⋆) as in

(35)) is mτIS(θ⋆) with constant τIS(θ⋆) ∈ (0,∞) (resp., mτISDM(θ⋆) with constant τISDM(θ⋆) ∈ (0,∞)). Also,

(38) defines the form of the WNRE for the DE(θ⋆) estimator of ξm.

Part (i): SRS. The numerator of (40) is χ2
SRS = (1− e−βm)e−βm by (10) and (29). Using the square of

(107) in the denominator with Υ−2
m = eo(

√
m) as m→∞ by (108) gives the first two steps of (77). Taking

logs and dividing by m shows limm→∞
1
m
lnκ2

SRS = β. Also, (108) ensures Υt
m = ω(e−

√
m) as m→∞ for each

t∈ℜ, so κ2
SRS = ω(meβm−

√
m), securing the last part of (77). Finally, (78) holds by (92) because Q′

0(θ⋆) ̸= 0

was assumed.

Part (ii): IS(θ⋆). We have that κ2
IS(θ⋆)

= χ2
IS(θ⋆)

/f2
m(ξm), where

χ2
IS(θ⋆)

=VarG̃θ⋆

[
I(c(X)> ξm)Lθ⋆(X)

]
=EG̃θ⋆

[
I(c(X)> ξm)L

2
θ⋆
(X)

]
− (1− p)2

≤EG̃θ⋆

[
I(c(X)> ξm)L

2
θ⋆
(X)

]
=EG

[
I(c(X)> ξm)Lθ⋆(X)

]
= ϑ0,1,m

by a change of measure and (111) for j = 0 and k = 1. Thus, (116) for j = 0 and (121) yield (79), and

combining (79) with (92) establishes (80), completing the proof of (ii).

Part (iii): ISDM(θ⋆). From the first relation in (127) and (34), we use the fact that θ⋆ > 0 from (32) to

bound the numerator of (40) for all m sufficiently large as

χ2
ISDM(θ⋆)

≤EG̃ISDM(θ⋆)

[
L2

ISDM(θ⋆)
(X) I(c(X)> ξm)

]
≤ 1

δ2
EG̃ISDM(θ⋆)

[
exp
(
2
[
mQ0(θ⋆)− θ⋆c(X)

])
I(c(X)> ξm)

]
≤ 1

δ2
exp
(
2
[
mQ0(θ⋆)− θ⋆ξm

])
=

1

δ2
exp
(
2m
[
Q0(θ⋆)− θ⋆Q

′
0(θm)

])
(133)
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by (94), where (133) equals 1/δ2 times the bound for ϑ0,1,m in (115) for j = 0 and k = 1 by (116). Thus,

arguing as in the proof of (121) for j = 0 and k= 1 also shows (81) holds. Finally, (82) follows by (92).

Part (iv): DE(θ⋆). Note that (83) is a simple consequence of (77) and (79), and (84) follows by (92). □

F.6. Proof of Theorem 5

Before proving Theorem 5, we first explicitly define the WNREs for the MSIS(θ⋆) estimator and the DE(θ⋆)

estimator of η. By similar reasoning used to define WNREDE(θ),m[φ] for φ= ξ and µ in (38), we let

WNREDE(θ⋆),m[η]

=
1

|ηm|

[
mτIS(θ⋆)

δ

[
υ2
1κ

2
IS(θ⋆)

+υ2
2σ

2
IS(θ⋆)

−2υ1υ2
γIS(θ⋆)
fm(ξm)

]
+
mτSRS

1− δ

[
υ′2
1 κ

2
SRS + υ′2

2 σ
2
SRS −2υ′

1υ
′
2

γSRS

fm(ξm)

]]1/2
,

(134)

where the allocation parameter δ ∈ (0,1) splits the CPU budget between IS(θ⋆) and SRS, and Sections 6.1

and 6.2 specify the constants τSRS, τIS(θ⋆) ∈ (0,∞) related to generating a single output. Analogously, define

WNREMSIS(θ⋆),m[η] =
1

|ηm|

[
m

(
τIS(θ⋆)κ

2
IS(θ⋆)

δ
+
τSRSσ

2
SRS

1− δ

)]1/2
. (135)

The WNREs for the SRS, IS(θ⋆), and ISDM(θ⋆) estimators of η are defined as in (37).

F.6.1. Part (i): SRS. To establish (42), we will separately analyze the three terms in (39) for M=SRS,

where (39) has ΛSRS = Λ†
SRS = 1 with χ2

SRS, χ
2
SRS, and γSRS given in (9) and (10). We will show that as

m→∞, the first term in (39) grows at a strictly faster rate than the other two terms, leading to

ζ2SRS =
2πQ′′

0(θ⋆)
[
1+ o

(
1√
m

)]
meβm

Υ2
m

=
Θ(meβm)

Υ2
m

= ω(meβm−
√
m). (136)

The first term in (39) is given by (77), with κ2
SRS = ω(meβm−

√
m) as m→∞. By (66), the second term in

(39) equals σ2
SRS = σ2

0m = o(κ2
SRS) as m→∞, so σSRS = o(κSRS). For the third term in (39), use (9) and

the Cauchy-Schwarz inequality to get
∣∣∣−2 γSRS

fm(ξm)

∣∣∣≤ 2κSRSσSRS = o(κ2
SRS) as m→∞. Thus, the second and

third terms in (39) are asymptotically negligible compared to the first term, which verifies (136) and (42).

Combining (42) with (93) establishes (43) because the expected computation time to generate c(X) with

X∼G is mτSRS, which we use in (37), completing the proof of part (i).

F.6.2. Part (ii): IS(θ⋆). To establish (44), we will show that

ζ2IS(θ⋆) ≥Q′′
0(−θ⋆)

[
1+O(α−m

⋆ )
]
mαm⋆ =Ω(mαm⋆ ). (137)

We will accomplish this by separately analyzing the three terms in (39) for M= IS(θ⋆) to show the second

term grows at the strictly fastest rate, where we recall that ΛIS(θ⋆) = Λ†
IS(θ⋆)

= 1, and χ2
IS(θ⋆)

, χ2
IS(θ⋆)

, and

γIS(θ⋆) are as in (19) and (20) with twisting parameter θ⋆ ∈∆◦ from (32), where we also assumed −θ⋆ ∈∆◦.

The second term in (39) satisfies σ2
IS(θ⋆)

= Ω(mαm⋆ ) as m→∞ by (68) and (70), where θ⋆ > 0 of (32) with

±θ⋆ ∈ ∆◦ implies that α⋆ = α(θ⋆) > 1 by (69). For the first term in (39), we have by (79) that κ2
IS(θ⋆)

=

O(m) = o(σ2
IS(θ⋆)

) asm→∞, so κIS(θ⋆) = o(σIS(θ⋆)). For the third term in (39), the Cauchy-Schwarz inequality

implies
∣∣∣−2

γIS(θ⋆)

fm(ξm)

∣∣∣ ≤ 2κIS(θ⋆)σIS(θ⋆) = o(σ2
IS(θ⋆)

) as m→∞. Thus, combining these results, including (68),

yields (137) and (44). Using (44) with (93) verifies (45) as the expected time to generate (c(X),Lθ⋆(X)) with

X∼ G̃θ⋆ is mτIS(θ⋆) (Section 6.2), which we use in (37), completing the proof of part (ii).
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F.6.3. Part (iii): MSIS(θ⋆). By (23), M=MSIS(θ⋆) leads to (39) having κ2
MSIS(θ⋆)

= κ2
IS(θ⋆)

, σ2
MSIS(θ⋆)

=

σ2
SRS, γMSIS(θ⋆) = 0 (as ξ and µ are estimated independently), ΛMSIS(θ⋆) = 1/δ, and Λ†

MSIS(θ⋆)
= 1/(1− δ). To

prove (46), we separately analyze the two nonzero terms in (39) to show that each grows asymptotically at

most linearly in m. The first term in (39) is κ2
IS(θ⋆)

/δ, where (79) bounds κ2
IS(θ⋆)

=O(m) and κ2
IS(θ⋆)

> 0 by

(90). The second term in (39) is σ2
SRS/(1− δ) = [σ2

0/(1− δ)]m=Θ(m) by (66), with σ2
SRS > 0 by (66). We

then get

ζ2MSIS(θ⋆)
≤
(
2πQ′′

0(θ⋆)

δ

[
1+ o(1)

]2
+

σ2
0

1− δ

)
m, (138)

verifying (46) since both terms in the large parentheses in (138) are positive. Combining (46) with (93)

establishes the RE result in (47).

For the second result of (47), the boundedness of WNREMSIS(θ⋆),m[η] in (135) holds by putting (93),

(79), and (66) into (135) and using the expected generation times mτSRS and mτIS(θ⋆) for SRS and IS(θ⋆),

respectively, as specified in Sections 6.1 and 6.2.

F.6.4. Part (iv): ISDM(θ⋆). The method M = ISDM(θ⋆) is a special case of IS, sam-

pling X as in (35) with θ = θ⋆, so (19) and (20) imply that (39) then has χ2
ISDM(θ⋆)

=

VarG̃ISDM(θ⋆)
[LISDM(θ⋆)(X)I(c(X) > ξm)], σ2

ISDM(θ⋆)
= VarG̃ISDM(θ⋆)

[c(X)LISDM(θ⋆)(X)], γISDM(θ⋆) =

CovG̃ISDM(θ⋆)

[
I(c(X)> ξ)LISDM(θ⋆)(X), c(X)LISDM(θ⋆)(X)

]
, and ΛISDM(θ⋆) = Λ†

ISDM(θ⋆)
= 1. To show (48),

we will separately analyze the three terms in (39) to derive an upper bound for each. The first term

κ2
ISDM(θ⋆)

in (39) is bounded above as in (81), with the bound being O(m). The second term obeys

σ2
ISDM(θ⋆)

≤ δµ2
0

1−δm
2 +

σ2
0

1−δm by (72). For the third term in (39), the Cauchy-Schwarz inequality implies∣∣∣∣−2γISDM(θ⋆)

fm(ξm)

∣∣∣∣≤ 2κISDM(θ⋆)σISDM(θ⋆) ≤ 2

[
2πQ′′

0(θ⋆)

δ2
[
1+ o(1)

]2
m

(
δµ2

0

1− δ
m2 +

σ2
0

1− δ
m

)]1/2
= 2

[
2πQ′′

0(θ⋆)

(1− δ)

(
µ2
0

δ
+

σ2
0

mδ2

)]1/2 [
1+ o(1)

]
m3/2 (139)

by (81). Applying the upper bounds from (81), (72), and (139) in (39) yields

ζ2ISDM(θ⋆)
≤
[
δµ2

0

1− δ

]
m2 +

[
8πQ′′

0(θ⋆)

(1− δ)

(
µ2
0

δ
+

σ2
0

mδ2

)]1/2 [
1+ o(1)

]
m3/2

+

[
2πQ′′

0(θ⋆)

δ2
[
1+ o(1)

]2
+

σ2
0

1− δ

]
m, (140)

which secures (48). Combining (48) with (93) establishes (49), which holds for any µ0.

Now suppose that µ0 ̸= 0. Then (73) gives σ2
ISDM(θ) =Θ(m2) asm→∞, and (81) ensures κ2

ISDM(θ⋆)
=O(m).

Also, the Cauchy-Schwarz inequality implies
∣∣∣−2γISDM(θ⋆)

fm(ξm)

∣∣∣≤ 2κISDM(θ⋆)σISDM(θ⋆) =O(m3/2). Thus, σ2
ISDM(θ)

in (73) is the highest-order term of ζ2ISDM(θ⋆)
, so

ζ2ISDM(θ⋆)
=

[
δµ2

0

1− δ

][
1+ o(1)

]
m2 =Θ(m2), (141)

establishing (50) for µ0 ̸= 0, and (51) follows from (93) and (141), where the WNRE result in (51) uses in

(37) that the expected computation time to generate (c(X),LISDM(θ⋆)(X)) for X∼ G̃ISDM(θ⋆) as in (35) is

mτISDM(θ⋆) with constant τISDM(θ⋆) ∈ (0,∞) (Section 6.2).

When µ0 = 0, the bound yielding (48) shows that ζ2ISDM(θ⋆)
=O(m). Thus, (93) ensures (52) for µ0 = 0,

completing the proof of part (iv).
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F.6.5. Part (v): DE(θ⋆) with Fixed Weights. To show (53), we will provide lower bounds for each

of the two terms in large parentheses for ζ2DE(θ⋆)
in (41). Because δ, υ1, υ2 ∈ (0,1) are fixed, the asymptotic

rate (in m) at which the first term in (41) grows is determined by υ2
2σ

2
IS(θ⋆)

/δ, as in (44), so the first term in

(41) is bounded below by [υ2
2Q

′′
0(−θ⋆)/δ]

[
1+ o(1)

]
mαm⋆ , where α⋆ = α(θ⋆) ∈ (1,∞) by (69) since ±θ⋆ ∈∆◦.

Also, as in (42) the asymptotic rate at which the second term in (41) increases is governed by
υ′2
1

1−δκ
2
SRS , so

the second term in (41) is ω(meβm−
√
m) by (77). Combining these two results yields

ζ2DE(θ⋆)
≥ υ′2

1

1− δ

2πQ′′
0(θ⋆)

[
1+ o

(
1√
m

)]
meβm

Υ2
m

+

[
υ2
2

δ
Q′′

0(−θ⋆)
[
1+O(α−m

⋆ )
]]
mαm⋆

=
Θ(meβm)

Υ2
m

+Ω(mαm⋆ ) = ω(meβm−
√
m)+Ω(mαm⋆ ) =Ω(msm0 e

−
√
m), (142)

securing (53). Moreover, the first result of (54) follows from (142) and (93). Putting (93), (77), and (70) into

(134) verifies the second part of (54).

F.6.6. Part (vi): DE∗(θ⋆) Optimal Weights Varying with m Satisfy Equation (55). The opti-

mal weights (υ∗
1,m, υ

∗
2,m) =

(
a1,m

a0,m
,
a2,m

a0,m

)
to minimize the asymptotic variance are defined in (28) and two

paragraphs before Theorem 5, where

a0,m =V
(ξ)
SRS,mV

(µ)
IS,m+V

(ξ)
IS,mV

(µ)
IS,m+V

(ξ)
IS,mV

(µ)
SRS,m+V

(ξ)
SRS,mV

(µ)
SRS,m−C2

IS,m−C2
SRS,m− 2CIS,mCSRS,m, (143)

a1,m =V
(ξ)
SRS,mV

(µ)
IS,m+V

(ξ)
SRS,mV

(µ)
SRS,m−V

(µ)
IS,mCSRS,m+V

(µ)
SRS,mCIS,m−C2

SRS,m−CIS,mCSRS,m, and (144)

a2,m =V
(ξ)
IS,mV

(µ)
SRS,m+V

(ξ)
SRS,mV

(µ)
SRS,m−V

(ξ)
IS,mCSRS,m+V

(ξ)
SRS,mCIS,m−C2

SRS,m−CIS,mCSRS,m. (145)

We will prove (55) by analyzing growth rates of the terms in (143)–(145) as m→ ∞ for fixed δ ∈ (0,1).

Theorem 6(ii), (32), and (29) yield α⋆ ≡ α(θ⋆)> 1 and eβ > 1. The first term in both (143) and (144) satisfies

V
(ξ)
SRS,mV

(µ)
IS,m = [Θ(meβm)/Υ2

m]Ω(mα
m
⋆ ) =Ω(m2[eβα⋆]

m)/Υ2
m (146)

as m→∞ by (70) and (77), where (108) gives Υt
m = eo(

√
m) = o(ed1

√
m) and Υt

m = ω(e−d1
√
m) as m→∞

for each t ∈ ℜ and each d1 > 0. The rest of the proof will show that each other term in (143)–(145) is

exponentially smaller than V
(ξ)
SRS,mV

(µ)
IS,m as m→∞, which will eventually secure (55).

We first obtain asymptotic upper bounds for CSRS,m and CIS,m. Theorem 4 defines CSRS,m = γSRS/[(1−
δ)fm(ξm)], with γSRS =EG[I(c(X)> ξm)c(X)]− (1− pm)µm from (10). By (29), (86), (107), and (108),∣∣∣∣ (1− pm)µm

fm(ξm)

∣∣∣∣= e−βmm|µ0|
e−βmΥm[1+ o(1/

√
m)]/

√
2πmQ′′

0(θ⋆)
=

Θ(m3/2)

Υm

= o(m3/2ed1
√
m)

as m→∞ for each d1 > 0 when µ0 ̸= 0; if µ0 = 0, then (1−pm)µm

fm(ξm)
= 0, which is also o(m3/2ed1

√
m). In addition,

EG[I(c(X)> ξm)c(X)] = ϑ1,0,m by (111) for j = 1 and k= 0, so when µ0 ̸= 0, (113) yields

|CSRS,m| ≤
|ϑ1,0,m|

(1− δ)fm(ξm)
+

∣∣∣∣ (1− pm)µm
(1− δ)fm(ξm)

∣∣∣∣=O(m3/2)+
Θ(m3/2)

Υm

= o(m3/2ed1
√
m) (147)

as m → ∞ for each d1 > 0; if µ0 = 0, then CSRS,m = o(m3/2ed1
√
m) still holds. Similarly, Theorem 4

defines CIS,m = γIS/[δfm(ξm)], with γIS =EG[I(c(X)> ξm)c(X)Lθ⋆ ]− (1− pm)µm by (20) and EG[I(c(X)>

ξm)c(X)Lθ⋆ ] = ϑ1,1,m by (111) for j = k= 1. Thus, when µ0 ̸= 0, (113) yields

|CIS,m| ≤
|ϑ1,1,m|
δfm(ξm)

+

∣∣∣∣ (1− pm)µm
δfm(ξm)

∣∣∣∣=O(m3/2e−βm)eo(
√
m) +

Θ(m3/2)

Υm

= o(m3/2ed1
√
m) (148)
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as m→∞ for each d1 > 0; if µ0 = 0, then CIS,m = o(m3/2ed1
√
m) still holds.

We next analyze each term in (143)–(145) divided by V
(ξ)
SRS,mV

(µ)
IS,m in (146). Now Υt

m = o(ec1
√
m) asm→∞

for each t ∈ℜ and each c1 > 0 by (108), and recall α⋆ = α(θ⋆) ∈ (1,∞) by (69). Therefore, using (66), (70),

(77), (79), (147), and (148) gives, as m→∞,

r1,m ≡
V

(ξ)
IS,mV

(µ)
IS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
V

(ξ)
IS,m

V
(ξ)
SRS,m

=
O(m)

Θ(meβm)/Υ2
m

=O
(
[eβ]−m

)
Υ2
m = o

(
e−βm+

√
m
)
; (149)

r2,m ≡
V

(ξ)
IS,mV

(µ)
SRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
O(m)Θ(m)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o
(
[eβα⋆]

−me
√
m
)
; (150)

r3,m ≡
V

(ξ)
SRS,mV

(µ)
SRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
V

(µ)
SRS,m

V
(µ)
IS,m

=
Θ(m)

Ω(mαm⋆ )
=O(α−m

⋆ ); (151)

r4,m ≡
V

(ξ)
IS,mCSRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
O(m)o(m3/2e

√
m/2)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o(m1/2[eβα⋆]
−me

√
m/2Υ2

m) = o(m1/2[eβα⋆]
−me

√
m); (152)

r5,m ≡
V

(ξ)
SRS,mCIS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
CIS,m

V
(µ)
IS,m

=
o(m3/2e

√
m)

Ω(mαm⋆ )
= o(m1/2α−m

⋆ e
√
m); (153)

r6,m ≡
V

(µ)
IS,mCSRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
CSRS,m

V
(ξ)
SRS,m

=
o(m3/2e

√
m/2)

Θ(meβm/Υ2
m)

= o(m1/2[eβ]−me
√
m/2Υ2

m) = o(m1/2[eβ]−me
√
m); (154)

r7,m ≡
V

(µ)
SRS,mCIS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
Θ(m)o(m3/2e

√
m/2)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o(m1/2[eβα⋆]
−me

√
m/2Υ2

m) = o(m1/2[eβα⋆]
−me

√
m); (155)

r8,m ≡
C2

IS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
o(m3e

√
m/2)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o(m[eβα⋆]
−me

√
m/2Υ2

m) = o(m[eβα⋆]
−me

√
m); (156)

r9,m ≡
C2

SRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
o(m3e

√
m/2)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o(m[eβα⋆]
−me

√
m/2Υ2

m) = o(m[eβα⋆]
−me

√
m); (157)

r10,m ≡ CIS,mCSRS,m

V
(ξ)
SRS,mV

(µ)
IS,m

=
o(m3/2e

√
m/4)o(m3/2e

√
m/4)

Θ(meβm/Υ2
m)Ω(mα

m
⋆ )

= o(m[eβα⋆]
−me

√
m/2Υ2

m) = o(m[eβα⋆]
−me

√
m). (158)

Each upper bound includes a factor that is exponential in −m with base greater than 1, so each rj,m shrinks

exponentially fast in m.

We next use (149)–(158) to analyze a0,m in (143). Dividing a0,m by its first term V
(ξ)
SRS,mV

(µ)
IS,m in (143)

leads to

a0,m

V
(ξ)
SRS,mV

(µ)
IS,m

= 1+ r1,m+ r2,m+ r3,m− r8,m− r9,m− 2r10,m ≡ 1+ r11,m, (159)

where r11,m = r1,m+ r2,m+ r3,m− r8,m− r9,m− 2r10,m shrinks exponentially fast to 0 as m→∞. Thus,

a0,m =V
(ξ)
SRS,mV

(µ)
IS,m(1+ r11,m) and

1

1+ r11,m
= 1− r11,m+

r211,m
1− r11,m

= 1− r11,m+O(r211,m) (160)

as m→∞. Recall that α⋆ > 1 and eβ > 1, so the smallest base of the exponential terms (in −m) in the upper

bounds in (149)–(158) for rj,m with j ∈ J11 ≡ {1,2,3,8,9,10} defining r11,m will lead to the exponential rate

in an upper bound at which r11,m shrinks. For Υm = eo(
√
m) in (108), we then see that

r11,m =O
(
[e−βmΥ2

m]∨α−m
⋆

)
(161)

from the upper bounds for r1,m and r3,m in (149) and (151).
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To analyze υ∗
1,m, divide a1,m from (144) by a0,m in (160) and use (149)–(159) to get as m→∞,

υ∗
1,m =

a1,m
a0,m

=
a1,m

V
(ξ)
SRS,mV

(µ)
IS,m

(
1

1+ r11,m

)
=
(
1+ r3,m− r6,m+ r7,m− r9,m− r10,m

)[
1− r11,m+O(r211,m)

]
= 1− r11,m+O(r211,m)+

(
r3,m− r6,m+ r7,m− r9,m− r10,m

)[
1− r11,m+O(r211,m)

]
= 1− r1,m− r2,m− r6,m+ r7,m+ r8,m+ r10,m−

(
r3,m− r6,m+ r7,m− r9,m− r10,m

)
r11,m+O(r211,m)

≡ 1− ε1,m, with ε1,m =O
(
(m1/2[eβ]−me

√
m)∨ [α2

⋆]
−m)→ 0 as m→∞, (162)

from the bounds for r6,m = o(m1/2[eβ]−me
√
m) in (154), r3,mr11,m = O(α−m

⋆ )O([e−βmΥ2
m] ∨ α−m

⋆ ) =

O([eβα⋆]
−me

√
m ∨α−2m

⋆ ) by (151) and (161), and O(r211,m) =O
(
([e2β]−mΥ4

m)∨ [α2
⋆]

−m
)
=O

(
([e2β]−me

√
m)∨

[α2
⋆]

−m
)
. Thus, υ∗

1,m→ 1 exponentially fast as m→∞, establishing one part of (55).

To finally analyze υ∗
2,m, dividing a2,m from (145) by a0,m in (160) and using (149)–(159) and (161) yield

as m→∞,

υ∗
2,m =

a2,m
a0,m

=
a2,m

V
(ξ)
SRS,mV

(µ)
IS,m

(
1

1+ r11,m

)
=
(
r2,m+ r3,m− r4,m+ r5,m− r9,m− r10,m

)[
1− r11,m+O(r211,m)

]
=
(
r2,m+ r3,m− r4,m+ r5,m− r9,m− r10,m

)[
1+ o(1)

]
≡ ε2,m, with ε2,m = o

(
m1/2α−m

⋆ e
√
m
)
→ 0 as m→∞, (163)

by the bound for r5,m in (153). Thus, υ∗
2,m→ 0 exponentially fast as m→∞, completing the proof of (55).

F.6.7. Part (vi): DE∗(θ⋆) Property (57) for Optimal Weights Varying with m to Minimize

REDE(θ⋆),m[η]. To establish (57), we start by deriving an asymptotic expression for ζ2DE∗(θ⋆)
. By (55), write

υ∗
1,m = 1− ε1,m and υ∗

2,m = ε2,m, for ε1,m in (162) and ε2,m in (163), where both ε1,m and ε2,m shrink to 0

exponentially fast as m→∞, so ε21,m = o(ε1,m) and ε
2
2,m = o(ε2,m). Then (27) implies

ζ2DE∗(θ⋆)
=
(
1− ε1,m

)2
V

(ξ)
IS,m+ ε22,mV

(µ)
IS,m− 2

(
1− ε1,m

)
ε2,mCIS,m

+
(
1− ε2,m

)2
V

(µ)
SRS,m+ ε21,mV

(ξ)
SRS,m− 2ε1,m

(
1− ε2,m

)
CSRS,m

= (1− 2ε1,m[1+ o(1)])V
(ξ)
IS,m+(1− 2ε2,m[1+ o(1)])V

(µ)
SRS,m+ ε3,m, (164)

where

ε3,m ≡V
(µ)
IS,mε

2
2,m+V

(ξ)
SRS,mε

2
1,m− 2CIS,m(1− ε1,m)ε2,m− 2CSRS,mε1,m(1− ε2,m). (165)

For ε3,m in (165), the last two terms have |1− ε1,m| ≤ 2 and |1− ε2,m| ≤ 2 for all m sufficiently large since

ε1,m → 0 and ε2,m → 0 as m→∞. Moreover, we have as m→∞ that V
(µ)
IS,m = O(m2αm⋆ ) by (70), CIS,m =

o(m3/2e
√
m) by (148), and CSRS,m = o(m3/2e

√
m) by (147). Theorem 4 and (9) give V

(ξ)
SRS,m = χ2

SRS/[(1−
δ)f2

m(ξm)] with χ2
SRS = pm(1− pm) = Θ(e−βm) by (29). Also, (107) shows that 1/f2

m(ξm) = Θ(me2βm/Υ2
m)

with Υ−2
m = o(e

√
m) by (108), so V

(ξ)
SRS,m = o(meβm+

√
m). Combining these with ε1,m =O

(
(m1/2[eβ]−me

√
m)∨

[α2
⋆]

−m
)
and ε2,m = o

(
m1/2α−m

⋆ e
√
m
)
from (162)–(163) shows that for all large enough m,

|ε3,m| ≤V
(µ)
IS,mε

2
2,m+V

(ξ)
SRS,mε

2
1,m+4|CIS,m||ε2,m|+4|CSRS,m||ε1,m|

=O(m2αm⋆ )o(mα
−2m
⋆ e2

√
m)+ o(meβm+

√
m)O

(
[me−2βm+2

√
m]∨α−4m

⋆

)
+ o(m3/2e

√
m)o(m1/2α−m

⋆ e
√
m)+ o(m3/2e

√
m)O

(
[m1/2e−βm+

√
m]∨α−2m

⋆

)
= o(m3α−m

⋆ e2
√
m)+ o

(
(m2e−βm+3

√
m)∨ (m[e−βα4

⋆]
−me

√
m)
)

+ o(m2α−m
⋆ e2

√
m)+ o

(
(m2e−βm+2

√
m)∨ (m3/2α−2m

⋆ e
√
m)
)

= o
(
(m3α−m

⋆ e2
√
m)∨ (m2[eβ]−me3

√
m)∨ (m[e−βα4

⋆]
−me

√
m)
)
, (166)
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where e−βα4
⋆ > 1 by (56), so ε3,m→ 0 exponentially fast as m→∞.

We now prove for any fixed δ ∈ (0,1) that (57) holds. The MSIS variance is ζ2MSIS(θ⋆)
=V

(ξ)
IS,m+V

(µ)
SRS,m by

(23), where as m→∞, V
(ξ)
IS,m =O(m) by (79), V

(µ)
SRS,m =Θ(m)≥ 0 by (66), and ζ2MSIS(θ⋆)

=Θ(m) by (46).

Hence, (164) reveals ζ2DE∗(θ⋆)
= ζ2MSIS(θ⋆)

− 2ε1,m[1+ o(1)]V
(ξ)
IS,m− 2ε2,m[1+ o(1)]V

(µ)
SRS,m+ ε3,m, so

ζ2DE∗(θ⋆)

ζ2MSIS(θ⋆)

= 1−
2ε1,m[1+ o(1)]V

(ξ)
IS,m

ζ2MSIS(θ⋆)

−
2ε2,m[1+ o(1)]V

(µ)
SRS,m

ζ2MSIS(θ⋆)

+
ε3,m

ζ2MSIS(θ⋆)

= 1− ε1,mO(m)

Θ(m)
− ε2,mΘ(m)

Θ(m)
+

ε3,m
Θ(m)

= 1− ε1,mO(1)− ε2,mΘ(1)+Θ(ε3,m/m)

as m→∞, validating (57) by (162), (163), and (166) under (56), completing the proof. □

F.6.8. Part (vi): DE∗∗(θ⋆) Properties (55) and (57) for Optimal Weights Varying with m

to Minimize WNREDE(θ⋆),m[η]. Next we analyze the optimal value of (υ1, υ2) = (υ∗∗
1,m, υ

∗∗
2,m) when

minimizing WNREDE(θ⋆),m[η] in (134). In this case, we define (υ∗∗
1,m, υ

∗∗
2,m) = (

a∗∗1,m
a∗∗0,m

,
a∗∗2,m
a∗∗0,m

), with a∗∗0,m =

m2
[
τSRSτIS(θ⋆)V

(ξ)
SRS,mV

(µ)
IS,m − τ2IS(θ⋆)C

2
IS,m − 2τIS(θ⋆)τSRSCIS,mCSRS,m − τ2SRSC

2
SRS,m + τ2IS(θ⋆)V

(ξ)
IS,mV

(µ)
IS,m +

τIS(θ⋆)τSRSV
(ξ)
IS,mV

(µ)
SRS,m + τ2SRSV

(ξ)
SRS,mV

(µ)
SRS,m

]
, a∗∗1,m = m2

[
τSRSτIS(θ⋆)V

(ξ)
SRS,mV

(µ)
IS,m + τ2SRSV

(ξ)
SRS,mV

(µ)
SRS,m −

τIS(θ⋆)τSRSV
(µ)
IS,mCSRS,m + τIS(θ⋆)τSRSCIS,mV

(µ)
SRS,m − τIS(θ⋆)τSRSCIS,mCSRS,m − τ2SRSC

2
SRS,m

]
, and a∗∗2,m =

m2
[
τIS(θ⋆)τSRSV

(ξ)
IS,mV

(µ)
SRS,m + τ2SRSV

(ξ)
SRS,mV

(µ)
SRS,m − τIS(θ⋆)τSRSV

(ξ)
IS,mCSRS,m + τIS(θ⋆)τSRSCIS,mV

(ξ)
SRS,m −

τIS(θ⋆)τSRSCIS,mCSRS,m − τ2SRSC
2
SRS,m

]
. When minimizing WNREDE(θ⋆),m[η], the only difference between

(υ∗∗
1,m, υ

∗∗
2,m) and (υ∗

1,m, υ
∗
2,m) in (28) that minimizes REDE(θ⋆),m[η] is that we further multiplied each product

item in a0,m, a1,m and a2,m from (143)–(145) by factors m2 and a constant involving τSRS or τIS(θ) (or both).

Thus, an argument like the one used to prove (55) shows that (υ∗∗
1,m, υ

∗∗
2,m) converges exponentially fast to

(1,0) as m→ ∞. Similarly, applying arguments analogous to how we achieved (57) under (56) results in

ζ2DE∗∗(θ⋆)
/ζ2MSIS(θ⋆)

→ 1 exponentially fast as m→∞.

G: Two-Step IS to Estimate Extreme Quantile and EC in PCRM with Random
Loss Given Default

We now describe our IS approach to estimate an extreme quantile for the model in Section 7.2. We assume

that the common shock S ≡ 1 in (58), as in Glasserman and Li (2005), but we extend their method to allow

for the loss given default to be stochastic. Although our simulation experiments in Section 7.2 have LGD

Ck ∼ Unif(0, βk), independent of (Z, ϵ1, . . . , ϵm), we develop the method for more general LGD satisfying

certain conditions; see (168). Let Vk denote the marginal CDF (not necessarily uniform) of the LGD Ck.

Glasserman and Li (2005) developed a two-step IS method to estimate the tail probability λx ≡ P (Y > x),

where x is a given large threshold, and we adapt their ideas to estimate the p-quantile ξ, for p≈ 1. Their

method critically depends on knowing the threshold x, which is explicitly used throughout their approach. We

cannot simply apply their technique by letting x= ξ, as ξ is unknown. Instead, we first run pilot simulations

for a few different values of the threshold x, and interpolate to obtain a crude approximation ξ̊ to ξ. Finally

we use additional simulation runs with our modification of the two-step approach of Glasserman and Li

(2005) with threshold x= ξ̊, and employ the resulting data to estimate ξ.

Before describing the two-step IS, we first consider a one-step IS conditional on Z, which makes the obligors

conditionally independent. In the following, Appendix G.1 first applies the one-step IS conditional on Z to
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estimate λx(Z)≡ P (Y > x |Z). Next, Appendix G.2 extends the one-step IS to a two-step IS to estimate λx,

by first using IS to sample Z from a different CDF than its original one and then applying the one-step IS

given the observed Z. Appendix G.3 finally adapts the two-step IS for λx to instead estimate ξ.

Recall that the total portfolio loss in Section 7.2 is Y =
∑m

k=1CkDk, where Dk = I(ϵk > (wk − akZ)/bk)

is the indicator that obligor k defaults because we assumed that the common shock S ≡ 1. The mutual

independence of Z, ϵ1, ϵ2, . . . , ϵm implies that

given Z, the default indicators D1, . . . ,Dm are conditionally independent. (167)

Moreover, we assume that for D= (D1, . . . ,Dm),

C1, . . . ,Cm,D are conditionally independent, given Z. (168)

The following methods will exploit properties (167) and (168).

G.1. One-Step IS Conditional on Z to Estimate P (Y > x |Z)

This section will modify the one-step IS of Glasserman and Li (2005) to estimate λx(Z) when LGD is random

and satisfies (168). The IS applies exponential twisting (Section 6.2). Let F (· | Z) be the conditional CDF

(CCDF) of the loss Y given Z. For each obligor k, define Tk ≡CkDk, so Y =
∑m

k=1 Tk. Let Hk(· |Z) be the

CCDF of Tk given Z. We will see that given Z, applying an exponential twist to the CCDF F (· | Z) of Y

with twisting parameter θ is equivalent to twisting each Hk(· |Z) with the same θ. (We will later describe in

(183) how to choose θ= θx(Z) as a function of both the factor values Z and the threshold x.)

G.1.1. Exponential Twist to Each Hk(· |Z) This section will exponentially twist each Hk(· |Z) with

the same θ ∈ℜ, and gives details on how to generate Tk when applying IS conditional on Z. The exponential

twist H̃k,θ(· |Z) of the CCDF Hk(· |Z) of Tk given Z using parameter θ ∈ℜ is defined by

dH̃k,θ(t |Z) =
eθtdHk(t |Z)
mHk

(θ,Z)
, (169)

where mHk
(θ,Z) =

∫
eθt dHk(t |Z) is the conditional moment generating function (CMGF) of Tk ∼Hk(· |Z).

Let Ẽθ[ · |Z ] denote conditional expectation given Z, when each Tk ∼ H̃k,θ(· |Z). By (168) we can write

λx(Z) =E [I (
∑m

k=1Tk >x) |Z] =
∫
(t1,...,tm)∈ℜm

I (
∑m

k=1tk >x)

m∏
k=1

dHk(tk |Z)

=

∫
(t1,...,tm)∈ℜm

I (
∑m

k=1tk >x)

m∏
k=1

dHk(tk |Z)
dH̃k,θ(tk |Z)

dH̃k,θ(tk |Z)

= Ẽθ[I(
∑m

k=1Tk >x)Lθ(T1, . . . , Tm,Z) |Z], (170)

where Lθ(t1, . . . , tm,Z) =
∏m

k=1 dHk(tk |Z)/dH̃k,θ(tk |Z) is the conditional LR given Z. Also, let ψHk
(θ,Z) =

ln[mHk
(θ,Z)] be the conditional cumulant generating function (CCGF) of Tk ∼Hk(· |Z), so by (169),

Lθ(t1, . . . , tm,Z) =

m∏
k=1

dHk(tk |Z)
eθtk dHk(tk |Z)/mHk

(θ,Z)
=

m∏
k=1

mHk
(θ,Z)

eθtk
=

m∏
k=1

eψHk
(θ,Z)−θtk . (171)
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We now give more details on the exponential twist H̃k,θ(· |Z) defined by (169), which will require expres-

sions for Hk(· |Z) andmHk
(θ,Z). To computemHk

(θ,Z), let ṗk(Z) be the conditional probability that obligor

k defaults given Z, which satisfies

ṗk(Z)≡ P (Dk = 1 |Z) = P

(
ϵk >

wk−akZ

bk
|Z
)
=Φ

(
akZ+Φ−1(ṗk)

bk

)
(172)

because ϵk ∼N(0,1) is independent of Z and the N(0,1) density is symmetric about the origin. Then we use

(168) and (172) to compute the CMGF of Tk =CkDk ∼Hk(· |Z) as

mHk
(θ,Z) =E

[
eθCkDk |Z

]
=E

[
E
[
eθCkDk |Ck,Z

]
|Z
]
=E

[
eθCk·0 (1− ṗk(Z))+ eθCk·1ṗk(Z) |Z

]
= 1− ṗk(Z)+ ṗk(Z)E

[
eθCk |Z

]
= 1+ ṗk(Z)[mVk

(θ,Z)− 1], (173)

where mVk
(θ,Z) =E [eθCk |Z ] is the CMGF of Ck ∼ Vk(· |Z), and Vk(· |Z) is the CCDF of Ck given Z.

Next we will work out the details of the conditional exponential twist given Z for each Tk ∼Hk(· |Z). To
do this we need an expression for Hk(· |Z), which by (168) and (172) satisfies

Hk(t |Z) = P (CkDk ≤ t |Z) =E[P (CkDk ≤ t |Dk,Z) |Z]

= P (Dk = 0 |Z)P (CkDk ≤ t |Dk = 0,Z)+P (Dk = 1 |Z)P (CkDk ≤ t |Dk = 1,Z)

= (1− ṗk(Z))I(t≥ 0)+ ṗk(Z)P (Ck ≤ t |Z) (174)

by (172), so Hk(· |Z) is a mixture of the CDFs I(· ≥ 0) and Vk(· |Z). Thus, we have

dHk(t |Z) = P (Tk ∈ dt |Z) = (1− ṗk(Z))δ0({dt})+ ṗk(Z)vk(t |Z)dt, (175)

where vk(· | Z) is the density of Vk(· | Z), and δ0 is a measure defined on measurable sets A⊆ℜ, such that

δ0(A) = 1 if 0 ∈A and δ0(A) = 0 if 0 /∈A. Then we can write I(t≥ 0) =
∫ t
s=−∞ δ0({ds}) = δ0((−∞, t]). Also,

putting (175) into (169) yields

dH̃k,θ(t |Z) =
eθt(1− ṗk(Z))δ0({dt})

mHk
(θ,Z)

+
eθtṗk(Z)vk(t |Z)
mHk

(θ,Z)
dt

=
(1− ṗk(Z))δ0({dt})

mHk
(θ,Z)

+
eθtṗk(Z)vk(t |Z)
mHk

(θ,Z)
dt (176)

= q̃k,θ(Z)δ0({dt})+ p̃k,θ(Z)ṽk,θ(t |Z)dt,

where (176) holds because δ0({dt}) is nonzero only when t= 0, in which case eθt = 1, and

ṽk,θ(t |Z)≡
eθtvk(t |Z)
mVk

(θ,Z)
, q̃k,θ(Z)≡

1− ṗk(Z)

mHk
(θ,Z)

, p̃k,θ(Z)≡ 1− q̃k,θ(Z) =
ṗk(Z)mVk

(θ,Z)

mHk
(θ,Z)

, (177)

with (177) using (173). Note that ṽk,θ(· |Z) is the exponential twist of vk,θ(· |Z). Given Z, we have q̃k,θ(Z)+

p̃k,θ(Z) = 1 with q̃k,θ(Z)≥ 0 and p̃k,θ(Z)≥ 0 by (173), so

H̃k,θ(t |Z) =
∫ t

s=0

dH̃k,θ(s |Z) = q̃k,θ(Z)I(t≥ 0)+ p̃k,θ(Z)Ṽk,θ(t |Z) (178)

is a mixture of the CDFs I(t≥ 0) and Ṽk,θ(t |Z)≡
∫ t
s=−∞ ṽk,θ(s)ds. Compared to Hk(· |Z), the exponential

twist H̃k,θ(· |Z) shifts the original distribution’s mass to the right when θ > 0, making large losses more likely.

Also, setting θ= 0 leads to H̃k,0(· |Z) =Hk(· |Z).
For a given θ, we can generate an observation of Tk ∼ H̃k,θ(· |Z) as follows. With probability q̃k,θ(Z), we

set Tk = 0; otherwise (with probability p̃k,θ(Z)), we generate Tk ∼ Ṽk,θ(· |Z).
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G.1.2. Exponential Twist to F (· | Z) We will now show that given Z, exponentially twisting the

conditional distribution F (· | Z) of Y =
∑m

k=1 Tk with twisting parameter θ is equivalent to twisting each

Hk(· |Z) with the same θ. Note that (167) and (168) imply that the CMGF of Y given Z satisfies

mF (θ,Z) =E

[
m∏
k=1

eθTk |Z

]
=

m∏
k=1

E[eθTk |Z] =
m∏
k=1

mHk
(θ,Z) =

m∏
k=1

(1+ ṗk(Z)[mVk
(θ,Z)− 1])

by (173). Recall that ψHk
(θ,Z) is the CCGF of Tk ∼Hk(· |Z), so the CCGF of Y ∼ F (· |Z) is

ψF (θ,Z) =

m∑
k=1

ψHk
(θ,Z) =

m∑
k=1

ln ( 1+ ṗk(Z)[mVk
(θ,Z)− 1] ) . (179)

Then by (171), we can rewrite the conditional likelihood ratio in (170) as

Lθ(T1, . . . , Tm,Z) = eψF (θ,Z)−θY ≡L′
θ(Y,Z), (180)

which depends on T1, . . . , Tm through only their sum Y . Hence, given Z, exponentially twisting F (· |Z) with

θ is equivalent to applying an exponential twist to each Hk(· |Z) with the same θ.

Next we will show how we choose the twisting parameter θ given Z. Let F̃θ(· |Z) be the CCDF of Y given

Z under an exponential twist with parameter θ. The conditional expectation Ẽθ[Y |Z ] of Y ∼ F̃θ(· |Z) under

IS given Z with twisting parameter θ satisfies (e.g., see p. 261 of Glasserman (2004))

Ẽθ[Y |Z ] =ψ′
F (θ,Z)≡

∂

∂θ
ψF (θ,Z), (181)

Also, by (179), we have that for m′
Vk
(θ,Z) = ∂

∂θ
mVk

(θ,Z),

ψ′
F (θ,Z) =

m∑
k=1

ṗk(Z)m
′
Vk
(θ,Z)

1+ ṗk(Z)(mVk
(θ,Z)− 1)

. (182)

Given Z and the threshold x in P (Y > x) being estimated, we choose parameter θ= θx(Z) as follows:

let θx(Z) = 0 when x≤ψ′
F (0,Z);

solve for θx(Z) in ψ
′
F (θx(Z),Z) = x when x>ψ′

F (0,Z).
(183)

Here ψ′
F (θx(Z),Z) = Ẽθx(Z)[Y |Z ] in (181), and ψ′

F (0,Z) = Ẽ0[Y |Z ] = E[Y |Z ], the original conditional

mean (without exponential twisting). The conditional event {Y > x | Z} is typically not rare when x ≤

ψ′
F (0,Z), so we do not need IS in this case, and (183) lets θx(Z) = 0. But when the original conditional mean

ψ′
F (0,Z)< x, we choose the twisting parameter θx(Z) in (183) so that the conditional mean of Y given Z

under IS equals the threshold x, making the event {Y > x |Z} not rare under the IS measure.

G.2. Two-Step IS to Estimate P (Y > x)

In this section, we will extend the one-step IS conditional on Z of Appendix G.1 to estimate the unconditional

tail probability λx by adapting the two-step IS of Glasserman and Li (2005). To do this, Appendix G.2.1

will first specify a new joint CDF Γx(·) for sampling Z under IS. Then for a generated Z∼ Γx(·), Appendix

G.2.2 will apply the conditional IS from Appendix G.1 on the observed Z, to estimate λx.
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G.2.1. Specifying the Joint CDF of Z Under IS In this section we will discuss how to choose

the new joint CDF for Z under IS. Let Φ0 be original joint CDF of vector Z, which has r i.i.d. N(0,1)

components, so dΦ0(z) = (2π)−r/2 exp(− 1
2
z⊤z)dz. Define the new CDF (not necessarily joint normal) for Z

as Γx(·), which may depend on the threshold x, satisfying dΓx(z)> 0 whenever λx(z)dΦ0(z)> 0. Let ẼΓx

be the expectation operator when Z∼ Γx(·). Applying a change of measure to λx =E [λx(Z) ] leads to

λx =

∫
z∈ℜr

λx(z)dΦ0(z) =

∫
z∈ℜr

λx(z)
dΦ0(z)

dΓx(z)
dΓx(z) = ẼΓx

[
λx(Z)

dΦ0(Z)

dΓx(Z)

]
. (184)

Thus, sampling i.i.d. copies of Z ∼ Γx(·) and averaging the values of λx(Z)
dΦ0(Z)

dΓx(Z)
produces an unbiased

estimator of λx. Ideally, we would like the optimal choice of Γx(·) to minimize the variance of the estimator.

Now consider Γ∗
x(·) defined by

dΓ∗
x(z)≡

λx(z)dΦ0(z)

λx
, (185)

and Γ∗
x(·) is a CDF because λx(z) ≥ 0 and

∫
z∈ℜr dΓ

∗
x(z) = 1 by (184). If we let Γx(·) = Γ∗

x(·) in (184) and

sample Z∼ Γ∗
x(·), then the quantity in the right-hand expectation in (184) always satisfies λx(Z)

dΦ0(Z)

dΓ∗
x(Z)

= λx

by (185). Hence, the estimator has zero variance, making Γ∗
x(·) the optimal (minimum variance) choice of

Γx(·) to estimate λx, as is well known (e.g., see p. 256 of Glasserman (2004)). But we cannot implement

Γ∗
x(·) in practice because it requires knowing λx, which is what we want to estimate.

However, Γ∗
x(·) defined by (185) suggests properties of a “good” choice for Γx(·). For example, we would

like to select Γx(·) such that dΓx(·) is large (resp., small) when λx(·)dΦ0(·) is large (resp., small). A simple

heuristic approach that roughly tries to achieve this chooses the CDF Γx(·) in (184) from within a particular

parametric family so that its density has the same mode as dΓ∗
x(·). Specifically, we let Γx(·) =Φν(·), which is

the joint CDF of r independent normal components, with mean vector ν = (ν1, . . . , νr)
⊤ and unit marginal

variances. We want to specify ν so that the mode of dΦν(z), which is at z= ν, occurs at the same location

as the mode of dΓ∗
x(z).

But another issue arises: λx(·) in (185) is also unknown. To handle this, Glasserman and Li (2005) consider

replacing λx(·) with one of several different approximations. We use one of their approaches, which substitutes

λx(z) with the tail probability at threshold x of a (univariate) normal distribution N(η(z), σ2
Y (z)), where

η(z)≡E [Y |Z= z ] and σ2
Y (z)≡Var[Y |Z= z ]. By (167), (168), and (172), we have

η(z) =

m∑
k=1

E [Ck |Z= z ]E[Dk |Z= z ] =

m∑
k=1

E [Ck |Z= z ] ṗk(z), and

σ2
Y (z) =

m∑
k=1

Var[CkDk |Z= z ] =

m∑
k=1

(
E[C2

k |Z= z ]ṗk(z)−E2[Ck |Z= z]ṗ2k(z)
)
.

Thus, we approximate λx(z) in (185) by λ†
x(z)≡ 1−Φ

(
x−η(z)
σY (z)

)
. The mode-matching heuristic identifies

z†
x ≡ argmax

z∈ℜr

[
λ†
x(z)dΦ0(z)

]
= argmax

z∈ℜr

[
λ†
x(z)e

−zT z/2
]
, (186)

which we can try to compute using numerical optimization methods. (Our simulation experiments employed

scipy.optimize with method COBYLA on a few (1 or 2) randomly generated starting points.) Finally, the

new joint CDF for Z under IS is Γx(·) =Φν(·) with mean ν = z†
x.
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G.2.2. Applying Two-Step IS to Estimate P (Y > x) Now that the joint CDF of Z under IS has

been specified as Φν , this section will extend the one-step IS of Appendix G.1 to a two-step IS to estimate

the unconditional tail probability λx. We sample Z under IS from Φν , and dΦν(z) = (2π)−d/2 exp(− 1
2
(z−

ν)⊤(z− ν)dz. Letting Γx(·) =Φν(·) in (184) results in

λx = Ẽν [λx(Z)L
∗
ν(Z) ], (187)

where Ẽν is the expectation operator when Z∼Φν , and the likelihood ratio

L∗
ν(Z) =

dΦ0(Z)

dΦν(Z)
= exp

(
1

2
ν⊤ν− ν⊤Z

)
(188)

corresponds to IS for only Z. Putting (170) with θ= θx(Z) into (187) then gives

λx = Ẽν

[
Ẽθx(Z)

[
I(
∑m

k=1Tk >x)Lθx(Z)(T1, . . . , Tm,Z) |Z
]
L∗
ν(Z)

]
= Ẽν

[
Ẽθx(Z)

[
I(Y > x)L′

θx(Z)(Y,Z)L
∗
ν(Z) |Z

] ]
= Ẽ∗

ν

[
I(Y > x)L′

θx(Z)(Y,Z)L
∗
ν(Z)

]
(189)

by (180) and using iterated expectations, with Ẽ∗
ν as the expectation corresponding to two-step IS, where we

first generate Z∼Φν , and then given Z, we generate Y from the conditional distribution F̃θx(Z)(· | Z) with
twisting parameter θx(Z) in (183). Thus, the right side of (189) shows that using this two-step IS approach

leads to I(Y > x) ·L′
θx(Z)(Y,Z) ·L∗

ν(Z) as an unbiased estimator of P (Y > x) based on a single run.

We now detail the two-step IS to estimate λx with multiple runs. We first

0. Compute the mean ν for the CDF Φν of Z under IS as ν = z†
x from (186).

We execute step 0 only once. For a sample size n, do the following in each run i= 1,2, . . . , n:

1. Generate Zi ∼Φν .

2. Compute the twisting parameter θi = θx(Zi) using (183), for ψ′
F (0,Zi) in (182).

3. Given Zi, for each obligor k = 1,2, . . . ,m, if θi = 0, generate Tk,i from Hk(· | Zi) in (174); else (when

θi > 0), generate Tk,i from H̃k,θi(· |Zi) in (178).

4. Compute Yi =
∑m

k=1 Tk,i, which has CCDF F̃θi(· |Zi).
5. Compute L′

θi
(Yi,Zi) and L

∗
ν(Zi) using (180) and (188).

After completing all n runs, we obtain an unbiased estimator of λx as

λ̂∗
n ≡

1

n

n∑
i=1

I(Yi >x)L
′
θi
(Yi,Zi)L

∗
ν(Zi).

G.3. Two-step IS to Estimate Quantile

Now we adapt the two-step IS method for estimating the unconditional tail probability λx = P (Y > x) to

instead estimate the p-quantile ξ, which equals the threshold x satisfying P (Y > x) = 1− p. The two-step IS

approach of Appendix G.2.2 to estimate λx for some fixed x critically depends on knowing the threshold x.

As the p-quantile ξ is unknown, we cannot directly apply this IS method with x= ξ to estimate ξ. Instead,

we run pilot simulations (with small sample size n0) with the two-step IS method at a small number j0 of

thresholds xj , j = 1,2, . . . , j0, estimating the tail probability λxj for each j, and then interpolate to obtain a

crude approximation ξ̊ to the quantile. Then we run additional simulations using the two-step IS approach

of Appendix G.2.2 for estimating λx with x= ξ̊, and use the resulting data to estimate ξ.

In our experiment, we implemented the approximation method for the p-quantile via three steps:
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1. Let xj = (1− αjp)y
∗ for j = 1, . . . , j0, where 0< αp < 1 is a constant that may depend on p and other

model parameters, and y∗ is the maximum possible loss, which is assumed known. Our simulation experiments

use αp = 0.95 and j0 = 5. Also, y∗ =
∑m

k=1 βk as our experiments have the LGD Ck ∼Unif(0, βk).

2. For each j = 1, . . . , j0, use xj as the threshold in the two-step IS algorithm of Appendix G.2.2 with

sample size n0 to obtain an estimate λ̂xj of the tail probability λxj = P (Y > xj). We let n0 = 100 in our

simulation experiments.

3. Find the j∗ ∈ {1,2, . . . , j0 − 1} such that λ̂xj∗ ≤ 1− p < λ̂xj∗+1, and use log-interpolation on (xj∗ , λ̂xj∗ )

and (xj∗+1, λ̂xj∗+1) to obtain ξ̊ as our p-quantile approximation. If 1− p is not between any pair of the λ̂xj ,

we may need to alter αp to end up with λ̂xj∗ ≤ 1− p < λ̂xj∗+1 for some j∗.

After obtaining the quantile approximation ξ̊, to implement the two-step IS to estimate ξ, apply steps 0–5

of the algorithm in Appendix G.2.2 with threshold x= ξ̊ and sample size n, resulting in outputs (Yi,Zi, θi),

i = 1,2, . . . , n. Then we can compute the IS p-quantile estimator via the algorithm described after (14) as

follows. Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the sorted values of Y1, Y2, . . . , Yn. Also, let Li::n =L′
θj
(Yj ,Zj)L

∗
ν(Zj)

for (Yj ,Zj , θj) corresponding to Yi:n. Finally, our IS p-quantile estimator is ξ̂IS,n = Yip:n, where ip is the

greatest integer for which
∑n

ℓ=ip
Li::n ≥ n(1− p).

H: Main Notation and Definitions

SRS : simple random sampling (§ 3).

IS, IS(θ) : importance sampling (§ 4), IS with twisting parameter θ (§ 6.2).

MSIS : measure-specific importance sampling (§ 5.1).

ISDM : IS with defensive mixture (§ 5.2).

DE : double estimator (§ 5.3).

X∼G : input random vector with joint CDF G (§ 2).

Y = c(X)∼ F : loss, with CDF F and density f , computed as function c of X (§ 2).

µ=E[Y ] : mean loss (§ 2).

ξ = F−1(p) : p-quantile (value-at-risk) of F (§ 2).

η= ξ−µ : economic capital (EC) (§ 2).

PG† ,EG† ,VarG† ,CovG† , : probability, expectation, variance, and covariance operators when X∼G†.

M : simulation method M=SRS, IS, MSIS, ISDM, DE.

L(x),Lθ(x) : likelihood ratio, LR with twisting parameter θ.

δ ∈ (0,1) : allocation or mixing parameter between IS and SRS for MSIS, ISDM, DE.

υ1, υ2 : DE weights ∈ (0,1) in eq. (25) for IS estimators of ξ and µ.

υ′
1, υ

′
2 : DE weights υ′

1 = 1− υ1, υ
′
2 = 1− υ2 for SRS estimators of ξ and µ.

ζ2M : asymptotic variance of η estimator using method M; see (39).

κ2
M =

χ2
M

f2(ξ)
: asymptotic variance of ξ estimator using method M; see (40).
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σ2
M : asymptotic variance of µ estimator using method M.

γM
f(ξ)

: covariance in asymptotic variance of η estimator using method M.

m : number of summands in i.i.d. sum model (§ 6).

pm = 1− e−βm : quantile level in (29) for i.i.d. sum model (§ 6).

mτM : expected time to generate single output for method M (§ 6.1 and 6.2).

REM,m,WNREM,m : relative error, work-normalized RE for method M (§ 6.3).

O(·), o(·),Ω(·), ω(·),Θ(·) : asymptotic (as m→∞) upper bound, strictly dominant upper bound,

lower bound, strictly subdominant lower bound, same order (§ 6.4).

G0, µ0, σ
2
0 : marginal CDF, mean, and variance of each i.i.d. summand Xj (§ 6.1).

M0(θ),M
′
0(θ),M

′′
0 (θ) : moment generating function (MGF) of G0 and first, second derivatives (§ 6.1).

Q0(θ),Q
′
0(θ),Q

′′
0(θ) : cumulant generating function (CGF) of G0 and first, second derivatives (§ 6.1).

∆,∆◦ : domain of M0 and its interior (Assumption 1).

G̃, G̃θ, G̃0,θ : CDFs under IS and exponential twisting for X and Xj .

θ⋆, θm : twisting parameters in (32) and (94).

ξ̆ =mQ′
0(θ⋆), f̆ : quantile approximation in (85), saddlepoint approximation to f in (105).

ARHW : average relative half width (§ 7.2).

RMSRE : root-mean-squared relative error (§ 7.2).

PCRM : portfolio credit risk model (§ 7.2).

Z : systematic risk factors in PCRM (§ 7.2).

ϵk : idiosyncratic risk of obligor k (§ 7.2).

ak : loading factors of obligor k (§ 7.2).

ṗk : marginal default probability of obligor k (§ 7.2).

LGD Ck : loss given default of obligor k (§ 7.2).

Dk : default indicator of obligor k (§ 7.2).

λx = P (Y > x) : tail probability of total loss Y (§ 7.2, Appendix G).

Tk =CkDk : unconditional loss of obligor k (Appendix G.1).

Hk(· |Z), H̃k,θ(· |Z) : conditional CDF of Tk of obligor k given Z, original and with twist (App. G.1).

ṗk(Z) = P (Dk = 1 |Z) : conditional default probability of obligor k given Z (Appendix G.1).

mHk
(θ,Z) : conditional MGF of Tk given Z of obligor k given Z (Appendix G.1).
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