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This paper discusses the application of the likelihood ratio gradient estimator to simulations of large Markovian models
of highly dependable systems. Extensive empirical work, as well as some mathematical analysis of small dependability
models, suggests that (in this model setting) the gradient estimators are not significantly more noisy than the estimates
of the performance measures themselves. The paper also discusses implementation issues associated with likelihood ratio
gradient estimation, as well as some theoretical complements associated with application of the technique to continuous-

time Markov chains.

his paper discusses the application of the likeli-

hood ratio gradient estimator to simulations of
highly dependable systems. This paper makes the fol-
lowing contributions to the existing literature:

1. While the basis of the likelihood ratio gradient
estimation algorithm has been known for some
time (see, for example, Glynn 1986, 1987, 1990,
Reiman and Weiss 1989, and Rubinstein 1986,
1989), much less is known about the empirical
behavior of the estimator in practical problem set-
tings. In this paper, we show, through extensive
experimentation (see Section 5), that the likelihood
ratio gradient estimator is an effective tool for
measuring parameter sensitivity in the context of
Markovian models of highly dependable systems.
Both steady-state and terminating performance
measures were studied. The positive results that we
obtained for the steady-state gradient estimation
problem are of particular interest, in light of the
somewhat pessimistic conclusions reached in pre-
vious theoretical and empirical work (see, for
example, Glynn 1987, L’Ecuyer, Giroux and
Glynn 1987, and Reiman and Weiss 1989). Thus,
the results obtained here suggest that the steady-
state likelihood ratio gradient estimator can be

quite efficient when implemented in an appropri-
ate problem setting.

. The likelihood ratio gradient estimation algorithm,

along with sophisticated variance reduction tech-
niques, has been implemented in a widely distrib-
uted software package, namely the System
Availability Estimator (SAVE) (see Goyal and
Lavenberg 1987 and Goyal et al. 1992) developed
within IBM. Because of the high degree of depend-
ability of the systems typically simulated by SAVE,
rare event simulation techniques (specifically,
importance sampling) are used extensively within
the package (so that failures can be observed). This
paper describes how to combine likelihood ratio
gradient estimation and importance sampling.

. This paper shows how “discrete-time conversion”

can be applied to the steady-state likelihood ratio
gradient estimator (see also Reiman and Weiss
1989 and Glasserman 1992). This method reduces
variance by removing variability due to the expo-
nential holding time variates associated with the
continuous-time Markov chain that is being
simulated.

. The computational burden imposed upon SAVE

by the variance reduction technique and likelihood
ratio gradient estimator can be significant. For
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example, the numerical function evaluations
required to compute the analytically-derived par-
tial derivatives associated with the gradient esti-
mator are time consuming. Section 4 describes
various ideas used within SAVE to improve the
computational efficiency of the estimator.

5. Certain theoretical loose-ends concerned with the
likelihood ratio gradient estimation technique are
addressed within the paper. In particular, we show
that for finite-state continuous-time Markov
chains, the “amiability” assumption described in
Reiman and Weiss (1989) and used in Glasserman
(1992) is essentially always valid for reasonable
performance measures (see the Appendix). Also,
we show that discrete-time conversion applied to
our steady-state gradient estimators is guaranteed
to give a variance reduction.

An alternative approach for estimating derivatives
is the infinitesimal perturbation analysis method; see
Ho (1987) and Suri (1989) for overviews and extensive
references. A drawback of the scheme is that it is
typically more difficult to apply to a given application
than the likelihood ratio approach (see Glynn 1990).
In addition, the perturbation analysis algorithm seems
to be somewhat problem specific, thereby limiting its
applicability. In particular, the standard approach of
implementing perturbation analysis does not work in
our setting. However, Glasserman has developed an
infinitesimal perturbation analysis methodology that
can be used on a subset of the models which we
consider. One difficulty is that the approach does not
appear to extend easily to the setting in which failure
propagation (see subsection 1.1) is permitted.

This paper is organized as follows. Section |
describes the basic mathematical model that is simu-
lated by SAVE. In Sections 2 and 3, respectively,
likelihood ratio gradient estimation for transient and
steady-state performance measures is discussed.
Subsection 3.4 also discusses certain insights that were
obtained by analytically analyzing the behavior of the
likelihood ratio gradient estimator for some (very)
small models. In Section 4, implementation issues are
discussed. Section 5 is devoted to a description and
discussion of the experimental results obtained
through extensive simulations of several large models
having close to a million states. Section 6 discusses
future research directions. The Appendix contains
most of the theoretical material alluded to in item 5
above.

1. PROBLEM SETTING

In this section, we briefly discuss the modeling prob-
lem being addressed by the SAVE package (see Goyal

and Lavenberg) and describe the basic mathematical
model being simulated. We also describe various per-
formance measures associated with the models which
are considered.

1.1. Modeling Highly Dependable Systems

SAVE has been designed to construct and solve
stochastic models of fault-tolerant computers. Fault-
tolerant computing has been applied to two funda-
mentally different classes of applications. One deals
with mission-oriented systems with high reliability
requirements, such as space computers, avionics sys-
tems, and ballistic missile defense computers (see
Geist and Trivedi 1983). For the mission to succeed,
the system must not fail during the mission time.
Hence, the probability that the system does not fail
during the mission time (i.e., the system reliability) is
a measure of interest. Mean time to system failure
is another measure that is used to evaluate such sys-
tems. The other class of applications deals with con-
tinuously operating systems with high availability
requirements, such as telephone switching systems,
general purpose computer systems, transaction pro-
cessing systems (e.g., airline reservation systems), and
communication network computers. For such sys-
tems, system failures can be tolerated if they occur
infrequently and they result in short system down-
times. For such systems, the expected fraction of time
the system is operational (i.e., the system availability)
is a measure of interest.

From the modeling point of view, a system consists
of a finite collection of hardware and software com-
ponents, each of which may be subject to failure,
recovery, and repair. Software components in opera-
tion can also be modeled with constant failure rates
(see Laprie 1984). Component interactions often have
a substantial effect on system availability and must
therefore be considered in addition to the individual
component behaviors. Thus, we have allowed for the
possibility of component failure propagation; i.c.,
the failure of one component causes another compo-
nent to fail immediately with some given probability.
The state-space size of such models grows (often expo-
nentially) with the number of components being
modeled. Therefore, SAVE provides a high level mod-
eling language containing constructs which aid in
representing the failure, recovery, and repair behavior
of components in the system as well as important
component interactions.

If time-independent failure and repair rates are
assumed, then a finite state-space, time homogeneous,
continuous-time Markov chain can be constructed
automatically from the modeling constructs used to
describe the system. Since the size of Markov chains



grows exponentially with the number of components
modeled, simulation appears to be a practical way for
solving models of large systems. However, standard
simulation takes very long runs to estimate availability
and reliability measures because the system failure
event is a rare event. Therefore, variance reduction
techniques which can aid in estimating rare-event
probabilities quickly are of interest. Specifically, the
importance sampling technique has been found to be
most useful to estimate the various dependability
measures (see Goyal et al.). In this paper, we show
that importance sampling also can be effective when
combined with the likelihood ratio gradient estima-
tion method to estimate derivatives. One change of
measure is applied to compute the gradient using the
likelihood ratio gradient estimation technique, and we
employ another change of measure (importance sam-
pling) to estimate these gradients quickly.

1.2. Markovian Model

Suppose that Y = {Y: s = 0} is an irreducible,
continuous-time Markov chain with finite state-space
E and infinitesimal generator Q(f) = {q(f, x, y):
X, y € E}, where 6 is a d-dimensional vector-valued
parameter lying in some closed set ®. We use the
notation that P, and E, represent the probability mea-
sure and expectation, respectively, induced by the
generator matrix Q(6) for some value of §, We assume
that the state-space E can be partitioned into two
subsets E = O U F, where O is the set of up states (i.e.,
the set of states for which the system is operational),
and F is the set of down, or failed, states. We assume
that the system starts out in the state in which all
components are operational; we label this state as state
0. (A more detailed description of the CTMC Y and
its associated generator matrix Q(6) is given in the
Appendix.)

Let X = {X,: n = 0} be the sequence of states visited
by the chain and ¢, be the time spent in each state,
where n = 0. Also, we define X, = (X,, X, ..., X,).
Recall that X is a discrete time Markov chain (DTMC)
with transition matrix P(6) defined by P(4, x, y) =
q(8, x, y)/q(8, x) for x # y and P(4, x, x) = 0, where
g(8, x) = —q(#8, x, x). Furthermore, conditional on X,
the ¢,’s are independent exponential random variables
for which the (conditional) mean of ¢, is 1/¢(8, X,,).

Define {7,: n = 0} as the transition times of Y; i.e.,
To=0,and T, =t + 4, + ... 1, for n = 1. Then
define N(¢) =supin=0: T, < t}.

For any set of states 4 C E, we let a,, denote the
time the CTMC first enters the set 4; ie., ay =
infls > 0: Y,_ &€ A4, Y, € A}. Of particular interest are
ag, which is the first return time to state 0, and «r,
which is the first entrance time into the subset F of
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failed states. Qur goals are to estimate some perfor-
mance measure r(6) = E,[Z(0)], where Z(9) is some
(measurable) function of Y and (possibly) 6; and its
gradient r’(8) = /86 r(6). By varying our choice of
the function Z, we can compute many different per-
formance measures.

1.3. Performance Measures

The following development is based directly on mate-
rial in subsection 2.2 of Goyal et al. We will be
interested in two types of dependability measures asso-
ciated with the CTMC Y: transient measures and so-
called steady-state measures. Considering the transient
measures first, the interval availability, A(¢), is defined
by

1 !
At) = ~ f liy.co d5.
t 5s=0

This is the fraction of time that the system is opera-
tional in the time interval (0, 7). We let I(¢) = E,[A(1)]
be the expected interval availability. Also let F(¢, x) =
P){A(1) = x] denote the distribution of availability.
The reliability of the system is defined to be the
probability that the system does not fail in the interval
©, t):

R(t) = Plar >t} = Eg[1ia0]

Since it was assumed that Y is irreducible, we have
Y, = Y as s — », where = denotes convergence in
distribution and Y is a random variable having the
steady-state distribution = = {x,, x € E} (x solves
the equations 7Q = 0). Notice that steady-state mea-
sures are independent of the starting state of the
system; however, we will choose the fully operational
state (i.e., state 0) to define a regenerative state for the
system; i.e., the successive times at which the process
makes a transition to state 0 form a sequence of
regeneration points. Also, we assume that when com-
puting steady-state measures we can express Z(0) as
Z(6) = lim,.. 1/t {0 f(8, Y,) ds, where f(6, -) is a
real-valued function on E for which f{(-, x) is contin-
uously differentiable in ¢ for each x € E. By regener-
ative process theory (see Crane and Iglehart 1974),
our steady-state measures take the form of a ratio of
two expected values:

Eq[[32 f(6, Y) ds]
Eo[O{o] )

n6) = E,[Z(8)] =

Iff(8, x) = 1,,e0), then Ey[ Z(8)] is the long-run fraction
of time the system is operational and is called the
steady-state availability. We denote this by 4 =
lim,_...E,[A(?)]. We will sometimes find it convenient
to consider the expected interval unavailability
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Ui) = 1 - I(t) = 1 ~ E[A(t)] and the steady-
state unavailability U = 1 ~ A. The problem of
steady-state estimation thus reduces to one of esti-
mating the ratio of two expected values.

The mean time to failure MTTF) E,| ar] is typically
thought of as a transient measure, since it depends on
the starting state of the system (state 0), which is
assumed to be the fully operational state. A ratio
representation for E, [ar] is found to be particularly
useful and is given by

Ea[min( aF, aO)]

Ea[al-‘] = Pg[ap < a()}

The derivation of this formula is given in Goyal et al.
Thus, we can view estimating Eo[ar] as a ratio esti-
mation problem, where both the numerator and the
denominator are estimated using a regenerative sim-
ulation. Therefore, in Section 3 we consider the esti-
mation of the MTTF together with steady-state
measures, which are also (and more commonly) esti-
mated using regenerative simulations.

2. ESTIMATING TRANSIENT PERFORMANCE
MEASURES

In this section, we discuss the estimation of transient
performance measures and their derivatives. We pre-
sent an overview of the likelihood ratio method as
applied to the estimation of derivatives of transient
performance measures. Also, we show how impor-
tance sampling can be applied to estimate more effi-
ciently the performance measures and derivatives.

2.1. Using the Likelihood Ratio Method to
Estimate Gradients of Transient Performance
Measures

Recall that our goals are to estimate r(8) = E,[Z(6)]
and its derivative r'(6) with respect to the parameter
6. In the case of transient performance measures, we
assume that our function Z(6#) has one of the two
following forms:

1. Z(8) = 1s, where S is some event determined by
the process Y up to time 7, where 7 is a stopping
time satisfying Assumption A5 given in the
Appendix.

2. Z(6) = [§ f(8, Y;)ds, where T is some stopping
time satisfying Assumption AS and f(6, -) is a real-
valued function on E for which f(., x) is continu-
ously differentiable in 6 for each x € E.

Let T be a stopping time satisfying Assumption AS.

We define the likelihood of a sample up to time T
under parameter 4 as

du(T, 8)
N(T)-1
=,: k[:I() q(e’Xk)exp{_q(osXk)tk}P(eka,Xk+l)]

-exp{—q(6, Xnr X T~ Twn)l, (1)
and the likelihood ratio is given by
L(T, 8, 60) = du(T, 8)/du(T, bo), 2)

where 6, is some fixed value of 4 lying in the interior
of .

Thus, we express our performance measure as
r(0) = Eo[Z(0)] = Es[Z(9)L(T, 8, 6o)].

We call this transformation a “change of measure”
because we are now computing the expectation based
on a different probability measure. (In this case, the
new probability measure has a different parameter
value.) Billingsley (1961) and Goyal et al. discuss the
validity of the change of measure. By performing
the change of measure, the expectation operator is
now independent of the parameter 6.

If we formally differentiate this expression, assum-
ing that we can interchange the derivative and expec-
tation operators, we have that by applying the product
rule of differentiation,

r'(8) = Eo[Z'(0)L(T, 6, 60)] + Ea[Z(0)L'(T, 6, bo)],

where Z'(8) = 0 if Z(8) has form 1 above, and
Z'(8) = [§ (6, Y;)ds if Z(8) has form 2 above,
and

L'(T, 8, 6o)
N(T)-1 ’
q'(8, Xy) P'(6, Xs, Xk+1)}
= Tll (0, X)) e+ e
[ Z {qw, X)Xt B X, X
—-q' (8, Xy T — TN(T))] L(T, 8, ). (3)

The proof of the validity of the interchange of deriv-
ative and expectation is given in Theorem 1 in the
Appendix.

The terms simplify when we evaluate r/(8) at the
point 6 = f,. In this case, since L(T, 8, 6;) = 1, we
have

7"(00) = Eq[Z'(80)] + Eo[Z(0)L"(T, o, bo)] @



and
L'(T, 8, 8)

N()—-1 ’ ’
q' (80, X2) P (eo,xk,xkﬂ)}
o= P2 Sl caninlu? NN 0 ’X t + ——
[ Z {q(ao,Xk) 9o XUt 6. X Xowr)

~q (8o, XneD (T — Tzvm)]- &)

Note that if 7 is either the time of the first transition
after a deterministic time ¢ or a hitting time to some
set of states, the —g(8o, XnenXT— Tnry) term drops
out.

These results are similar to those derived in Reiman
and Weiss; however, there, only the specialization to
Poisson processes is discussed. Also, the “amiability”
assumption employed in Glasserman (1992) and
Reiman and Weiss (1989) holds in the current context,
and examples of performance measures satisfying this
condition are discussed in subsection 1.3 and the
Appendix. L’Ecuyer (1990) also gives a condition that
can be used to justify the validity of the interchange
of the derivative and expectation operators in a more
general setting than the one we are considering. How-
ever, we prove more directly that the result holds in
our setting; see Theorem 1 in the Appendix.

2.2. Importance Sampling to Reduce Variance

We now apply another change of measure to imple-
ment the importance sampling. As a generalization of
(1), let w*(T, 6,) be a probability measure such that
w*(T, 60)(B) > 0 whenever u(T, 6p)(B) > 0, where B
is a (measurable) set of sample paths up to time T.
Then by applying a change of measure to the right-
hand side of (4), we obtain

r'(80)= EZ{Z"(80)L (T, 60)] 6)
+ EF[Z(80)L"(T, 6o, 80) L*(T, 60)},

where E¥ is the expectation operator under the mea-
sure u*(T, 6o) and

du(T, 6o)
du(T,00)

Rather than using the same measure u*(7, 6,) to
evaluate both expectations on the right-hand side of
(6), we could employ two different changes of measure
u*(T,6,) and p*(T,08) to estimate the two expecta-
tions. This is known as “measure-specific importance
sampling” (see Goyal, Heidelberger and Shahabuddin
1987). In this paper, we will only use one change of
measure to evaluate all expectations. Also, we can
define the new measure u*( 7T, o) such that it depends
on X, the entire sequence of states visited up to that

L*( T9 00) =
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point, and aiso on T}, the time of the kth transition.
We call this method “dynamic importance sampling”
(DIS). These ideas are discussed in Section 4 and in
Goyal, Heidelberger and Shahabuddin.

We choose wp*(T, 6) such that u*(7, 6p) =
ul (T, 0o)u3(T, 6y), where u¥(T, ) is the probability
measure of the state transitions and u(7, 6p) is the
probability measure of the holding times in each state
visited (conditional on the states visited). Thus, we
can separate the likelihood ratio into two different
components. The first component includes only the
transition probabilities, and the second incorporates
only the random holding times; i.e.,

LX(T,80)=L¥T,00)L¥(T, 6o),
where

MDY P(B, Xiy Xir1)
LNT )= ] —posocked
M0= I pr e X
PE(X|Xk-y) is the transition probability (conditional
on X,_,) under importance sampling,
N1
(8o, XiJexpf—q(o, Xi)t}
ILXT,0p)=
HLb= I % T
_exp{~q(bo, Xnn)X T~ Tnn)}
J& T ha(8| Xnerys Tivery) ds

and hy (2| X, T%) is the density of the holding time in
state X} (conditional on X, and T) under importance
sampling. Decomposing the likelihood ratio in this
manner allows us to tailor one change of measure for
the transition probabilities and another for the holding
times.

Lewis and Bohm (1984) presented an importance
sampling technique for estimating transient measures.
They apply “failure biasing” to the embedded DTMC;
this causes failures to occur with higher probability
and therefore quickly moves (biases) the DTMC
toward the set of failed states. This change of measure
is incorporated in the first component of the likelihood
ratio LY. They also apply “forced transitions” to the
holding time in state O (the state with all components
operational) to estimate the reliability. This forces the
next component failure to occur before time ¢. Specif-
ically, if X, = 0 and T, < ¢, then the next holding
time 7, is forced to be between zero and 1 — T, by
selecting ¢, from the conditional density given by

Aoe—Wn
ho(:) Xy T) = 1= T

(M

®)

where 0 < 1, < ¢t — T, and A, is the total failure rate
in state 0. This change of measure is incorporated into
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the second part of the likelihood ratio L*. The simu-
lation continues until time 7 = min(ar, Tng)+1)-

Note that he (.| X,, T,)is not positive whenever the
exponential density is positive. According to the stan-
dard theory of importance sampling, this is not a
legitimate change of measure. However, in this case,
he(2a1 X,, T) is positive over that part of the sample
space (jw: ar < t}) that counts, which is sufficient (see
Glynn and Iglehart 1989).

3. ESTIMATING STEADY-STATE
PERFORMANCE MEASURES

In this section, we discuss the estimation of steady-
state performance measures and their derivatives. We
show how the likelihood ratio method can be applied
to the estimation of derivatives of steady-state per-
formance measures. We also describe some variance
reduction techniques that can be applied to steady-
state derivative estimation. Finally, we investigate ana-
lytically the behavior of the estimators of the steady-
state unavailability and its derivatives in some smali
models.

3.1. Using the Likelihood Ratio Method to
Estimate Gradients of Steady-State
Performance Measures

Recall that our goal is to estimate r(8) = E,[Z(#)] and
its derivative. For steady-state performance measures,
we consider Z(8) of the form

Z(f) = im % j(: f(8, Y)ds,

where f(6, ) is a real-valued function on E for which
f(-, x) is continuously differentiable for each x € E.
Since we assumed that the CTMC Y has finite state-
space E and the transition matrix P for the embedded
DTMC is irreducible, we can define our stopping time
T to be the time of the first return to the initial state
0; i.e., T = ag. Let 7o be the first return time of the
embedded DTMC to state 0; ie, 7o = infln = 1
X, = 0}. Since Y is a CTMC, T is a regeneration time.
Hence, assuming that Eo[| Z(8)}] < o, we express (6)
using the ratio formula

Eo[Zr(6)]

9
Ef{T] ~° ®)

r6) =

where

To—~1

T
ZT(B) = ‘j; f(oa }Is) dS = kgo f(a’ Xk)tk

and

o1

T =y = Z tk-
=0
Let (Z7,(8), T)), j =1, 2, ..., m denote indepen-
dent, identically distributed observations of (Zr(8),
T). Then the ratio estimator satisfies the central limit
theorem:

m(F, — r) = N, o?)

as m — o, where f, = 272, Zr(0)/37, T;and of =
Var[Z;;(6) — rT;}/E[T;}*. See Crane and Iglehart for
further details.

Formally differentiating the expression for r(8) by
interchanging the derivative and expectation, we
obtain

U’ (60){(80) — 1" (6o)u(6o)
1%(8o) ’

r'(6o) = (10)

where

u(6o) = Es[Zr(60)]

u'(60) = Eq[Z7(60)] + Egl Z1(60)L' (T, o, 6o)]
l(60) = Eq[T]

1"(80) = Eo[TL'(T, 6o, 80)]

and

To—1

Zi(bo) = X [f'(60, Xt
f=0

7ol
() ’G,X ,
[Q_(_Q____k) — g’ (o, X) tx

LT, 8y, 6p) =
( b 6o) kg() q(8o, Xi)

P’(b6, Xi, Xk+1)J
P(Bo, Xi, Xiwr) |

The proof of the validity of the interchange of the
operators is given in the Appendix.

To construct confidence intervals for our estimate
of r’(#), we need an expression for its asymptotic
variance. This is given by

52
2+ [27653 aﬂ:l a+2 e + X

/32 8 ﬁ“
26 — &
+ 2[—7—54‘—0@ Tan ~ g5 04C /33 Gap
2v8 — afBb
- —'_6-5_—— agc
228 - )
~ ‘J_Bg_a’@l ggp T+ %7 ‘TCD}, (11)



where ¢% = Var(X), oxy = Cov(X, Y),

A = ZH0o) + Zr(8)L'(T, 6o, o) (12)
B=T (13)
C = Z{8) (14)
D = TL'(T, 6, 6o), (15)

and a = Ey[A], B = E;[B], v = E,[C], and 6 =
E,[D]. A proof of the validity of the expression for
the variance is given in Reiman and Weiss. However,
we give a simpler proof in the Appendix.

3.2. Conditioning to Reduce Variance

Conditional Monte Carlo is a technique which reduces
the variance in simulations of CTMCs (see Hordijk,
Igiehart and Shassberger 1976 and Fox and Glynn
1986). By conditioning on the embedded DTMC X,
we arrive at what is known as the discrete time
method, in which the holding times ¢, are replaced by
their (conditional) means 1/¢(6, X,). There are two
advantages to using this approach. First, since we
replace the random holding times 7, with their
(conditional) means, we do not have to gener-
ate exponential variates. Thus, there is an increase
in computational efficiency. Also, as discussed in
Hordijk, Iglehart and Shassberger (1976) and Fox and
Glynn (1986), this transformation is guaranteed to
give a reduction in the variance of the estimate of r(6).
We also show in the Appendix that the transformation
is guaranteed to reduce the variance of the estimate of
r'(6). Hence, the statistical efficiency is improved.

Using conditional Monte Carlo, we obtain another
ratio formula

_ ElE[Z(0)X]] _ E[G(6)]

= = 1
"= TEIETIXN | EHO) (19
where a straightforward calculation shows that

Go) = X 86, X (17)
k=0
H(§) = Z‘. h(8, Xi) (18)

g(8, x) = f(6, x)/q(6, x), x € E
h(8, x)= 1/q(6, x), x € E

and 7, is the first return time of the DTMC to state 0
(see Goyal et al. for further details). Note that (9) and
(16) are equivalent representations of r(8); however,
the estimators which arise from the two expressions
are different. To form an estimator of r(#) based on
(9), we collect samples of Z(8) and T, whereas we
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accumulate samples of G(#) and H(#) when basing an
estimator on (16).

Glynn (1986) shows that under certain conditions
(viz. Assumption A4 given in the Appendix)

_ EG(O)L(10, 6, f0)]
Ey[H(8)L(70, 8, 80)]’

where L(7o, 8, 6o) is the DTMC likelihood ratio, which
1s defined as

r(#) (19)

” o~ P8, Xk, Xie1)
L(7o, 8, 80) = —
(0. 660 = L 564, X1 Xorr)
A simple calculation shows that L(r,, 6, 8,) =
EfL(ao, 8, 80)|X]. Formally differentiating the right-
hand side of (19) by interchanging the derivative and

expectation, we obtain

W (80)1(80) — I (B0)11(60)
1%(8,) ’

(20)

r’(00)=

(21)
where

W6o) = Eq[G(60)]
'(80) = Eq[G'(80)] + Es[G(80)L (7o, B0, 80)]

I(80) = Eo[H(60)]

I"(80) = Eq[H'(60)] + Ea H(86)L'(ro, 6o, 60)]

and
oy = 5 LB X)a(B0 Xi) = g'(Bo, X)f(B0, Xi)
G'(60) = kizlo (60, Xo)
(22)
’ B 7ot _ qr(ao’ Xk)
H'@) = X ~ =55 (23)
79—1 ’
[:'(To, by, o) = 2 M (24)

k=0 P(00’ Xk’ Xk+l) '

The proof of the validity of the interchange of the
operators in this case is given in Glynn (1986).

Note that (10) and (21) are both exact representa-
tions of 7'(8,) which give rise to different estimators.
To form an estimator of r’(6,) based on (10), we collect
samples of A, B, C, and D given in (12)-(15). We
accumulate samples of G'(8s) + G(8o)L ' (7o, 8o, 8o),
H(6,), G(8o), and H'(8o) + H(86)L’ (0, b, o), respec-
tively, when basing an estimator on (21).

To obtain an expression for the asymptotic variance
of the derivative estimator based on (21), we modify
(11) by replacing 4, B, C, and D given in (12)-(15)
with their conditional expectations. Let o7 and o3
be the variances of the gradient estimators when
using the ratio formula obtained without and with
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conditional Monte Carlo, respectively; i.e., o3, which
is given in (11), is the asymptotic variance of the
estimator of the derivative based on (10), and o3 is
the asymptotic variance of the estimator of the deriv-
ative based on (21). Then, we have that ¢3 < o7,
which states that when using the ratio formula, con-
ditional Monte Carlo always gives rise to a lower
asymptotic variance constant (see Proposition 1 in the
Appendix).

3.3. Importance Sampling to Reduce Variance

As in subsection 2.2, we can use importance sampling
by applying another change of measure. However,
since in this case we use conditional Monte Carlo to
condition out the holding times in each state when
estimating steady-state performance measures, the
likelihood ratio only consists of its first component
L¥, given in (7).

3.4. Two Simple Exampies

In this subsection, we consider two simple availability
examples. The first is a one-dimensional birth-and-
death process with three states, which is also analyzed
in Goyal et al., and the second is a two-dimensional,
five-state birth-and-death process. Because of their
simple structure, we are able to extensively analyze
these models.

Before analyzing the models, we need to make a
definition. We define the sensitivity r(6) of a perfor-
mance measure r(§) with respect to a certain param-
eter 6; to be the product of the parameter itself
multiplied by the partial derivative of the performance
measure with respect to the parameter 6;; i.e., r(f) =
8;-8/98; r(6). Sensitivities measure the effects on the
overall system performance of relative changes in
the value of a parameter.

We will show that (for our two examples)

1. when one sensitivity is much larger in magnitude
than another, the relative accuracy (as measured
by the squared coefficient of variation) of the esti-
mate of the larger one is much better than that of
the smaller one;

2. we can estimate the sensitivities with the largest
orders of magnitude with about the same relative
accuracies as the performance measure estimate,
as long as each sample (e.g., a regenerative cycle in
the case of steady-state estimation) consists of only
a few transitions. This is true in the highly reliable
component situation which we consider in this

paper.

Much of the analysis was done using the symbolic
manipulator Scratchpad (see Sutor 1989).

We define the vector of parameters § with respect
to which we compute sensitivities as the vector of all
continuous-valued parameters of the model. Note that
items 1 and 2 above depend on the parameterization
of the model. However, in the reliability context that
we are considering in this paper, there is a natural
parameterization of the model, which is to have ¢
consist of the values of all the component failure rates
and repair rates. With 8 defined in this manner, we
will see that items 1 and 2 hold for our models.

3.4.1. A Three-State Exampie

The three-state example, which is taken directly from
Goyal et al., can be viewed as a reliability system in
which there is one type of component with a redun-
dancy of two and the components fail and are
repaired. The components have a failure rate A and a
repair rate u. The state space is E = {0, 1, 2}. We
assume that births correspond to failures and deaths
correspond to repairs so that state i corresponds to
having i failed components. We consider the system
to be operational in states 0 and 1 but failed in state
2. Hence, O = {0, 1j and F = {2}.

The transition matrix P of the embedded DTMC
has the following nonzero entries: P(0, 1) = P2, 1) =
1, P(1, 2) = M(\ + ), and P(1,0) = u/(A + p). Using
the method of conditional Monte Carlo, we let 4,
be the mean holding time in state i. Thus, h, = 1/
@N\), b = /(A + u), and A, = 1/u. Since we are
working with highly reliable systems, we assume that
A << u. We first allow u to vary so that we are able to
compute the partial derivative with respect to u. How-
ever, after computing derivatives, we fix ¢ = 1, which
only fixes the time scale we are considering.

We are interested in the steady-state unavailability
r, which is the steady-state probability of being in the
failed state 2. Recall that we can estimate this quantity
using the regenerative method and can express r as
the ratio E[G)/E{H], as in (16). In this example, we
set f(0) = f(1) = 0 and f(2) = 1. We select state 0 as
the regenerative state, and so G = nghy and H = A +
h + ne(h, + h,), where ny is the number of times the
failure state is reached in the regenerative cycle. Note
that nr has a geometric distribution, so that E{ns] =
Mu and Var[ng] = M + w)/u’. Thus, E[G] = ho\/u
and E[H] = (hy + h) + (h; + h)M/u. As shown in
Goyal et al., r = Q(A%) and

_VarlG-rH] 1 (1
CVArm) = 2 REHy ~m " <A>

where CV?(r, m) denotes the asymptotic squared coef-
ficient of variation of our estimate of r after m regen-
erative cycles (we modify the notation of Knuth 1976



to mean f(x) = Q( g(x)) if there exist constants C, and
C, such that for all x sufficiently small, 0 < C,g(x) <
f(x) < Cg(x)).

Straightforward calculations show that the sensitiv-
ities . = Q(A\?) and r, = Q(\?), where we use the
notation r; = §-9r/38. Hence, r, is the sensitivity of
the performance measure r with respect to the param-
eter 8. Using the asymptotic variance for estimates of
derivatives that arise when using conditional Monte
Carlo (see subsection 3.2), we obtain expressions for
the asymptotic squared coefficients of variation of our
sensitivity estimates, which are given by CV(r,, m) =
Q(1/A)/m and CV¥r,, m) = Q(1/1)/m. All the vari-
ance and covariance terms in the expression for the
asymptotic variance of the gradients were used in
the calculations in this example. It turns out that the
dominant terms in the expression for the variance of
the gradients are the ones involving the variances
of the downtime in a cycle G and its derivatives.

Thus, when A <« u; both of the sensitivities are of
the same order as the performance measure estimate.
In addition, the relative accuracies of the performance
measure estimate and the sensitivity estimates are
within a constant factor that is independent of A.

3.4.2. A Five-State Example

The five-state example models a system with two types
of components, where each has a redundancy of two.
There is also the added restriction that once a com-
ponent of one type fails, the components of the other
type cannot fail until the state with all components
operational is reached. Thus, the state space of this
example is E = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)},
where in state (i, j), i represents the number of failed
components of type 1, and j is the number of
failed components of type 2. We select the regenerative
state as the state in which all components are opera-
tional, i.e., (0, 0). We consider the system to be oper-
ational in states (0, 0), (1, 0), and (0, 1), and failed in
states (2, 0) and (0, 2). Hence, O = {(0, 0), (1, 0),
(0, 1)} and F = {(2, 0), (0, 2)}. Let \; denote the fail-
ure rate of component type i, and let u denote the
repair rate of both types of components. We assume
that , K A\ K u=1.

The transition matrix of the embedded DTMC has
these nonzero entries:

P((0, 0), (1, 0)) = /(M + )
P((1,0), (2, 0) = M/(\ + p)
P((1, 0), 0, 0)) = u/(\ + p)

PO, 0), (0, 1)) = N/(A1 + X2)
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P((0, 1), (0, 2)) = Ma/(N2 + 1)
P((0, 1), (0, 0)) = u/(A2 + 1)
P((2, 0), (1, 0)) = P((0, 2), (0, 1)) = 1.

Let A denote the mean holding time in state (i, j).
Thus, ke = 1/Q2N\ + 2N2), hao= 1/(\1 + p), hosy =
1/(\2 + p), and hg o) = ho2 = 1/p.

In this example, we set f(0, 0) = f(1, 0) = f(0,1) =
0 and f(2, 0) = f(0, 2) = 1. Using the ratio formula
again to estimate the steady-state unavailability, we
have that

G = 1 |X1=(l,0)|nlh(2.0) + 1 {X,=(0.l)n2h(0,2)5
and

H=hoo+ lix=a.0hao+ m(hao+ heo))

+ Lixe.i( Aoy + 1 Aoy + hio.2)),

where X, is the first state visited by the embedded
DTMC, n, is the number of times state (2, 0) is visited
in the regenerative cycle, and », is the number of
times state (0, 2) is visited in the regenerative cycle.
Note that conditional on X; = (1, 0) n, has
a geometric distribution, and conditional on X, =
(0, 1), n, has a geometric distribution. Thus,
E[n| X, = (1, 0)] = M/u, Var[m|X, = (1, 0)] =
M+ )/t ElmlXi = (0, 1)] = A/u, and
Var[n| X, = (0, 1)] = M(\; + u)/u?. Thus,

AT+ A2

ElGI= o

and

200+ A3+ (A + M)+ p?
200+ 2)u? )

Therefore, assuming that A\; <« A\; < u = 1, we have
that r = (%) and

_VarlG-rH] _1 <l>
T mAE[H)? m

Al ’
Straightforward calculations show that the sensitiv-
ities r, = QA1 and n, = QAI\; + A}). Using the
asymptotic variance from the central limit theorem
for gradient estimators, we arrive at the asymptotic
squared coefficient of variation of our sensitivity
estimates:

1 1
CVz(?\,, m) = ;1 Q <X—1)
and

1 A
CVir, m)=—Q ! .
A VS W e

E[H]=

CV¥(r, m)
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We only used the terms involving the variances of the
downtime in a cycle and its gradient in these calcula-
tions because, when A\, <« A\, <« u = 1, these turn out
to be the dominant terms as they were in the three-
state example.

Now observe that the sensitivity with respect to A,
is much larger in magnitude than the sensitivity with
respect t0 A\, when A, < \; <« u = 1. The relative
accuracy of the estimate of the sensitivity with the
larger magnitude is of the same order as that of
the performance measure estimate. Furthermore, the
relative accuracy of the estimate of the sensitivity with
the larger magnitude is much better than that of the
estimate of the sensitivity with the smaller magnitude.

Thus, in these two examples the relative accuracies
of the estimate of the sensitivity with the larger mag-
nitude is of the same order as the relative accuracy of
the performance measure estimate. Although these
results were derived for simple examples, we see that
this is also true for the models used in experimentation
in Section 5.

4. IMPLEMENTATION ISSUES

In developing the SAVE package, various implemen-
tation techniques were used to generate more quickly
the transitions of the simulated Markov chains. For a
discussion of the methods, the reader is referred to
Goyal et al.

In addition, the variance reduction schemes
described in the previous sections have been imple-
mented in the SAVE package so that large models can
be analyzed efficiently. The importance sampling
methods for the embedded Markov chain use the
following heuristics. (The ensuing exposition is based
directly on material in Goyal et al.) We need to move
the system very quickly to the set of failed states F,
and once F'is entered, the importance sampling should
be turned off so that the system quickly returns to
state 0, the “all components operational” state. We
achieve this by increasing the probability of failure
transitions over repair transitions. Lewis and Bohm
call this “failure biasing.” We assign a combined prob-
ability biasl to the failure transition in all the states
where both failure and repair transitions are feasible.
Individual failure and repair transitions are selected
in the ratio of their rates given that a failure or a repair
is selected, respectively. We call this the Bias1/Ratio
method, or simply the Bias1 method. We have found
two other methods useful for selecting individual fail-
ure transitions, given that a failure has occurred. The
first is to use a uniform distribution on the failure
transitions, which has very good performance for
“unbalanced” systems, as shown in Section 5 and in

Goyal et al. We call this the Bias1/Balancing method.
The second is to give higher combined probability,
bias2, to those failure transitions which correspond to
component types which have at least one component
of their type already failed. This exhausts the redun-
dancy quickly and has much better performance for
“balanced” systems, as shown in Section 5 and in
Goyal et al. We call this the Biasl/Bias2 method. (See
subsection 5.2 for definitions of balanced and unbal-
anced systems.)

In the SAVE package the user can estimate via
simulation the derivative of any performance measure
with respect to any continuous parameter of the
model. From (5), (22), (23), and (24), we see that to
construct our derivative estimators, we must compute
the derivatives g¢’(d, -), P’(8, -, - ), and f7(8, -). Because
of the typically huge state spaces of the reliability
systems considered, SAVE does not compute and
store all of these values prior to running the simula-
tion. Instead, SA VE calculates the quantities as needed
during the simulation. In its most general form, SAVE
analytically computes the values using a symbolic
differentiator. This allows the user, for example, to
define the component failure and repair rates to be
complicated (differentiable) functions of a parameter
6, and then estimate derivatives of performance mea-
sures with respect to 4. However, using the symbolic
differentiator is somewhat slow, with the extra CPU
time needed to estimate each additional derivative
being about the same as the time spent just estimating
the (nonderivative) performance measure itself.
Therefore, we employed special techniques in the
implementation of the SAVE package to allow
the user to estimate derivatives in certain cases with
little extra computational effort. We now describe the
method.

Suppose that the user wishes to estimate the deriv-
ative with respect to the failure rate A; of component
type i. Consider the derivative ¢’(8, x), which we must
compute during the simulation whenever the system
is in state x. Recall that g(, x) = ¥, q(4, X, ¥), and
so we can express ¢’'(8, x) in terms of the ¢’(8, x, ).
For now, suppose that there is no failure propagation.
If the transition (X, y) corresponds to the failure of a
component of type i, then g(8, x, y) = n(x)\;, where
n{x) is the number of components of type i that
are operational in state x; see (25) in the Appendix.
We easily compute the derivative of ¢(6, x, y) as
'8, x, y) = n,. If the transition (x, y) does not
correspond to the failure of a component of type i,
then g(8, x, ») is not a function of A, and so ¢'(6,
x, ¥) = 0. (A similar situation occurs when there is fail-
ure propagation). The other derivatives that we must
compute during the simulation also have simple



expressions when differentiating with respect to A,
Thus, when estimating derivatives with respect to
component failure rates, we are able to compute the
derivatives needed in the simulation without resorting
to the symbolic differentiator. The same is true when
we estimate derivatives with respect to component
repair rates. By avoiding the symbolic differentiator
in this approach, SAVE can estimate derivatives with
respect to component failure and repair rates
with little additional CPU time, as we will see in
subsection 5.2.3.

5. EXPERIMENTAL RESULTS

In this section, we discuss the results of simulations of
two different models to analyze the behavior of gra-
dient estimates via the likelihood ratio method and to
demonstrate the effectiveness of different variance
reduction techniques. We compare the sensitivity esti-
mates to the performance measure estimates in many
cases to show empirically that certain partial deriva-
tives can be estimated as accurately as the performance
measure itself. All numerical (nonsimulation) and
simulation results were obtained using the SAVE
package (see Goyal and Lavenberg). Because all the
models considered were analytically tractable, we were
able to compute either exact values (up to machine
precision) or tight bounds for the performance
measures with the numerical method (see Muntz,
de Souza e Silva and Goyal 1989). We estimated all
quantities using two different simulation methods:
standard simulation (i.e., without using importance
sampling) and importance sampling. In the case of
transient performance measures, we did not employ
any variance reduction technique for standard simu-
lation. For the steady-state performance measures, we
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used conditional Monte Carlo (see subsection 3.2) for
both standard simulation and importance sampling.

5.1. An n-Component Parallel System

The purpose of the first set of experiments is to
examine the effect of the length of the regenerative
cycle on the varability of likelihood ratio gradient
estimators of steady-state performance measures. We
will discuss the results of some simulations of an
n-component parallel system, where the number of
components 1 was varied from 2-12. For the system
to be operational, there must be at least one function-
ing component. The repair rate u was fixed at 1.0 for
all values of #, and the values of the failure rate A were
varied so that the actual value of the steady-state
unavailability remained fixed at 0.001. For each value
of n, we simulated for 1,024,000 events, where an
event is defined as any transition of the continuous-
time Markov chain. From these runs, we formed
estimates of the steady-state unavailability and the
sensitivities of the steady-state unavailability with
respect to A. Table I contains the values for the steady-
state unavailability and its sensitivity with respect to
the failure rate A obtained using the numerical method
and standard simulation. Because of the small state
spaces of these models, we were able to compute the
values exactly (to within machine precision) using
the numerical method of SAVE. All the simulation
estimates are given with the percentage relative half-
widths of their 90% confidence intervals, which is
defined to be 100% times the confidence interval half-
width divided by the point estimate.

It is interesting to note that for small values of n,
the relative widths of the confidence intervals of the
sensitivity estimates are close to the relative widths of

Table I
Results for an n-Component With Relative Half-Widths
of the 90% Confidence Intervals for the Simulation Estimates

Steady-State Unavailability

Sensitivity With Respect to A

Number of Average Number of

Components Failure Events Per Numerical Standard Numerical Standard

(n) Rate (\) Regenerative Cycle Result Simulation Result Simulation

2 0.023 2.05 0.100 x 1072 0.099 x 1072 0.195 x 102 0.193 x 107?
+1.6% +1.6%

4 0.088 2.63 0.100 x 1072 0.101 x 1072 0.359 x 10°2 0.356 x 1072
+4.4% +4.7%

6 0.123 4.12 0.100 x 1072 0.100 x 1072 0.490 X 1072 0.487 % 1072
+6.5% +7.3%

8 0.138 7.53 0.100 x 1072 0.101 x 1072 0.586 x 1072 0.568 x 1072
+6.5% +9.0%

10 0.143 16.39 0.100 x 1072 0.101 x 1072 0.646 x 102 0.623 x 1072
+8.1% +10.4%

12 0.144 43.89 0.100 x 1072 0.102 x 1072 0.676 + 1072 0.678 x 1072

+8.3% +13.1%
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the confidence intervals of the estimates of the steady-
state unavailability. However, as the number of com-
ponents in the system increases, the relative accuracy
of the sensitivity estimates degrades slightly as com-
pared to that of the performance measure estimates.
The reason for this is that the number of events per
regenerative cycle is increasing as the number of com-
ponents in the system grows because we have adjusted
the failure rate so that the value of the steady-state
unavailability remains constant. Since the derivative
of the likelihood ratio turns out to be a sum of random
variables where the number of summands equals the
number of events in the regenerative cycle, as the
regenerative cycles become longer we are summing up
more random variables. This, in turn, leads to more
variability.

5.2. Balanced and Unbalanced Systems

The next model is a large computing system whose
block diagram is shown in Figure 1. The model is
also considered in Goyal et al. (1992) and Muntz,
de Souza e Silva and Goyal (1989). The following
description of the model is based directly on material
in Goyal et al. We use two different parameter sets to
create a “balanced” and an “unbalanced” system. For
a system to be considered balanced it must satisfy two
criteria. First, each type of component has the same
amount of redundancy, (i.e., the same number of
components of a type must fail for the system to
become nonoperational; e.g., 1-out-of-2 of a type has
the same redundancy as 3-out-of-4 of another type).
Also, the failure rates of all the components must be
of the same order of magnitude. A system that is not

balanced is called unbalanced.
For a balanced system we select two sets of processes

with two processors per set, two sets of control-
lers with two controllers per set, and six clusters of
disks, each consisting of four disk units. In a disk
cluster, data are replicated so that one disk can fail

Spares Spares

Processors

Disk
Controller

Disk Cluster 1 Disk Ctuster 3 Disk Cluster 4  Disk Cluster 6
Figure 1. A block diagram of the computing system
modeled.

without affecting the system. The “primary” data on
a disk is replicated such that one third is on each of
the other three disks in the same cluster. Thus, one
disk in each cluster can be inaccessible without losing
access to the data. The connectivity of the system is
shown in Figure 1. We assume that when a processor
of a given type fails, it has a 0.01 probability of causing
the operating processor of the other type to fail. Each
unit in the system has two failure modes which occur
with equal probability. The failure rates of the proces-
sors, controllers, and disks are assumed to be 1/2000,
1/2000, 1/6000 per hour, respectively. The repair rates
for all mode 1 and mode 2 failures are 1 per hour and
1/2 per hour, respectively. Components are repaired
by a single repairman who chooses components at
random from the set of failed units. The system is
defined to be operational if all data are accessible to
both processor types, which means that at least one
processor of each type, one controller in each set, and
3 out of 4 disk units in each of the six disk clusters
are operational. We also assume that operational com-
ponents continue to fail at the given rates when the
system is failed.

We make minor changes to the above parameter
settings to create an unbalanced system. We increase
the number of processors of each type to 4, and double
each processor’s failure rate to 1/1000 per hour. We
decrease the failure rates of all other components by
a factor of ten. In this system, although a processor
failure is more likely to occur in a failure transition,
it is less likely to cause a system failure due to the high
processor redundancy. This is typical behavior for an
unbalanced system.

5.2.1. Steady-State Measures

In this section, we discuss the results of our experi-
ments for estimating the steady-state unavailability
and the mean time to failure and their sensitivities
with respect to the parameters rr2 (failure mode 2
repair rate) and clfr (disk controller 1 failure rate).
These two parameters were selected to demonstrate
that we can estimate the sensitivities with the largest
magnitude with about the same relative accuracy as
the performance measure estimates, and the sensitiv-
ities of smaller magnitude are not estimated as pre-
cisely, as shown by the example in subsection 3.4.2.
We simulated both the balanced and the unbalanced
systems. Tables II and III show the numerical and
simulation results obtained for the balanced and the
unbalanced systems, respectively.

The numerical results for the (nonderivative) per-
formance measures are taken from Goyal et al. Since
the balanced system has a few hundred thousand states
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Table 11
Estimates of Performance Measures and Their Sensitivities for the Balanced System With Relative Half-
Widths of the 90% Confidence Intervals for the Simulation Estimates

Performance Measure Estimate

Sensitivity With Respect to rr2

Performance Numerical Standard Bias 1/Bias 2 Numerical Standard Bias 1/Bias 2
Measure Result Simulation Method Result Simulation Method
Unavailability 0.931 x 10 1.017 x 107° 0.940 x 1073 —0.125 x 107* —-0.126 x 10~* —0.127 x 10™*

+27.1% +2.7% +33.0% +3.3%
MTTF 0.164 x 10*¢ 0.152 x 10** 0.163 x 10*¢ 0.110 x 10*¢ 0.088 x 10*¢ 0.111 x 10*¢
+25.7% +2.5% +33.4% +2.6%
Table 111

Estimates of Performance Measures and Their Sensitivities for the Unbalanced System With Relative
Half-Widths of the 90% Confidence Intervals for the Simulation Estimates

Performance Measure Estimate

Sensitivity With Respect to rr2

Performance Numerical Standard  Bias 1/Balancing Numerical Standard  Bias 1/Balancing
Measure Result Simulation Method Result Simulation Method

Unavailability  0.697 X 1077 0.417 x 1077 0.698 x 1077 -0.944 x 1077 -0.794x 1077  —-0.938 x 1077
+164.5% +2.4% +164.5% +3.1%

MTTF 0.219 x 10*® 0.470 x 10*? 0.218 x 10*8 0.148 x 10*8 0.456 x 10*® 0.147 x 10*®
+164.5% +2.3% +164.5% +2.4%

and the unbalanced system has close to a million
states, only bounds could be computed (see Muntz,
de Souza e Silva and Goyal). These bounds are very
tight and typically do not differ from the exact results
significantly.

We see that the various variance reduction
techniques have the same effect on the sensitiv-
ity estimates as they do on the performance measure
estimates. Significant variance reductions can be
obtained using the Biasl/Bias2 method for the bal-
anced systems and Biasl/Balancing method for the
unbalanced systems, as shown in Goyal et al. These
results hold for both the performance measure esti-
mates and the sensitivity estimates.

We ran the simulations long enough so that the
smallest entry in the tables for the percentage relative
half-widths of the 90% confidence intervals was less
than 5%. This corresponds to approximately 100,000
events for each entry in Table II and 1,000,000 events
for each entry in Table III, respectively. Based on
empirical results obtained in Goyal, Heidelberger and
Shahabuddin, the values for biasl = 0.5 and bias2 =
0.5 were selected for the importance sampling.

There are several important points to note in
the tables. For the balanced system, we used the
Biasl/Bias2 method, and Biasl/Balancing was used
for the unbalanced system. As is shown in Goyal,
Heidelberger and Shahabuddin, these methods are
most effective for their respective models when
estimating the (nonderivative) performance measures.

We can see that this is also the case for the sensitivities
because we obtain estimates of the largest sensitiv-
ities that are about as accurate as the performance
measure estimate.

The relative precision of the performance measure
estimates and the estimates of each of their respective
sensitivities with respect to rr2 are approximately
equal, which agrees with the analytic results we
obtained from the simple examples in subsection
3.4.1. Also, as claimed in subsection 3.4.2, we do not
obtain the same accuracy for the estimate of the
sensitivity with respect to cIfr because it is of smaller
magnitude. It is also interesting to note that the
amount of variance reduction from importance sam-
pling over standard simulation in the sensitivity esti-
mates is about the same as the variance reduction in
the performance measure estimates. This is because
the same likelihood ratio needed for importance sam-
pling is used in both the performance measure esti-
mate and the sensitivity estimates, and the likelihood
ratio in both cases is multiplied by the accumulators
at the end of each cycle.

Also note that the sensitivity estimates with respect
to ¢lfr in the unbalanced system using standard sim-
ulation given in Table III are very poor. This is because
the value of clffr is much smaller than the value of
parameter procfr, the processors’ failure rate, and so
events corresponding to failures of disk controller 1
are somewhat rare compared to failures of one of the
processors. Therefore, we are not able to obtain



150 / NAakKaYaMA, GOYAL AND GLYNN

Table 11
Continued
Sensitivity With Respect to c1fr
Numerical Standard Bias 1/Bias 2
Result Simulation Method
0.232 x 10~ 0.372 x 1073 0.259 x 1073
+64.1% +6.3%
-0.407 x 10** -0.589 x 10*° -0.442 x 10**
+58.6% +6.0%
Table II1
Continued
Sensitivity With Respect to c1fr
Numerical Standard Bias 1/Balancing
Result Simulation Method
0.232 x 1077 —0.343 x 10710 0.236 x 1077
+166.8% +6.0%
-0.730 x 10*7 0.110 x 10*3 -0.732 x 10*7
+191.0% +5.2%

accurate results for both the point estimate of the
sensitivity with respect to clfr and its variance. How-
ever, when using Biasl/Balancing, we obtain much
better estimates of these quantities.

We next performed coverage experiments (e.g., see
Lavenberg, Moeller and Sauer 1979) to determine the
validity of the confidence intervals that are formed
based on the asymptotic central limit theorems
described in Section 3. Such studies are important
because certain variance reduction techniques some-
times do not produce valid confidence intervals,
except for very long run-lengths (e.g., see Lavenberg,
Moeller and Sauer).

We performed experiments on the estimates of the
steady-state unavailability U and its sensitivities
with respect to both rr2 and clfr, denoted by
U, and U,z respectively, in the above described bal-
anced system, as follows. We chose three run lengths
corresponding to small, medium, and large sample
sizes, and we considered two ways of estimating U
and its sensitivities: standard simulation and the
Bias1/Bias2 method with DIS. For each method and
run length we ran R = 100 replications and formed
point estimates U, ..., Ux of the performance mea-
sure sensitivities, and U, . .., Usr, for 8 = rr2 and
clfr, of the sensitivities, and 90% confidence intervals
for all these estimates. We then calculated the mean
percent relative bias (=100%-(1/R) 3R, (U= U)/U
for the steady-state unavailability estimator, and like-
wise for the sensitivity estimators) and the standard
deviation of this mean. Note that if an estimate is

unbiased, then its mean percent relative bias should
converge to zero as R — o. We also calculated the
90% coverages, which is the percentage of the (com-
puted) 90% confidence intervals that actually contain
the true values of U, U,,,, and U, respectively. If the
confidence interval is valid then, by definition, the
90% coverage should be equal to 90%.

We also calculated the mean percent relative half-
width of the 90% confidence intervals. For each rep-
lication, this relative value is computed using the point
estimate and not the true value. Thus, because the
mean percent relative half-width of the 90% confi-
dence intervals is defined as the ratio of the absolute
half-width of the 90% confidence interval over the
point estimate, the mean is computed only over
the replications with a nonzero point estimate. (By
excluding the zero point estimates, the results pre-
sented are, in some sense, overly optimistic because
we only have computed the mean percent relative
half-width over all of the “good” observations.) The
results are listed in Table IV. Note that, as also seen
in Goyal et al., the estimates using standard simulation
are significantly more biased than those using impor-
tance sampling, and their confidence intervals are
about an order of magnitude wider. The values of the
relative bias and relative half-widths for the estimates
of the sensitivities with respect to rr2 are about the
same as those for the performance measure estimate,
while these values for the estimates of the other sen-
sitivity are generally worse. This agrees with the results
given in subsection 3.4.2. Furthermore, for the small
run length the coverage drops significantly below 90%
when using standard simulation. Using our variance
reduction technique, all the coverages are close to the
nominal 90% value.

The good behavior of the regenerative-based,
steady-state gradient estimates described here can be
expected to typically hold for the types of models
generated by the SAVE package. Because the failure
rates are usually orders of magnitude smaller than the
repair rates, regenerative cycles tend to be short, with
a typical cycle consisting of one failure transition and
one repair transition. Thus, when using importance
sampling, regenerative cycles typically consist of only
a few failure and repair transitions because we turn
off failure biasing once a system failure occurs in a
cycle.

5.2.2. Transient Measures

In this section, we discuss the results of our experi-
ments for estimating reliability and its sensitivity with
respect to both rr2 and clfr. To estimate these mea-
sures, we did not use conditional Monte Carlo in our



NAKAYAMA, GOYAL AND GLYNN / 151

Table IV
Coverage Results for Performance Measure Estimators and Sensitivity Estimators
for the Balanced System (100 Replications)

Standard Simulation Bias1/Bias2 Method
Average Average Average Average
Relative Bias Relative Relative Bias Relative
Events Per (Standard Deviation) Half-Width Coverage (Standard Deviation) Half-Width Coverage
Replication (%) (%) (%) (%) (%) (%)
(a) Steady-State Unavailability
2,000 6.95 144.40 54 0.74 18.88 85
(12.82) (1.20)
20,000 ~3.94 65.47 90 0.39 5.99 92
(3.41) 0.34)
200,000 1.29 19.60 96 0.05 1.90 90
(1.09) 0.13)
(b) Sensitivity of Steady-State Unavailability With Respect to rr2
2,000 14.03 155.96 46 0.37 23.26 84
(19.15) (1.59)
20,000 ~1.86 82.30 84 0.40 7.46 92
(4.96) (0.43)
200,000 2.23 25.27 94 0.03 2.38 86
(1.45) (0.16)
(c) Sensitivity of Steady-State Unavailability With Respect to ¢l fr
2,000 20.73 432.36 1t 3.73 46.45 90
(36.64) (2.86)
20,000 =2.13 147.02 62 -0.18 14.86 82
(10.66) (1.04)
200,000 5.25 56.79 86 0.10 4.68 95
(3.62) 0.27)

simulations. Recall that for transient measures we not
only want the system to move quickly toward the set
of system failed states F, but also to get there before
the observation period expires. For Markov chain
simulations, these issues are (in some sense) orthogo-
nal, because the holding times that determine the
hitting time are conditionally independent of
the embedded DTMC that is biased toward hitting F.
We therefore use the same technique as in the steady-
state case to bias the embedded Markov chain toward
the system failed set, in addition to another indepen-
dent technique (e.g., forcing as discussed in subsection
2.2) to reduce the variance due to holding times in
the various states. The likelihood ratios corresponding
to these two aspects of simulation are conditionally
independent and can be formulated as in subsection
2.2 and in Goyal et al. The goal of the simulation is
to study the relative accuracies of the performance
measure estimate versus estimates of its sensitivities
and to compare the effects of the forcing technique
on these quantities. We considered only the balanced
system. For each measure, we allowed each method
to run for 400,000 events. The results are given in
Table V.

For all methods, we notice that the confidence

intervals are smaller for some range of intermediate
time periods and wider at the extremes. Also, the three
tables indicate that forcing is most effective for short
time intervals. These characteristics are discussed in
Goyal et al.

It is interesting to note that the relative accuracy of
the sensitivity estimates with respect to r72 are con-
sistently slightly worse than that of the performance
measure estimate, which strays from the result that
we obtained for the steady-state measures. This is
because we are working with transient measures, and
so the likelihood ratio includes terms for the (random)
holding times. Thus, when we compute the gradient
of the likelihood ratio, we are including additional
random variables corresponding to the holding times
in the sum, thereby increasing variability (compare (5)
and (24)). Also note that the relative accuracy of the
sensitivity estimates degrades compared to that of
the performance measure estimate as the time horizon
increases. This is because the length of each observa-
tion increases as the time horizon grows, thus increas-
ing the number of random variables included in the
sum for the gradient of the likelihood ratio, thereby
increasing the variance. This is similar to the results
from the n-component parallel system.
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Table V
Estimates of the Unreliability and its Sensitivities for Different Time Horizons ¢ for the Balanced System
Time Numerical Standard Simulation Bias 1/Bias 2 Method
(t) Result No Forcing Forcing No Forcing Forcing
(a) Unreliability

4 0.153 x 107 0.103 x 10™ 0.148 x 10~ 0.158 x 107 0.152 x 107*
+116.3% +23.9% +7.0% +1.4%

16 0.873 x 107* 1.072 x 107* 0.943 x 10~ 0.869 x 107* 0.870 x 107
+37.7% +22.8% +3.3% *1.3%

64 0.380 x 1073 0.355 x 1073 0.342 x 1073 0.380 x 1073 0.384 x 1073
+24.0% +24.9% +1.8% +1.1%

256 0.155 x 1072 0.146 x 1072 0.158 x 1072 0.157 x 1072 0.158 x 1072
+16.8% +19.9% +1.5% +1.0%

1,024 0.623 x 1072 0.560 x 1072 0.625 x 1072 0.628 x 1072 0.623 x 1072
+14.9% +16.0% +4.9% +4.3%

(b) Sensitivity of Unreliability With Respect to rr2

4 —0.435 x 1073 -0.178 x 10~° -0.513 x 10°° —0.411 x 1073 -0.428 x 10~*
+117.0% +39.8% +13.4% +2.9%

16 -0.489 x 10~ -0.639 x 10™* —0.480 x 107* ~0.485 x 10~ —0.485 x 10~
+59.8% +48.0% +6.1% +2.5%

64 —0.246 x 1073 —-0.208 x 1073 —0.168 x 1073 —0.242 x 1073 -0.247 x 1073
+46.7% +44.6% +3.6% +2.3%

256 —0.103 x 107 —0.093 x 1073 —0.088 x 1072 —0.104 x 1073 —0.106 x 1072
+35.0% +42.4% +4.0% +2.7%

1,024 -0.416 x 1072 —0.520 x 1072 —0.450 x 1072 -0.422 x 1072 —0.397 x 1072
+33.4% +40.8% *+15.0% +12.6%

(c) Sensitivity of Unreliability With Respect to ¢l fr

4 0.379 x 10~* —0.349 x 1077 0.469 x 1073 0.404 x 1073 0.372 x 10°*
+116.7% +59.2% +19.5% +4.3%

16 0217 x 107 —0.011 x 107* 0.253 x 107* 0.212 x 107 0.214 x 107*
+40.6% +61.1% +9.3% +3.8%

64 0.945 x 107 0.805 x 10~ 1.097 x 1074 0.930 x 107 0.937 x 107
+74.2% +63.9% +5.5% +3.5%

256 0.385 x 1073 0.306 x 1073 0.670 x 1073 0.397 x 1073 0.396 x 1073
+57.4% +44.6% +6.2% +4.2%

1,024 0.154 x 1072 0.142 x 1072 0.214 x 1072 0.125 x 1072 0.138 x 107
+60.6% +48.7% +27.1% +22.8%

5.2.3. Timing Experiments

Table VI shows the results from some timing experi-
ments which we performed to determine how much
extra CPU time is required to estimate sensitivities.
The experiments consisted of different simulation
runs in which we varied the number of sensitivities
estimated and recorded the amount of CPU time
taken in each run. We performed all of the experi-
ments on an IBM 3090 computer using the SAVE
package, simulating the balanced system with the
Bias1/Bias2 (0.5/0.5) technique for 100,000 events.
As one can see, there is a fairly large fixed cost in CPU
time for estimating the first gradient, but the marginal
cost in CPU time for estimating each additional gra-
dient is small. Note that the additional time required
to estimate eight sensitivities is about the same as the

amount of time needed to run SAVE when estimating
no gradients.

6. SUMMARY AND DIRECTIONS FOR FUTURE
WORK

In this paper, we have shown that the likelihood ratio
gradient estimation technique can be an effective prac-
tical tool for computing parameter sensitivities in large
Markovian models of highly dependable systems. In
fact, both our analysis and our computational expe-
rience suggests that the gradient estimates considered
here are not significantly noisier than the estimates of
the performance measures themselves. In addition to
discussing implementation issues that arise in calcu-
lating and computing such gradient estimators, we



Table VI
CPU Times to Estimate Different Numbers of
Sensitivities Using Simulation (100,000 Events)

Number of

Sensitivities CPU Seconds

Estimated Taken

0 11.38

1 17.18

2 17.92

4 19.00

8 22.60

16 28.74

also show that the derivative and expectation
interchange implicit in obtaining the validity of the
estimators holds for a wide class of performance mea-
sures associated with finite-state, continuous-time
Markov chains.

A number of interesting research directions present
themselves for future work:

1. development of additional variance reduction tech-
niques for the likelihood ratio gradient estimator;

2. an analytic proof, for the general Markovian model
of a highly dependable system, that the variability
of the gradient estimator is roughly of the same
order as that of the performance measure itself
(thereby extending the results of this paper beyond
our current three- and five-state examples given in
subsection 3.4);

3. extending the methods of this paper to non-
Markovian models, in which the failure and repair
times are no longer necessarily exponential; this
will necessitate the development of efficient non-
regenerative techniques for estimating steady-state
gradients in a rare-event setting;

4. fully examining the applicability of infinitesimal
perturbation analysis techniques to our setting.

APPENDIX

First we justify the interchange of derivative and
expectation. To do so, we make the following
assumptions:

Al. State-space E is finite.

A2. Q(-) is continuously differentiable on 8.

A3. P(8) is irreducible.

Ad. T(0) = {(x, y): P(8, x, y) > 0} is independent of
6, for 8 € 0.

AS. T is a stopping time such that there exists some
Zo > 0 for which the moment generating function
MY (z) of N(T) converges for all z € (~z,, o)
and all ¢ € ©.
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A6. Z(6) has one of these forms:

1. Z(8) = 1g, where S is some event determined by
the process Y up to time 7, where T is some
stopping time satisfying AS;

2. Z(6) = [§ f(8, Y,)ds, where T is some stopping
time satisfying AS and f'is a real-valued function
defined on (0, E) for which f{(., x) is continuously
differentiable on @ for each x € E.

We now argue that A1-Ad are typically satisfied by
models of highly reliable systems. In addition, we show
that the performance measures considered in subsec-
tion 1.3 satisfy AS and A6.

Recall that a system we are considering consists of
a finite number C of components, where each com-
ponent can be in a finite number of states (e.g., fully
operational, degraded status, failed, or under repair).
In the case when components can only be in one of
two states (i.e., operating or failed) and the repair
discipline is processor sharing (i.e., the repairperson
simultaneously works on all failed components, where
the amount of effort devoted to each component is
proportional to its repair rate), the state space is given
by

E={x,....,x):0=sx;<sn forl <is(

where #; is the total number of components of type i
in the system and x; represents the number of failed
components of type i in state x. Hence, the resulting
model has a finite state space, and so Al is satisfied.

The parameter § usually is a vector consisting of the
components’ failure and repair rates; 1.e., 8 = (A, .. .,
Ac, M1 - -5 Kc), Where \; and p; are the failure and
repair rates, respectively, of components of type i.
When there is no failure propagation, the elements of
the generator matrix Q(#) typically have the form

q(8, x, y)
n{x)\; if y=x + ¢ for some i
= qcx, Yy if y=x — ¢ for some j, 25)
0 otherwise

for x # y, where n;(x) is the number of components
of type i that are operational in state x, c(x, y) = 0 is
some constant, and ¢; is the ith unit vector in €.
When we allow for failure propagation, the generator
matrix has a similar form except that there are tran-
sitions (x, y) for which ¢(8, x, y) > 0 and y = x,
y# x,and y # x + e;. Hence, in either case, A2 usually
is satisfied.

The transition matrix is irreducible for § € 9, which
can be seen as follows. Since all operational compo-
nents continue to fail regardless of the state of the
system, the state (n,, ..., nc) (i.e., the state with all
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components failed) is accessible from any other state
of the system. Also, since the repairperson is always
busy if some component is failed (i.e., for all x # 0,
there exists some i such that y = x ~ ¢ and
q(6, x, y) > 0), all states (including state 0) are acces-
sible from state (n,, ..., ne). Thus, the transition
matrix is irreducible, and so A3 is satisfied.

By the structure of the generator matrix Q(f) given
in (25), we can see that T'(8) = {(x, y): P(6, x, y) > 0}
typically is independent of ¢ for § € ©. Thus, we can
let ' = I'(8), and so A4 is satisfied.

Many interesting examples of stopping times satisfy
AS. In particular, T satisfies A5 if A1-A4 are in force
and any of the following holds:

1. T = Tnu+1, Where ¢ is deterministic; i.e., T is the
time of the first transition after time ¢.

2. T =t, where t > 0 is deterministic.

3. T=a,=inflt>0: Y. & A4, Y €A} for some
set of states A4; i.e., T is the hitting time to the set
of states A.

We now show that all of the performance measures
described in subsection 1.3 satisfy A6. First consider
the transient measures (except for MTTF). All of these
measures have functions Z(6) that depend on a deter-
ministic stopping time 7T i.e., T = ¢, where ¢ is fixed.
By item 2 above, stopping times of this form satisfy
AS. Thus, the performance measures reliability and
the distribution of interval availability have functions
Z(0) satisfying form 1 of A6. Also, the function asso-
ciated with the expected interval availability satisfies
form 2 of A6. Now consider the steady-state perfor-
mance measures and the MTTF. Under Al and A3,
our CTMC Y is a regenerative process. Hence, these
performance measures can be expressed as ratios of
expectations of functions Z(8). For these measures,
the Z(6) depend on stopping times 7 that are hitting
times, which satisfy AS by item 3 above. The numer-
ator and denominator terms in the steady-state avail-
ability and the numerator in the MTTF ratio
expressions have functions Z(8) of the form 2 in A6.
Also, the denominator in the ratio formula for the
MTTF can easily be seen to be of form 1 of A6.
Hence, all of the performance measures discussed in
subsection 1.3 satisfy A6.

Now we justify the interchange of the derivative and
expectation.

Theorem 1. If A1-A6 hold, then
2 {EJZOL(T,6,00hes
= Ey[Z'(80)] + Eg[Z(60)L'(T, 8o, 00)],

where 8 lies in the interior of ©.

Before we prove the theorem, we need to prove
some preliminary results. The first lemma shows that
AS implies that the stopping time 7 has a moment
generating function which converges in some neigh-
borhood of 0.

Lemma 1. Suppose that T is a stopping time satisfying
AS. Then there exists z; > 0 such that the moment
generating function My(z) of T converges for all z €
("‘Zl, Z]) and all 8 € 0.

Proof. Note that M,(z) = E,[e’"]. For z < 0, My(z) <
o since €7 < 1. So now assume that z > 0. Note that
over the set {N(T) = n}, we have T < Y}y &, and so

Myz) = Y, Edeinyn]

n=0

<Y E [exp{z kEo tk} 1{N(T)=n}:i

n=0
<3 EP {exp{zz 5 zkH VANCT) = )
n=0 k=0

by the Cauchy-Schwarz inequality.
We now show that

My(n, z) = E, {exp{ 2z i tkH
=0

converges for all z > O sufficiently small. Define
q, = infig(8, x): 6 € ©, x € E} > 0. Then we have

]

Myn,z)=E, E,[exp{Zz Y tk[ :
L k=0

=E

@

i Ea[e’”*lxl]
=

r n+1
oo 906, 4
~E kgo (q(ﬂ,Xk)—ZZ)F(q* —22)

<o

for all z < ¢+/2.

By AS5, there exists 7 > 0 such that My(n) < = for
all 6 € ©, where M,(-) is the moment generating
function of N(T). Thus,

PAN(T) = n} < P{N(T) = n} = Bje™ = ™}
< ¢ "My(n)

by Markov’s inequality, and so

_ Ma(n)q,,)”2 : ( eq, )"/2
Mdz) = (q* -2z §0 q, — 2z

< o

for all z < (1 — e ")¢./2, which completes the proof.



We now state another lemma.

Lemma 2. If A1-A6 hold, then EZ(0)"] < » and
EJZ'(8)] < w forall k and all § € ©.

Proof. When Z(6) = ls, the result obviously holds.

So now assume that Z(6) = [§ f(6, Y,) ds. Then we

havethat | Z(8)| < | fllTand | Z'(8) | < ||/ || T, where
I/ = sup{|f(6, x)|: § € ©, x € E}

I/ 1l = supf|f"(8, x)|: 6 €6, x € E}.

Since f(-, x) is continuously differentiable on @ for

each x € E, we have || f]]| < and | f’| <« by Al.

Now Lemma 1 implies that E,[T*] < « for all kK and
all € 0, from which the result easily follows.

Now we prove the validity of the interchange of the
derivative and expectation operators.

Proof of Theorem 1. To justify the interchange, we
will show that the difference quotients

h™'[Z(60 + R)L(T, b0 + h, 80) — Z(60)]

are dominated by an integrable random variable. By
the mean value theorem, we have that the difference
quotient is equal to

Z’(U)L(T, n, 00) + Z(W)L’(T; s 00)7

for some n € (8, 6o + h).
Define

lg'll» = sup{lq’(8, x)|: |6 — 6o} < h, x € E}
llg’/qll» = supflq’(6, x)/q(8, x)I:
|6 ~ 86| < h, x € E}

lla/q(80)ll» = sup{|{q(8, x)/q(bo, X)|:
|8 — 60| < h, x € E}
lg — q(6o)ll» = supf|g(8, x) — q(fo, x)|:

|6 — 60| < h, x € E}
IP’/Ply = sup{P’(8, x, y)/P(6, X, y):
|6 — 60| < h, (x, y) € T}
| P/P(6o)l » = supl| P(6, x, y)/P(8o, x, Y)I:
|6 — 6ol < A, (x, y) ETY,

where I' = T'(6). By A1, A2, and A4, all of these terms
are finite.
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From (3), we have that L’(T, », o) is equal to

N(T)-1 ,
q'(n, X)) P'(n, X, X,-H)}
=2 g, X+

[ {(I(ﬂo, x) 1 (n. X5}t P(no, X;, Xj1)

=0

= q'(n, XoeoXT — TNm]

N(T)M _
. [kI-IO q(Ho,Xk)exP{ (‘I(n,Xk)

~ 400, X)) f(_n&_X,k_l}

P, Xi, Xic1)
-expi—(g(n, Xnn) — 400, X)X T — Twen)i-
Now we can bound |L’(T, », 6,)| by

[(N(ﬂ + DG’ /qlle + IP'/PIw) + g In

N(T)»-1
) tf+||q'||h(T—TN<n)]

=0

g/ g1 ¥+ P/ P(B) 15T
N(T)—1
. eXp{ lg—a(Bo)ls 2 tk}
k=0

-expillg — g0l { T — Tnen)},
which, in turn, can be bounded by ¢,(4)é:(h), where

ou(h) = N(T)lg’/qlln + |\ P’/Pls) + N’ 4T
o) = 1 g/q(0)I PN P/P(B)IFTP
- expillg — q(8o)ll4T}. (26)

Note that we can bound |Z(#)L'(T, 4, 6)| by
o(h) = | Z(n)|p:1(h)pa(h). Lemma 1 and AS imply that
T and N(T) have finite moments of all orders. By A2,
la/q(80)ll» — 1, | P/P(60)l» — 1, and | g — q(Bo)l» —
0 as & | 0. Hence, by repeated applications of the
Schwarz inequality and using Lemma 2, we have that
¢(hyo) is integrable for some A > 0 which is sufficiently
small. Now noting that for 0 < A < hy, we have
o(h) < ¢(h), and so we can use ¢(h) as our
dominating random variable for Z(n)L'(T, 1, 0o).
Thus, by the dominated convergence theorem,
Z(n)L'(T, n, 6,) is integrable. Similarly, we can show
that Z’(n)L(T, n, 6p) can also be dominated by an
integrable random variable. Hence, by noting that
L(T, n, 66) - 1 as k | 0, the proof is complete.

Now we will give a proof of the asymptotic variance
of our estimator of () given in (10). To do this, we
need the following result (see Serfling 1980, p. 118 for
the proof).
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Theorem 2 (Central Limit Theorem). Let X;, i =
1, 2, ..., be independent and identically distributed,
d-dimensional random vectors with mean vector u and
covariance matrix Y, and suppose that g: ®#* — Ris
differentiable at p. If E\X,|? < =, then Vn[g(X,) -
g(u)] = N(0, ¢°) as n — x, where

VR

X,, = X,‘

S |-

i=1

o® = Vg(p)" $Ve(u) and Vg(-) is the gradient of g.

Now we give a proof of the expression for the
asymptotic variance of the estimate of the gradient
when using the ratio formula.

Theorem 3. If A1-A6 hold, then the asymptotic vari-
ance of the estimate of v’ (6o) in (10) is given by (11).

Proof. We define the vector V = (4, B, C, D), where
A = Z7(8o) + Z(0o)L'(T, 6o, 80)

B=T

C = Zr(6o)

D = TL'(T, 8, 6o)

as in (12)-(15). To apply Theorem 2, we first need to
show that E,[||V|?] < ». Lemmas | and 2 show that
T, Z#(#), and Z7 () all have finite moments of all
orders. Now note that |L’(T, 6, 6o)| is bounded by
¢i(h) for all & = 0, where ¢,(h) is defined in (26) in
the proof of Theorem 1. Since ¢:(#) has a moment
generating function which converges for all suffi-
ciently small 4, we have that L'(T, 6,, 6,) also has
finite moments of all orders. Hence, by repeated appli-
cations of the Schwarz inequality, we have that 4, B,
C, and D all have finite second moments, which
implies E,[[|V}?] < co.
To apply Theorem 2, we define g: #° — Ras

ga, b, ¢, d) =gb_b5£1.
Since T is a hitting time, we have 8 > 0, and so g is
differentiable at the point («, 8, v, 6). Thus, by com-
puting the gradient of g and substituting the appro-
priate values into the expression for the variance given
in Theorem 2, the proof is complete.

27

Now we show that we obtain better estimates of the
gradients when we use conditional Monte Carlo.
Before we prove the result, we make some definitions.
- Define the vector V = (A4, B, C, D) as in the proof of
Theorem 3, and we let W = E,[V|X] = (4,8, C, D),

where

A = E[A1X] = G'(66) + G(80)L (0, b, 6o)
B = E,[B|X] = H(6,)

C = E,[C|X] = G(8y)

D = E,[D|X] = H'(66) + H(86)L (0, b0, 60),

where G(8), H(8), G'(8), H'(8), and L’(, 8, ) are
defined in (17), (18), (22), (23), and (24), respectively.
Let u = E4[V] = E;[W]. Then, by Theorem 2,
we have that V[ g(V,) — g(u)] = N(0, o?) as n — o,
and vVn[g(W,) — g(u)] = N(O, o3) as n — =, where g
is defined in (27), and

<

n

V.

S =

M- b=

W,==2 W,

1
n,;

ot = Var[Vg(u)(V — u)]
o3 = Var[Vg(u)" (W — u)].

So we have that of and o3 are the asymptotic variances
of the gradient estimators when using the ratio for-
mula obtained without and with conditional Monte
Carlo, respectively. Then we have the following result.

Proposition 1. o3 < o7

Proof. By noting that
Ve(u) (W = u) = E;[Ve(u)(V - w)X],

we have the result by the principle of conditional
Monte Carlo (see Fox and Glynn).
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