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We discuss the estimation of derivatives of a performance measure using the likelihood

ratio method in simulations of highly reliable Markovian systems. We compare the dif-

ficulties of estimating the performance measure and of estimating its partial derivatives

with respect to component failure rates as the component failure rates tend to 0 and the

component repair rates remain fixed. We first consider the case when the quantities are

estimated using naive simulation; i.e., when no variance reduction technique is used. In

particular, we prove that in the limit, some of the partial derivatives can be estimated

as accurately as the performance measure itself. This result is of particular interest in

light of the somewhat pessimistic empirical results others have obtained when applying

the likelihood ratio method to other types of systems. However, the result only holds

for certain partial derivatives of the performance measure when using naive simulation.

More specifically, we can estimate a certain partial derivative with the same relative

accuracy as the performance measure if the partial derivative is associated with a com-

ponent either having one of the largest failure rates or whose failure can trigger a failure

transition on one of the “most likely paths to failure.” Also, we develop a simple cri-

terion to determine which partial derivatives will satisfy either of these properties. In

particular, we can identify these derivatives using a sensitivity measure which can be

calculated for each type of component.

We also examine the limiting behavior of the estimates of the performance measure

and its derivatives which are obtained when an importance sampling scheme known

as balanced failure biasing is used. In particular, we show that the estimates of all

derivatives can be improved. In contrast to the situation that arose when using naive

simulation, we prove that in the limit, all derivatives can be estimated as accurately as

the performance measure when using balanced failure biasing.
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Finally, we formalize the notion of a “most likely path to failure” in the setting of highly

reliable Markovian systems. We accomplish this by proving a conditional limit theorem

on the distribution of the sample paths leading to a system failure, given that a system

failure occurs before the system returns to the state with all components operational.

We use this result to establish our other results. (SIMULATION; GRADIENT ESTI-

MATION; LIKELIHOOD RATIOS; HIGHLY RELIABLE SYSTEMS; IMPORTANCE

SAMPLING).
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1 Introduction

Large and complex systems arise in many technological areas, such as computer systems, commu-

nications networks, transaction processing systems, and power systems. These systems often need

to be highly reliable, and a designer of such a system is confronted with a multitude of choices for

its layout. For example, how much redundancy should be built into the system? How does the

failure rate of a given component affect the overall system performance? Thus, a need arises for

methodologies that can be used to explore the tradeoffs of the different designs.

Information on the partial derivatives of the system performance measures with respect to vari-

ous parameters of the system, such as the components’ failure and repair rates, can be particularly

useful in this regard. Using the partial derivatives, the designer is able both to validate the model

and to identify critical components. For example, the correctness of a mathematical formulation

may be in question if increasing the failure rate of a component resulted in a higher steady-state

availability of the system. Also, the designer with a limited budget may want to concentrate his

or her efforts on improving the performance of the components corresponding to the largest partial

derivatives to gain the greatest improvement in the overall system performance.

In this paper we consider estimating the partial derivatives of a performance measure with

respect to various input parameters via simulation. Simulation is an appropriate tool for estimating

performance measures and their derivatives for highly reliable systems. For Markovian systems,

analytic (i.e., non-simulation) methods are available for determining the quantities of interest.

However, these methods are often not practical due to the size and complexity of many reliability

systems. For example, a system consisting of K different components, where each component may

be either in a functioning or failed state, will lead to a model having 2K states. In non-Markovian

settings, analytic methods may not exist or may be difficult to implement.

The technique we use to estimate the derivatives is the likelihood ratio method, which has been

previously studied in numerous papers including Glynn (1986) and Reiman and Weiss (1989). The

methodology is applicable to a wide spectrum of stochastic simulations (see Glynn 1990), and many

aspects of the approach have been examined; e.g., see Glasserman (1990b), L’Ecuyer et al. (1989),

and L’Ecuyer (1990). The technique has also been called the “score function” method by Rubin-

stein (1986, 1989). An alternative approach for estimating derivatives is infinitesimal perturbation

analysis, which was introduced by Ho and Cao (1983) and has been extensively investigated; e.g.,

see Suri (1989), Suri and Zazanis (1988), Glasserman (1990a, 1992), Ho (1987), Heidelberger et

al. (1988), and L’Ecuyer (1990).

Previous theoretical and empirical work has resulted in a somewhat pessimistic view of the

likelihood ratio method. Both Reiman and Weiss (1989) and Glynn (1987) argue that as the

length of an observation grows to infinity, the variance of the derivative estimator grows linearly

in the length of the observation. Hence, in applications where observations tend to be fairly long,

the method yields noisy derivative estimates. For example, Reiman and Weiss (1989) found that
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when experimenting with a queueing model having moderate traffic intensity, the relative standard

deviations of the derivative estimates were several times larger than that of the estimate of the

performance measure. Similar results have been obtained by others, including L’Ecuyer et al. (1989)

and Glasserman (1992). However, we now show that when the likelihood ratio method is applied

in the proper setting, it is no more difficult to estimate certain partial derivatives of a performance

measure than it is to estimate the performance measure itself.

We consider the performance measure mean time to failure (MTTF) in the context of highly

reliable Markovian systems. The main motivation for analytically studying these types of systems

is the ongoing work on the state-of-the-art software package SAVE (System AVailability Estimator)

at IBM; see Goyal and Lavenberg (1987). The SAVE package computes a variety of performance

measures of highly reliable Markovian system using one of two methods: numerical (i.e., non-

simulation) and simulation. Due to the large state spaces of these types of systems, the numerical

method truncates the state space and gives error bounds on the resulting estimates. When using

the simulation method, we no longer have to worry about the size of the state space since the

entire generator matrix does not have to be stored; e.g., see Goyal et al. (1992). However, we now

encounter a different problem. Because of the rareness of system failures in the types of systems

SAVE considers, the resulting performance measure estimators are typically poor when using naive

simulation (i.e., without using any variance reduction techniques). Hence, we must use variance

reduction techniques to obtain efficient estimators. In particular, SAVE incorporates importance

sampling; see Glynn and Iglehart (1989) for an overview of this method.

The basic idea of importance sampling in simulations of highly reliable Markovian systems

is to change the dynamics of the system (i.e., the underlying probability measures) so that the

system fails more frequently. Since the system now being simulated is different than the original

one, we must multiply the estimator by a correction factor known as the likelihood ratio to obtain

unbiased estimates. A number of importance sampling methodologies known as “failure biasing”

schemes have been proposed for simulating highly reliable Markovian systems (e.g., see Lewis and

Böhm 1984, Shahabuddin et al. 1988, and Goyal et al. 1992). The basic idea of these methods is as

follows. Consider any state from which there are both repair transitions (i.e., some components are

repaired) and failure transitions (i.e., some components fail) possible. Under the original dynamics

of the system, it is much more likely that a repair occurs. In failure biasing we increase the total

probability of a failure transition and correspondingly decrease the total probability of a repair

transition so that they are of the same order of magnitude. In practice, failure biasing often reduces

the variance by orders of magnitude. We can also apply importance sampling to the estimation of

derivatives, and Nakayama, Goyal, and Glynn (1990) showed empirically that there is a comparable

variance reduction for the derivative estimators. The goal of this paper is to explain analytically

the experimental results of Nakayama, Goyal, and Glynn (1990).

To do this, we use the mathematical framework of highly reliable Markovian systems developed

by Shahabuddin (1991), which we now describe. It turns out (e.g., see Shahabuddin et al. 1988 and
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Goyal et al. 1992) that the MTTF can be expressed as a ratio of two expectations and estimated

using regenerative simulation; see Crane and Iglehart (1974) for more details on the regenerative

method. We can estimate each of the expectations using independent regenerative cycles, and Goyal

et al. (1992) showed that the resulting ratio estimator satisfies a central limit theorem. Using a

matrix algebraic approach of analysis, Shahabuddin (1991) derived asymptotic expressions for this

estimator and proved that when using naive simulation, the relative error (defined as the standard

deviation of an estimator over its mean) of the ratio estimator of the MTTF diverges to infinity

as the failure rates of the components tend to zero and the repair rates remain fixed. Hence, it

becomes more difficult to estimate the MTTF via naive simulation as system failures become rare.

In practice this means that to obtain an estimator with a confidence interval having a fixed relative

width, we must increase the number of samples (or regenerative cycles) as system failures become

less frequent. This is the main problem with rare event simulation.

Shahabuddin (1991) proposed the “balanced failure biasing” method of importance sampling

and analytically examined the behavior of the estimator of the denominator of the MTTF obtained

using this technique. In particular, Shahabuddin proved that the estimates the denominator of the

MTTF obtained using balanced failure biasing are asymptotically stable; i.e., the relative errors

remain bounded as the failure rates go to zero and the repair rates remain fixed. Consequently, we

obtain good estimates of the denominator of the MTTF regardless of the rareness of system failures

when balanced failure biasing is employed. Thus, to obtain an estimator with a given relative width

for its confidence interval, we only need to simulate a fixed number of regenerative cycles, where

the number of cycles does not depend on how rarely the system fails (under the original probability

measure).

Furthermore, Shahabuddin (1991) proved that the numerator of the ratio expression for the

MTTF is easy to estimate via naive simulation (i.e., its relative error is bounded) and the main

contribution to the variance of the ratio estimator obtained using naive simulation stems from

the estimate of the denominator, which has unbounded relative error in the limit. This is to be

expected, as the term in the denominator is the probability of a rare event, which tends to zero as

the component failure rates vanish. Therefore, we now focus only on the denominator of the ratio

formula for the MTTF.

In this paper we consider the estimation of the partial derivatives with respect to the compo-

nents’ failure rates of the denominator term in the ratio formula for the MTTF. First, we derive

asymptotic expressions for the partial derivatives and the variances of their estimators when using

naive simulation; see Theorem 3 in Section 4.1. We then use this result to show that when using

naive simulation, the relative errors of the partial derivative estimates also diverge to infinity in the

limit, and so the derivatives are difficult to estimate when system failures are rare; see Corollary 4

in Section 4.2. However, we prove that the ratio of the relative error of the estimates of certain

partial derivatives of the denominator over the relative error of the denominator’s estimator re-

mains bounded as the failure rates of the components go to zero and the repair rates remain fixed
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when importance sampling is not employed. Thus, as system failures become rare, it is no more

difficult to estimate via naive simulation certain derivatives than it is to estimate the denominator

term itself. However, the result only holds for derivatives with respect to failure rates of certain

components. More specifically, this result is valid for partial derivatives that are associated either

with a component having one of the largest failure rates or with a component whose failure can

trigger a failure transition on one of the “most likely paths to failure”; see Corollary 5 in Section 4.2.

Since the second condition just given is somewhat difficult to verify for large models, we develop a

simple criterion to determine which derivatives can be estimated with the same relative accuracy as

the performance measure. Specifically, we can identify these derivatives using a sensitivity measure

which can be calculated for each type of component; see Corollaries 6 and 7 in Section 4.2.

We also show that importance sampling can be applied to obtain efficient derivative estimators.

In particular, we prove that when balanced failure biasing is applied, the relative error of the

estimate of the partial derivative with respect to any of the component failure rates remains bounded

as the failure rates go to zero and the repair rates remain fixed (see Corollary 10). In addition,

it turns out that all of the derivatives we consider are equally easy to estimate in the limit when

balanced failure biasing is employed (see Corollary 11), which is in sharp contrast to the situation

that arose by using naive simulation.

Finally, while Shahabuddin’s (1991) matrix algebraic approach can be used to investigate the

limiting behavior of the derivative estimators, the resulting analysis is quite tedious. Hence, we

develop a new, simpler methodology based on the notion of “most likely paths” to system failure.

To do this, we first prove a result (Theorem 2) which formalizes the idea of “most likely paths”

into a mathematically rigorous statement. Our theorem is a conditional limit theorem for the

distribution of sample paths which lead to system failure, given that a system failure occurs before

the system returns to the fully operational state. We then apply the result to study the asymptotic

properties of the gradient estimates.

Several authors have applied the concept of most likely paths to failure in a different man-

ner to study other aspects of highly reliable systems. Gnedenko and Solovyev (1975) develop the

same idea (which they call the “main event”) and use it to analyze the limiting distribution of

the (appropriately normalized) time to system failure; also see Gertsbakh (1984). Also, Shahabud-

din (1990, Section 2.5.1) employs the notion to develop some approximate bounds for the variance

of the estimator of the denominator of the MTTF obtained using balanced failure biasing. All of

these authors, however, work with models that have some simplifying assumptions which we do not

use.

The rest of the paper is organized as follows. In Section 2 we describe the model of highly

reliable Markovian systems developed by Shahabuddin (1991) and appropriately modify it for our

context. Section 3 reviews the work of Shahabuddin (1991) on the estimation of the denominator in

the ratio expression for of the MTTF using naive simulation. Also, we extend Shahabuddin’s results

by analyzing the paths to system failure and develop the most likely paths to failure theorem. In
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Section 4 we briefly describe the likelihood ratio method for estimating derivatives. In addition we

discuss the difficulty of estimating the partial derivatives of the denominator term of the MTTF

with respect to the component failure rates using naive simulation and make comparisons with

the difficulty in estimating the denominator itself. In Section 5 we discuss Shahabuddin’s work

on the estimation of the denominator of the MTTF using the balanced failure biasing method of

importance sampling. In Section 6 we consider the estimation of the derivatives when applying

balanced failure biasing. Concluding remarks and directions for future research are included in

Section 8. Section 9 contains most of the proofs.

2 Markovian Models of Highly Reliable Systems

The following is a description of Shahabuddin’s (1991) model of a highly reliable Markovian system,

which we have slightly modified for our context. We assume the system is composed of C different

types of components, with ni components of type i, where 0 < C <∞ and 0 < ni <∞, 1 ≤ i ≤ C.

As time progresses, the components randomly fail and get repaired, where the repair discipline

is arbitrary. We denote the state space of the system by E, where |E| < ∞. Our analysis is

independent of the actual form of E. Note that a state x ∈ E keeps track of the number of the

failed components of each type as well as any necessary information about the queueing at the

repair facility. We define ni(x) to be the number of components of type i that are operational in

state x. The system starts out in the state in which all components are operational; we label this

state as state 0. We decompose the state space E = U ∪ F , where U is the set of states for which

the system is considered operational, and F is the set of failed states. We assume that

if x ∈ U and y ∈ E with ni(y) ≥ ni(x) for all i, then y ∈ U . (1)

The lifetimes of components of type i are exponentially distributed with rate λi, where 0 < λi <

λ̄i. We say that a transition (x, y) is a failure transition if nj(y) ≤ nj(x) for all j with ni(y) < ni(x)

for some i. If (x, y) is a failure transition, then we use the notation “y � x.” To accommodate

component interactions, we allow for the possibility of component failure propagation; i.e., the failure

of one component causes other components also to fail instantaneously with some given probability.

More precisely, suppose that the system is currently in state x and a component of type i fails.

Let y ∈ E be some state such that nj(y) ≤ nj(x) for all j with ni(y) < ni(x). Then, after the

component of type i fails, the system immediately enters state y with probability p(y;x, i) ≥ 0. In

this situation, the failure of the component of type i caused nj(x) − nj(y) components of type j,

j 6= i, to fail also, and we say that the failure of the component of type i triggered the failure

transition (x, y). In addition, if ni(x) − ni(y) ≥ 2, then the component of type i that originally

failed caused other components of type i to fail. For example, in a computer system, the failure of

a processor might “contaminate” the database, thus causing the database to fail also.

Once a component fails, it is sent to a repair facility having a fixed number of repairmen. A

transition (x, y) is called a repair transition if nj(y) ≥ nj(x) for all j with ni(y) > ni(x) for some i.

5



If (x, y) is a repair transition, then we use the notation “y ≺ x.” A repair transition (x, y) occurs

with exponential rate µ(x, y) ≥ 0; thus, we allow for the repair of some failed component to depend

on the state of the system. For example, if a processor has a power supply and both are failed,

the repairperson cannot fix the processor until its power supply is repaired. Furthermore, we allow

for the possibility of the repair facility completing service on more than one component at a given

instance. This may happen when the system contains a module composed of a certain number

of sub-components and the entire module is replaced when any of the sub-components fail. On a

repair transition (x, y), ni(y)− ni(x) components of type i, 1 ≤ i ≤ C, complete repair.

We assume that a single transition cannot consist of some number of components failing and

other components simultaneously completing repair. For example, this may occur if a repairperson,

when replacing a failed component, accidentally breaks another component. However, we do not

allow this in our model. Thus, because of the structure of F given in (1), the only way the system

can reach a failed state is through a failure transition.

Let Y = {Y (s) : s ≥ 0} be the continuous-time Markov chain (CTMC) defined on the state

space E arising from our model of the highly reliable system. We denote the infinitesimal generator

matrix of Y by Q(θ) = {q(θ, x, y) : x, y ∈ E}, where the parameter θ is given by θ = (λ, µ) with

λ = (λ1, . . . , λC) and µ = {µ(x, y) : y ≺ x}. Thus, for all x 6= y,

q(θ, x, y) =


∑C
i=1 ni(x)λip(y;x, i) if y � x

µ(x, y) if y ≺ x
0 otherwise

, (2)

and q(θ, x, x) = −
∑
y 6=x q(θ, x, y). As mentioned in the introduction, we will be estimating deriva-

tives with respect to failure rates of the components. Thus, we allow the vector of component

failure rates λ to vary in some set Λ = {λ : 0 < λ < λ̄}, where λ̄ = (λ̄1, . . . , λ̄C). (Since we do

not consider derivatives with respect to the repair rates, we assume that µ is fixed at µ = µ0. For

work on derivatives with respect to µ, see Nakayama 1991.) By defining the generator matrix in

this manner, Q(θ) is continuously differentiable in λ ∈ Λ. We employ the notation Pθ and Eθ to

represent the probability measure and expectation, respectively, induced by the generator matrix

Q(θ) for some fixed value of θ.

We use regenerative simulation to estimate the mean time to failure in the following manner.

For any set of states A ⊂ E, define TA = inf{s > 0 : Ys ∈ A, Ys− 6∈ A}. It can be shown (e.g.,

see Goyal et al. 1992) that the mean time to failure (given that the system starts in state 0) is

expressable as the following ratio of expectations:

η(θ) ≡ Eθ[TF ] =
Eθ[min{TF , T0}]
Eθ[1{TF < T0}]

, (3)

where 1{ · } denotes the indicator function of the event { · }. We then estimate both the numerator

and denominator in (3) using regenerative simulation with state 0 as the regenerative state (i.e., the

successive times at which Y enters state 0 form a sequence of regeneration points); see Crane and
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Iglehart (1974) for more details on the regenerative method of simulation. The advantage of using

the ratio representation is that we can independently estimate the numerator and denominator using

different simulation methods. This technique is known as measure specific importance sampling;

see Goyal et al. (1992).

Let X = {Xn : n ≥ 0} be the embedded discrete-time Markov chain (DTMC) of Y . Recall

that X has transition matrix P (θ) defined by P (θ, x, y) = q(θ, x, y)/q(θ, x) for x 6= y, where

q(θ, x) = −q(θ, x, x), and P (θ, x, x) = 0. We define

Γ(θ) ≡ {(x, y) : P (θ, x, y) > 0},

which is the set of possible transitions that X can take under parameter value θ. Note that Γ(θ) is

independent of θ for θ ∈ Θ, where Θ = {(λ, µ) : λ ∈ Λ, µ = µ0}. Consequently, we write

Γ(θ) = Γ.

We can now apply conditional Monte Carlo (or discrete time conversion) to (3) to obtain another

estimator of the MTTF. For any set of states A ⊂ E, we first define τA = inf{n > 0 : Xn ∈ A} and

αA(θ) =
∑τA−1
k=0 1/q(θ,Xk). Then we apply conditional Monte Carlo by conditioning on X; i.e.,

Eθ[min{TF , T0}] = Eθ[Eθ[min{TF , T0} | X]] = Eθ[min{αF , α0}]

and

Eθ[1{TF < T0}] = Eθ[Eθ[1{TF < T0} | X]] = Eθ[1{τF , τ0}].

Thus, we obtain the following expression for the MTTF:

η(θ) =
Eθ[min{αF (θ), α0(θ)}]

Eθ[1{τF < τ0}]
. (4)

Note that we can estimate the MTTF by simulating only the embedded DTMC X. For more

details on conditional Monte Carlo (or discrete-time conversion), see Hordijk, Iglehart, and Schas-

sberger (1976) or Fox and Glynn (1986).

The type of highly reliable system we examine is one which consists of highly reliable compo-

nents; i.e., the components’ repair rates are much larger than the components’ failure rates. We

use the following approach to model highly reliable components. We assume that the failure rate

of components of type i is given by λi = λi(ε), where

λi(ε) = λ̃iε
bi , (5)

with λ̃i > 0, bi ≥ 1, and ε > 0. For the sake of simplicity, we will assume that the bi are inte-

ger valued, which we can do (essentially) without loss of generality. By letting ε → 0 and fixing

the repair rate parameters µ, the component repair rates are much larger than the failure rates.

(This modeling technique has been used by others, including Gnedenko and Solovyev 1975, Gerts-

bakh 1984, Katehakis and Derman 1989, and Shahabuddin 1991. Gnedenko and Solovyev 1975,
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Gertsbakh 1984, and Katehakis and Derman 1989 assumed that all of the bi = 1, whereas Sha-

habuddin 1991 allowed the bi ≥ 1 to be different.) We assume that the probability mass function

p( · ;x, i) used in defining the component failure propagation is independent of ε for all x and i.

Let b0 = min{bi : 1 ≤ i ≤ C}. If bi = b0 for all 1 ≤ i ≤ C, then we say the system is balanced;

otherwise, the system is called unbalanced.

When the failure rates are expressed as functions of ε, we denote our parameter θ by θ(ε) =

(λ(ε), µ), where λ(ε) = (λ1(ε), . . . , λC(ε)). Thus, the transition rate of entering state y from state x,

x 6= y, can be expressed as

q(θ(ε), x, y) =


∑d2(x,y)
k=d1(x,y) ck(x, y)εk if y � x,

µ(x, y) if y ≺ x,
0 otherwise

, (6)

where d1(x, y) ≥ 1 and d2(x, y) ≥ d1(x, y) are integer-valued, ck(x, y) ≥ 0 and cd1(x,y)(x, y) > 0,

and ε > 0. (Throughout this paper, we use the variables c and d in many different expressions and

contexts; i.e., we employ c(x, y), d(x, y), ci, di, c′i, di, etc. repeatedly. The values of these variables

change from one usage to the next unless otherwise specified.) Hence, all failure transitions occur

at a rate which is some power of ε and all repair transitions have rate which is independent of ε.

Also, observe that there exists a state y ∈ E such that (0, y) ∈ Γ and q(θ(ε), 0, y) = c(0, y)εb0 ,

where c(0, y) > 0. This implies that the total rate out of state 0, which is given by q(θ(ε), 0) =∑
(0,z)∈Γ q(θ(ε), 0, z), is of the order εb0 . Finally, when we have θ = θ(ε), it is easily seen that

Γ(θ(ε)) = Γ; i.e., Γ(θ(ε)) is independent of θ(ε) for all ε > 0.

To prove our results, we need to assume that the Markovian model of the highly reliable system

satisfies some conditions, which were developed by Shahabuddin (1991). Before describing the

assumptions, we make some definitions. Let c be some constant. A function f is said to be o(εc) if

f(ε)/εc → 0 as ε → 0. Also, we use the notation f(ε) ∼ εd if we can express f(ε) = c1ε
d + o(εd),

where c1 6= 0 is independent of ε. Then we assume the following:

A1 The CTMC Y is irreducible over E.

A2 For each state x ∈ E with x 6= 0, there exists a state y ∈ E (which depends on x) such that

(x, y) ∈ Γ and y ≺ x.

A3 For all states z ∈ F such that (0, z) ∈ Γ, q(θ(ε), 0, z) = o(εb0).

Assumption A1 ensures that there are no deadlocks. For example, this may occur if two com-

ponents are failed, but to be repaired, they both depend on the other being operational.

Assumption A2 states that there is at least one repair transition possible from each state x 6= 0.

Hence, for x 6= 0, q(θ(ε), x) = c(x) + o(1), where c(x) > 0. This implies that all failure transitions

(x, y) with x 6= 0 have transition probability P (θ(ε), x, y) ∼ εd(x,y), where d(x, y) ≥ b0.
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Assumption A3 guarantees that transitions which take the system from state 0 to a failed state

have transition rates that are much smaller than εb0 , which is the magnitude of the largest transition

rate from state 0. Therefore, if z ∈ F and (0, z) ∈ Γ, then (0, z) will have a transition probability

which is o(1). This ensures that system failures are rare events for the embedded DTMC when ε is

small.

From these assumptions the elements of the transition matrix have a certain form. Consider

(x, y) ∈ Γ and fix µ. Then, as ε→ 0,

P (θ(ε), x, y) =


c(x, y) + o(1) if x 6= 0 and y ≺ x
c(x, y)εd1(x,y) + o(εd1(x,y)) if x 6= 0 and y � x
c(x, y)εd2(x,y) + o(εd2(x,y)) if x = 0 and y � x

, (7)

where c(x, y) > 0, d1(x, y) ≥ b0, and d2(x, y) ≥ 0 are independent of ε.

We now give a simple example of a system having the structure described in this section. (We

will return to this example later when developing our results.)

Example 1 Consider a system consisting of three types of components, where the first two types

of component have a redundancy of 2 (i.e., n1 = n2 = 2) and failure rates λ1(ε) = λ2(ε) = ε (i.e.,

b1 = b2 = 1), and the third type of component has a redundancy of 1 (i.e., n3 = 1) and failure rate

λ3(ε) = ε3 (i.e., b3 = 3). Thus, b0 = 1. There is a single repairperson who repairs all components at

rate 1, and the repair discipline is processor sharing. The system fails when all of the components

of any type are failed. It is sufficient to define the state of the system to be 〈x1, x2, x3〉, where xi
is the number of failed components of type i. Figure 1 contains the transition probability diagram

of the model, where we have combined all states having the component of type 3 failed into a

single state 〈x1, x2, 1〉. Therefore, for this example, U = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉} and

F = {〈0, 2, 0〉, 〈2, 0, 0〉, 〈1, 2, 0〉, 〈2, 1, 0〉, 〈2, 2, 0〉, 〈x1, x2, 1〉}.

3 Estimating the Performance Measure Using Naive Simulation

In this section we first review some of the results of Shahabuddin (1991) on the difficulty of es-

timating the MTTF using the ratio formula given in (4) when using naive simulation. We then

extend this result by proving a theorem about the behavior of the different sample paths which

lead to system failures.

Recall that we defined the relative error of an estimator as the ratio of its standard deviation

over its mean. (By an “estimator,” we mean a random variable under some probability measure.)

Shahabuddin showed that the numerator in (4) is easy to estimate when using naive simulation;

i.e., if we consider the random variable min{αF , α0} under the original probability measure Pθ(ε),

then its relative error remains bounded as ε→ 0. In practice this means that we only need a fixed

number of samples (or regenerative cycles) of the numerator in (4) to obtain a confidence interval

of a given width, independent of how small ε is.
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Consequently, we only consider the estimation of γ(θ(ε)) ≡ Eθ(ε)[1{τF < τ0}], which is the de-

nominator term in (4). Let γ̂(θ(ε)) denote the estimator of γ(θ(ε)) obtained using naive simulation,

and let RE(γ̂(θ(ε))) denote its relative error. The following proposition, due to Shahabuddin (1991),

shows the difficulty of estimating γ(θ(ε)) using naive simulation.

Proposition 1 (Shahabuddin) Consider a model of any highly reliable Markovian system (as

described in Section 2) which satisfies Assumptions A1–A3. For all ε sufficiently small, there exists

r ≥ 1 and a0 > 0 (which depend on the model) such that

(i) γ(θ(ε)) ≡ Eθ(ε)[1{τF < τ0}] = a0ε
r + o(εr).

Also, using naive simulation,

(ii) σ2(γ̂(θ(ε))) ≡ V arθ(ε)[1{τF < τ0}] = γ(θ(ε))− γ2(θ(ε)) ≈ γ(θ(ε)),

(iii) RE(γ̂(θ(ε))) = σ(γ̂(θ(ε)))
γ(θ(ε)) =

√
a0εr+o(εr)

(a0εr+o(εr))
= ε−r/2

(
a
−1/2
0 + o(1)

)
→ ∞ as ε→ 0.

Proposition 11 gives an asymptotic expression for the denominator term in (4). It should be

noted that the expression is independent of the simulation method used to estimate it. However,

the variance of the estimate of γ(θ(ε)) depends on the simulation technique employed, and 2 gives

an asymptotic expression for this quantity when using naive simulation. Part 3 shows that using

naive simulation, the relative error of the estimator of the denominator term grows without bound

as the failure rates go to zero and the repair rates remain fixed. Thus, it becomes harder to

estimate the performance measure γ(θ(ε)) as the system failures become rarer. In practice this

means that to obtain a confidence interval of some fixed relative width, the number of samples

(or regenerative cycles) must increase as system failures become less frequent. (Actually, when

performing a relative error analysis, the amount of time required to generate each of the cycles also

should be taken into account. This amounts to multiplying the variance factor by the mean number

of computer operations per cycle; see Glynn and Whitt 1992. However, in our case, we can easily

show that the mean length of a cycle remains bounded as ε→ 0, so all of our results remain valid

even when this is taken into account.)

Now we want to analyze more closely the event of a system failure. We do so by examining the

sample paths of the embedded DTMC (i.e., a sequence of component failures and repairs) which

lead to system failure before returning to state 0. Typically, there are many sample paths of this

type. However, it turns out that for small ε, system failures usually occur in only a relatively small

number of possible ways; i.e., the probability of the sample paths in this set have much larger

probability than the other paths. We call this set of sample paths the “most likely paths to system

failure.”

Formally, set τ = min{τ0, τF }, and define

∆ = { (x0, . . . , xn) : n ≥ 1, x0 = 0, xn ∈ F, xk 6∈ {0, F} and (xk−1, xk) ∈ Γ for 1 ≤ k < n },
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which is the set of sample paths for which τF < τ0 and is independent of ε. Let “⇒” denote weak

convergence; see p. 192 of Billingsley (1986). Then we have the following conditional limit theorem;

see Section 9 for the proof.

Theorem 2 Consider a model of any highly reliable Markovian system (as described in Section 2)

which satisfies Assumptions A1–A3. Then

Pθ(ε){(X0, . . . , Xτ ) ∈ · | τF < τ0} ⇒ P0{(X0, . . . , Xτ ) ∈ · },

as ε→ 0, where P0 is some limiting probability measure on ∆.

We now make some remarks about Theorem 2.

(i) We say that a sample path (x0, . . . , xn) ∈ ∆ has a largest asymptotic probability if

lim inf
ε→0

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}
Pθ(ε){(X0, . . . , Xτ ) = (y0, . . . , ym)}

> 0

for all paths (y0, . . . , ym) ∈ ∆. It turns out that the set of paths (x0, . . . , xn) ∈ ∆ for

which P0{(X0, . . . , Xτ ) = (x0, . . . , xn)} > 0 is exactly the paths with the largest asymptotic

probability. Hence, in the limit, these are the most likely paths to system failure.

(ii) We can explicitly state the exact form of the limiting distribution P0 as follows. Let ∆r be

the set of paths which have a largest asymptotic probability. Then, it turns out that

P0{(X0, . . . , Xτ ) ∈ · } = lim
ε→0

Pθ(ε){(X0, . . . , Xτ ) ∈ · | (X0, . . . , Xτ ) ∈ ∆r};

see the proof of Theorem 2. Thus, for small ε, given that the system fails, with very high

probability, it fails by taking one of the paths having a largest asymptotic probability (i.e., one

of the paths in ∆r). Also, the particular path in ∆r that is taken is approximately determined

by the conditional distribution of selecting a path in ∆r, given that paths are only chosen

from ∆r.

(iii) Theorem 2 (and Theorem 13 in Section 9) forms the basis of our method for establishing

certain properties about derivative estimators. To prove our results, we need to examine

the behavior of certain random variables defined over sample paths leading to system failure

before regenerating; i.e., paths for which τF < τ0. Using Theorems 2 and 13, we can show

that it is sufficient to consider only the most likely paths to system failures to determine

asymptotic expressions for the derivative estimators and their variances; see Section 9 for

further details.

(iv) As we mentioned in Section 1, several authors have applied the concept of most likely paths

to failure in a different manner to study other aspects of highly reliable systems. For example,

see Gnedenko and Solovyev (1975), Gertsbakh (1984), and Shahabuddin (1990, Section 2.5.1).
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However, all of these authors consider only balanced systems with no failure propagation. We

should note, though, that Gnedenko and Solovyev (1975) and Gertsbakh (1984) assume the

repair times have general distribution.

(v) Many authors have established conditional limit theorems similar to Theorem 2 in the context

of queueing systems. For example, Anantharam (1990) proved conditional limit theorems

for the case of large delays in GI/G/1 queues. Also, see Asmussen (1982), Anantharam,

Heidelberger, and Tsoucas (1990), and Csiszár, Cover, and Choi (1987), among others.

(vi) In our proof of Theorem 2, we essentially re-establish Proposition 1(i) but using a method

different than the one originally used by Shahabuddin (1991). We include our proof since it

incorporates many ideas that we will need later to prove results about the derivative estima-

tors.

(vii) We can easily show that Theorem 2 holds for more general models than the one described in

Section 2. Specifically, we could have allowed the components to have state-dependent failure

rates and the component failure propagation probabilities to depend on ε. However, we need

the additional structure in Section 2 to obtain results on derivative estimators.

(viii) We can calculate the constant a0 in Proposition 11 in terms of the limiting probability measure

P0 from Theorem 2. We show how to do this after the proof of Theorem 2 in Section 9.

(ix) It is important that we conditioned on the event {τF < τ0} in Theorem 2. If we had not

done this, the limiting distribution of sample paths would not include any paths to system

failure. This can be seen from the following reasoning. Consider some path to system failure

(x0, . . . , xn) ∈ ∆. If n = 1, then x1 ∈ F and P (θ(ε), x0, x1) = o(1) as ε→ 0 by Assumption A3.

If n > 1, then (xn−1, xn) is a failure transition with xn−1 6= 0, and Assumption A2 implies

P (θ(ε), xn−1, xn) = o(1) as ε → 0. Hence, in both cases, the probability of the sample path

leading to a system failure is Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} = o(1) as ε → 0. Thus,

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} → 0 as ε → 0, and so in the limit, all paths leading to

system failure have probability 0.

To gain a better understanding of Proposition 1 and Theorem 2, we now examine how the

results apply to our previous example.

Example 1 (continued) The set of paths for which τF < τ0 is given by

∆ = {(〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉), (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉), (〈0, 0, 0〉, 〈0, 0, 1〉),

(〈0, 0, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 0〉), (〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 1, 0〉, 〈2, 1, 0〉), . . .}.

Note that

Pθ(ε){(X0, . . . , Xτ ) = (〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉)} = (1/2)ε+ o(ε)
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Pθ(ε){(X0, . . . , Xτ ) = (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉)} = (1/2)ε+ o(ε)

Pθ(ε){(X0, . . . , Xτ ) = (〈0, 0, 0〉, 〈0, 0, 1〉)} = (1/4)ε2 + o(ε2)

Pθ(ε){(X0, . . . , Xτ ) = (〈0, 0, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 0〉)} = ε2 + o(ε2)

Pθ(ε){(X0, . . . , Xτ ) = (〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 1, 0〉, 〈2, 1, 0〉)} = ε2 + o(ε2)
...

It is easy to see that (〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉) and (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉) are the only paths to

failure that have probability of the order ε. Also, we can show that the sum of the probabilities of

all other paths is o(ε). (This is shown in the proof of Theorem 2.) Thus, γ(θ(ε)) = ε + o(ε) and

r = 1. Also, σ2(γ̂(θ(ε))) = ε+ o(ε) and RE(γ̂(θ(ε))) = ε−1/2 + o(ε−1/2). Finally,

∆1 = {(〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉), (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉)}

is the set of most likely paths to system failure.

4 Estimating Derivatives Using Naive Simulation

Our goal is to estimate via naive simulation the partial derivative of η(λ, µ) with respect to the

failure rate λi of component type i, where η(λ, µ) is defined in (4). (Nakayama 1991 considers the

estimation of derivatives with respect to the rarity parameter ε and with respect to the repair rate

parameter µ when µ(x, y) = c(x, y)µ for some c(x, y) ≥ 0.) Applying the ratio rule of differentiation

yields

∂λiη(λ, µ) =
E(λ,µ)[1{τF < τ0}] ∂λiE(λ,µ)[α(λ, µ)]− E(λ,µ)[α(λ, µ)] ∂λiE(λ,µ)[1{τF < τ0}]

E2
(λ,µ)[1{τF < τ0}]

,

where α(λ, µ) = min{αF (λ, µ), α0(λ, µ)} and we use the notation ∂λiA(λ, µ) ≡ ∂
∂λi

A(λ, µ) for

some function A(λ, µ). As previously mentioned, we only focus on estimating the derivative of

the performance measure γ(λ, µ) = E(λ,µ)[1{τF < τ0}]. (We can evaluate ∂λiE(λ,µ)[α(λ, µ)] in a

similar manner.) To compute ∂λiγ(λ, µ), we would like to interchange the order of the derivative

and expectation operators by appealing to the dominated convergence theorem. However, the

probability measure used to evaluate the expectation depends on λi, and so the theorem cannot be

applied directly.

To rectify the situation, note that

Eθ[1{τF < τ0}] =
∫

1{τF < τ0}(ω) dPθ(ω) =
∫

1{τF < τ0}(ω)
dPθ
dPθ0

(ω) dPθ0(ω)

=
∫

1{τF < τ0}(ω) L(θ, ω) dPθ0(ω) = Eθ0 [1{τF < τ0} L(θ)], (8)

where θ0 ∈ Θ is some fixed value of the parameter θ and L(θ, ω) = dPθ
dPθ0

(ω). L(θ) is known as

the Radon-Nykodym derivative of Pθ with respect to Pθ0 , or simply the “likelihood ratio.” (Since
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θ ∈ Θ, Pθ and Pθ0 are mutually absolutely continuous, so (8) is valid.) Since θ0 is fixed, the

expectation on the right hand side of (8) has a probability measure which is independent of the

parameter λi.

We can now easily differentiate the right hand side of (8), assuming that the derivative and

expectation operators can be interchanged. (Glynn 1986 proved the validity of the interchange for

DTMCs under regularity conditions which can easily be shown to hold in our context.) Since we

are working with DTMCs, dPθ(ω) =
∏τ(ω)−1
k=0 P (θ,Xk(ω), Xk+1(ω)), and so

∂λiEθ[1{τF < τ0}] = Eθ0 [1{τF < τ0} ∂λiL(θ)],

where

∂λiL(θ) =

[
τ−1∑
k=0

∂λiP (θ,Xk, Xk+1)
P (θ0, Xk, Xk+1)

]
L(θ).

The expressions simplify when we evaluate ∂λiEθ[1{τF < τ0}] at the point θ = θ0 since L(θ0) =

1. This technique is known as the “likelihood ratio” method for computing derivatives; see

Glynn (1986) and Reiman and Weiss (1989) for further details.

After computing the partial derivatives, we set λj = λj(ε) ≡ λ̃jε
bj for all component types j,

as in (5), and evaluate the partial derivatives at θ(ε) = (λ(ε), µ). (For notational convenience, we

omit the subscript 0 from the parameter θ.) Hence, we are considering ∂λiγ(λ(ε), µ), and

∂λiL(λ(ε), µ) =
τ−1∑
k=0

∂λiP ((λ(ε), µ), Xk, Xk+1)
P ((λ(ε), µ), Xk, Xk+1)

(9)

is the partial derivative with respect to λi of the likelihood ratio evaluated at θ(ε) = (λ(ε), µ).

It is important to note that the partial derivatives obtained depend on the way the problem is

parameterized. Therefore, a certain amount of care must be taken to ensure that the parameteriza-

tion used will result in the desired partial derivatives. For example, we could specify a failure rate

of a component to be λ = 1/ν, where ν is the mean lifetime of the component. If we then take the

derivative of the performance measure with respect to ν, this will result in a different quantity than

if we differentiated with respect to λ. However, the actual (non-derivative) performance measure

itself is independent of how the problem is parameterized.

4.1 Estimating the Partial Derivatives w.r.t. Component Failure Rates Using

Naive Simulation

In this section, we derive asymptotic expressions for the derivatives of the denominator with respect

to the λi and also for the variance of the estimators obtained using naive simulation. To establish

our results, we need to make some additional technical assumptions. (The assumptions are not

required to prove the results for the non-derivative performance measure estimates.)

A4 If p(y;x, i) > 0 and p(y;x, j) > 0, then bi = bj.
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A5 If there exists a component type i such that bi = b0 and p(y; 0, i) > 0, then there exists another

component type j 6= i such that bj = b0 and p(y; 0, j) 6= p(y; 0, i).

Assumption A4 stipulates that if the failure of either of two types of components can trigger

a transition from state x to y, then the failure rates of the two component types are of the same

ε-order. This implies that the Q-matrix has a certain form: for x 6= y,

q(θ(ε), x, y) =


c(x, y)εd(x,y) if y � x
µ(x, y) if y ≺ x
0 otherwise

,

where c(x, y) > 0, d(x, y) ≥ b0 are integer-valued, and ε > 0. Hence, the transition rates for failure

transitions consist of a single term rather than a sum as in (6). Furthermore, we can determine the

exact value of d(x, y) since there must exist some component type i such that p(y;x, i) > 0, and so

Assumption A4 ensures that d(x, y) = bi in this case. We use this fact to determine the order of

magnitude of derivatives with respect to λi; see the proof of Lemma 12.

Assumption A5 states that if there is some component type i having failure rate of the order εb0

whose failure can cause a transition from state 0 to state y with some positive probability, then

there must be some other component type j also having failure rate of the order εb0 which causes

the same transition with a different probability. This condition is not unreasonable when we are

considering large reliability systems. It should be noted that Assumption A5 holds if there exists

a component type j such that bj = b0 and p(y; 0, j) = 0. Assumption A5 is a technical assumption

needed to ensure that there is no cancellation when we compute certain expressions; see the proof

of Lemma 12 for further details.

In the situation when there is no failure propagation, then Assumption A4 is automatically

satisfied, and Assumption A5 reduces to requiring that there are two different component types

which both have failure rates of the order εb0 ; i.e., there exists i and j such that i 6= j and

bi = bj = b0. If we allow for failure propagation but with the restriction that any given failure

transition can be triggered by the failure of only one type of component (i.e., for each (x, y) ∈ Γ with

y � x, there is at most one component type i for which p(y;x, i) > 0), then again it is easy to verify

that Assumption A4 holds and Assumption A5 reduces to requiring that there exist component

types i and j such that i 6= j and bi = bj = b0.

Let ∂̂λiγ(λ(ε), µ) denote the estimator of ∂λiγ(λ(ε), µ) obtained using naive simulation. The

following theorem gives an expression in terms of ε for the partial derivative with respect to the

failure rate of component type i and the variance of its estimator when using naive simulation.

Theorem 3 Consider a model of any highly reliable Markovian system (as described in Section 2)

which satisfies Assumptions A1–A5. For all ε sufficiently small, there exists ãi 6= 0, ri ≥ r, and

r̄i ≥ r (which depend on the model) such that

(i) ∂λiγ(λ(ε), µ) = Eθ(ε)[1{τF < τ0}∂λiL(λ(ε), µ)] = ãiε
min{ri−bi, r̄i−b0} + o(εmin{ri−bi, r̄i−b0}),

where bi is defined in (5).
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Also, when using naive simulation, there exists ã′i > 0 such that

(ii) σ2(∂̂λiγ(λ(ε), µ)) ≡ V arθ(ε)[1{τF < τ0}∂λiL(λ(ε), µ)] = ã′iε
min{ri−2bi,r̄i−2b0}+o(εmin{ri−2bi,r̄i−2b0}).

In general, we cannot say whether ri− bi ≤ r̄i− b0 or ri− bi > r̄i− b0, or whether ri−2bi ≤ r̄i−2b0
or ri − 2bi > r̄i − 2b0. Also, the expression for ∂λiγ(λ(ε), µ) is independent of whether we use

naive simulation or importance sampling. However, the variance of the estimator depends on the

simulation method being employed.

The basic idea of the proof of Theorem 3 is as follows. (The complete proof is given in Section 9.)

Consider component type i, and define

τi = inf{k > 0 : Xk � Xk−1, ni(Xk−1)p(Xk;Xk−1, i) > 0}. (10)

From (2) we see that τi is the first failure transition along the path X0, X1, . . . which could have

been triggered by a failure of a component of type i. We first show (see Lemma 12 in Section 9)

that the order of magnitude of the summands in (9) depend on whether or not the transition could

have been triggered by a failure of component type i; i.e., if ni(Xk)p(Xk+1;Xk, i) > 0. (We need

Assumptions A4 and A5 to show this.) We then decompose the event {τF < τ0} as

{τF < τ0} = {τi ≤ τF < τ0} ∪ {τF < min{τi, τ0}}, (11)

where the union is over disjoint events. Note that {τi ≤ τF < τ0} is the event that the system fails

before returning to the fully operational state and a component of type i may have triggered one

of the failures along the path. Also, {τF < min{τi, τ0}} is the event that the system fails before

returning to the fully operational state and none of the failure transitions could have been triggered

by a failure of a component of type i. Thus, the order of magnitude of ∂λiL(λ(ε), µ) depends on

whether τi ≤ τF < τ0 or τF < min{τi, τ0} occurs. We analyze these cases separately by writing

Eθ(ε)[1{τF < τ0} ∂λiL(λ(ε), µ)]

= Eθ(ε)[∂λiL(λ(ε), µ) | τi ≤ τF < τ0] Pθ(ε){τi ≤ τF < τ0}

+ Eθ(ε)[∂λiL(λ(ε), µ) | τF < min{τi, τ0}] Pθ(ε){τF < min{τi, τ0}}. (12)

(We can decompose the expression for the second moment in a similar manner.) Employing

arguments similar to the ones used in the proof of Theorem 2, we can establish that

Pθ(ε){τi ≤ τF < τ0} = ai0ε
ri + o(εri), (13)

Pθ(ε){τF < min{τi, τ0}} = āi0ε
r̄i + o(εr̄i), (14)

where ai0 and āi0 are are independent of ε and ri and r̄i are as defined in Theorem 3. Furthermore,

we can prove that both Pθ(ε){(X0, . . . , Xτ ) ∈ · | τi ≤ τF < τ0} and Pθ(ε){(X0, . . . , Xτ ) ∈ · | τF <

min{τ0, τi}} respectively converge to some limiting probability measures; see Theorem 13 in Sec-

tion 9. We take advantage of this fact by then expressing each conditional expectation in (12) as
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a sum of two terms. The first term corresponds to the largest order terms when conditioning on

either τi ≤ τF < τ0 or τF < min{τi, τ0}. We use our results on the convergence of the conditional

distributions to analyze these quantities (see Lemmas 14 and 15 in Section 9). Essentially, we ac-

complish this by examining the behavior of the derivative estimator on the most likely paths when

τi ≤ τF < τ0 or τF < min{τi, τ0}. The second term consists of the lower order terms, which we

show vanishes as ε→ 0. Putting all of this together then establishes the validity of Theorem 3. We

work out Example 1 using this approach in the end of Section 4.2.

Before continuing, we first need to further analyze the constants ri and r̄i. Note that {τF <

τ0} = ∪Ci=1{τi ≤ τF < τ0}, which implies

min
1≤i≤C

ri = r, (15)

since the number of types of components C <∞. Moreover,

min{ri, r̄i} = r (16)

follows from (11).

4.2 Examining the Difficulty of Estimating the Partial Derivatives Using Naive

Simulation

Theorem 3 provides expressions in terms of ε for the partial derivatives of γ(λ(ε), µ) with respect

to the different component failure rates. We also obtained similar expressions for the variances

associated with estimating these quantities using naive simulation. Hence, we are now in a position

to examine how difficult it is to evaluate the various partial derivatives.

The following corollary shows that when using naive simulation, the relative error of our es-

timates of the partial derivatives increases without bound. Thus, as in the case of estimating

the performance measure, we see that it is also difficult to estimate derivatives by using naive

simulation.

Corollary 4 Suppose the assumptions of Theorem 3 hold. Then when using naive simulation,

RE(∂̂λiγ(λ(ε), µ))→∞ as ε→ 0.

Proof. First suppose that ri − bi ≤ r̄i − b0, and so ∂λiγ(λ(ε), µ) ∼ εri−bi . Note that min{ri −
2bi, r̄i − 2b0} ≤ ri − 2bi, and so σ2(∂̂λiγ(λ(ε), µ)) ∼ εd, where d ≤ ri − 2bi. This implies that

d/2− (ri − bi) ≤ (ri − 2bi)/2− (ri − bi) = −ri/2, and so RE(∂̂λiγ(λ(ε), µ)) ∼ εd/2−(ri−bi) → ∞ as

ε→ 0 since ri > 0. Similarly, we can show the result holds when ri − bi > r̄i − b0.

The next corollary shows that the partial derivatives of the performance measure with respect

to the failure rates of certain types of components are no more difficult to estimate than the

performance measure itself. More specifically, consider component type i. Suppose either a failure

of a component of type i can trigger some failure transition on one of the most likely paths to system
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failure (i.e., ri = r) or components of type i have one of the largest failure rates (i.e., bi = b0),

where ri and bi are defined in (13) and (5), respectively. Then the following result shows that we

can estimate the partial derivative of γ(λ(ε), µ) with respect to λi as accurately as we can estimate

the performance measure itself when naive simulation is employed.

Corollary 5 Suppose the assumptions of Theorem 3 hold. Also, suppose either ri = r or bi = b0.

Then, when using naive simulation, RE(∂̂λiγ(λ(ε), µ))/RE(γ̂(λ(ε), µ)) remains bounded as ε→ 0.

Proof. First suppose ri = r. Since r̄i ≥ r by (16) and bi ≥ b0, we have r−pbi ≤ r̄i−pb0 for p ≥ 1.

Thus, ∂λiγ(λ(ε), µ) ∼ εr−bi and σ2(∂̂λiγ(λ(ε), µ)) ∼ εr−2bi , which implies RE(∂̂λiγ(λ(ε), µ)) ∼ ε−r/2

when ri = r.

Now suppose that bi = b0. We may assume that ri > r, and so r̄i = r by (16). Hence, ri − bi =

ri−b0 > r−b0 = r̄i−b0 and ri−2bi = ri−2b0 > r−2b0 = r̄i−2b0, which implies ∂λiγ(λ(ε), µ) ∼ εr−b0

and σ2(∂̂λiγ(λ(ε), µ)) ∼ εr−2b0 . Thus, we again have that RE(∂̂λiγ(λ(ε), µ)) ∼ ε−r/2 when bi = b0.

Finally, by Proposition 1, RE(γ̂(λ(ε), µ) ∼ ε−r/2, from which the result follows.

Because of the importance of the Corollary 5, we now develop a condition which is equivalent

to the hypothesis of Corollary 5. To do this, we first define the sensitivity of γ(λ, µ) with respect

to λi, evaluated at θ(ε) = (λ(ε), µ) with µ fixed, to be

si(ε) = λi(ε) · ∂λiγ(λ(ε), µ).

Sensitivities measure the effects on the overall system performance of relative changes in the value

of a parameter. Based on this interpretation of sensitivities, the derivatives corresponding to the

largest sensitivities are the most “important” ones.

To make this more rigorous, we say that the sensitivity with respect to λi has the largest

asymptotic magnitude if for all other component types j 6= i, lim infε→0 |si(ε)/sj(ε)| > 0. The

next corollary shows that the sensitivities having the largest asymptotic magnitude correspond to

components that either can trigger a failure transition by failing on one of the most likely paths to

failure or have one of the largest failure rates. Consequently, we can estimate the partial derivatives

corresponding to the largest sensitivities as accurately as the performance measure itself.

Corollary 6 Suppose the assumptions of Theorem 3 hold, and consider component type i. Then

the sensitivity with respect to λi has the largest asymptotic magnitude if and only if either ri = r or

bi = b0. In this case, λi ·∂λiγ(λ(ε), µ) = ciε
r+o(εr), where ci 6= 0. Thus, it follows from Corollary 5

that when using naive simulation, RE(∂̂λiγ(λ(ε), µ))/RE(γ̂(λ(ε), µ)) remains bounded as ε→ 0 for

sensitivities with respect to λi having a largest asymptotic magnitude.

Proof. Using Theorem 3 and (5), sj(ε) ∼ εmin{rj , r̄j+bj−b0} for all component types j. Note that

r ≤ rj for all component types j by (16). Since bj ≥ b0 for all j and r̄i ≥ r by (16), we have

r ≤ r̄j + bj − b0. Thus,

r ≤ min{rj , r̄j + bj − b0} (17)
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for all component types j. Furthermore, if rj = r, then min{rj , r̄j + bj − b0} = r. Hence, to prove

our result, we need to show that min{ri, r̄i + bi − b0} = r if and only if either ri = r or bi = b0.

If ri = r, then min{ri, r̄i + bi − b0} = r by (17). Now suppose bi = b0. We may assume that

ri > r, and so r̄i = r by (16). Hence, r̄i + bi − b0 = r, giving us min{ri, r̄i + bi − b0} = r by (17).

Now suppose min{ri, r̄i + bi − b0} = r. If ri is the minimum, then ri = r. If r̄i + bi − b0 is the

minimum, then r̄i + bi − b0 = r. We may assume ri > r, and so r̄i = r by (16). Thus, bi = b0.

Hence, min{ri, r̄i + bi − b0} = r implies either ri = r or bi = b0, which completes the proof.

We now want to compare the difficulties associated with estimating the different partial deriva-

tives. Before doing so, we make another definition. We say that the sensitivity with respect to the

failure rate of component type i is asymptotically strictly larger than the sensitivity with respect to

the failure rate of component type j if lim infε→0 |si(ε)/sj(ε)| = +∞. The following corollary shows

that the partial derivatives with respect to the failure rates of the component types corresponding

to the largest sensitivities are no more difficult (and possibly easier) to estimate than the other

partial derivatives.

Corollary 7 Suppose the assumptions of Theorem 3 hold, and consider any component types i and

j 6= i. Assume the following:

(i) si(ε) has the largest asymptotic magnitude,

(ii) si(ε) is asymptotically strictly larger than sj(ε).

Then, when using naive simulation, RE(∂̂λiγ(λ(ε), µ))/RE(∂̂λjγ(λ(ε), µ)) remains bounded (and

possibly goes to 0) as ε→ 0.

Proof. The first assumption and Corollaries 5 and 6 imply that RE(∂̂λiγ(λ(ε), µ)) ∼ ε−r/2. Thus,

to prove our result, we must show that RE(∂̂λjγ(λ(ε), µ)) has ε-order no greater than −r/2. By

the two assumptions and Corollary 6, we must have rj > r and bj > b0. Hence, r̄j = r by (16).

There are two cases to consider: min{rj − bj , r̄j − b0} = rj − bj and min{rj − bj , r̄j − b0} = r̄j − b0.

First, suppose min{rj − bj , r̄j − b0} = rj − bj , and so rj − bj ≤ r̄j − b0 = r − b0. Then, bj > b0

implies that rj − 2bj < r̄j − 2b0, giving us ∂λjγ(λ(ε), µ) ∼ εrj−bj and σ2(∂̂λjγ(λ(ε), µ)) ∼ εrj−2bj .

Hence, RE(∂̂λjγ(λ(ε), µ)) ∼ ε−rj/2. Since rj > r, RE(∂̂λiγ(λ(ε), µ))/RE(∂̂λjγ(λ(ε), µ)) → 0 as

ε→ 0.

Now suppose min{rj − bj , r̄j − b0} = r̄j − b0 = r − b0. Observe that min{rj − 2bj , r̄j − 2b0} ≤
r̄j−2b0 = r−2b0. Therefore, ∂λjγ(λ(ε), µ) ∼ εr−b0 and σ2(∂̂λjγ(λ(ε), µ)) ∼ εd1 , where d1 ≤ r−2b0.

Hence, RE(∂̂λjγ(λ(ε), µ)) ∼ εd2 , where d2 ≤ −r/2, and so RE(∂̂λiγ(λ(ε), µ))/RE(∂̂λjγ(λ(ε), µ))

remains bounded (and possibly goes to 0) as ε→ 0.

Now we examine how Corollaries 5–7 manifest themselves in our previous example.

Example 1 (continued) Consider component type 1. We first derive asymptotic expressions

for the derivative with respect to λ1 and the variance of its naive estimator. Note that τ1 ≤ τF < τ0
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for the path (〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉), and

Pθ(ε){(X0, . . . , XτF ) = (〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉)} = (1/2)ε+ o(ε).

We can show that the sum of the probabilities of all other paths that satisfy τ1 ≤ τF < τ0 is o(ε).

Thus, Pθ(ε){τ1 ≤ τF < τ0} = ε/2 + o(ε), and r1 = 1. Since the set of most likely paths for which

τ1 ≤ τF < τ0 consists of only one path, we only have to evaluate ∂λ1L(λ(ε), µ) on the one path to

determine the asymptotic expression for Eθ(ε)[∂λ1L(λ(ε), µ) | τi ≤ τF < τ0]. Observe that

∂λ1L(λ(ε), µ)(〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉)

=
2λ2(ε) + λ3(ε)

λ1(ε)(2λ1(ε) + 2λ2(ε) + λ3(ε))
+

1 + 2λ2(ε) + λ3(ε)
λ1(ε)(1 + λ1(ε) + 2λ2(ε) + λ3(ε))

= (3/2)ε−1 + o(ε−1),

and so Eθ(ε)[∂λ1L(λ(ε), µ) | τ1 ≤ τF < τ0] = (3/2)ε−1+o(ε−1), and Eθ(ε)[(∂λ1L(λ(ε), µ))2 | τ1 ≤ τF <
τ0] = (9/4)ε−2 + o(ε−2). Similarly, by considering the path (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉), we can show

that Pθ(ε){τF < min{τ1, τ0}} = (1/2)ε+ o(ε), and r̄1 = 1. Also, we have Eθ(ε)[∂λ1L(λ(ε), µ) | τF <
min{τ1, τ0}] = −(1/2)ε−1+o(ε−1) and Eθ(ε)[(∂λ1L(λ(ε), µ))2 | τF < min{τ1, τ0}] = (1/4)ε−2+o(ε−2).

Using (12), we get

∂λ1γ(λ(ε), µ) =
(
(3/2)ε−1 + o(ε−1)

)
((1/2)ε+ o(ε)) +

(
−(1/2)ε−1 + o(ε−1)

)
((1/2)ε+ o(ε))

= 1/2 + o(1)

and

Eθ(ε)[1{τF < τ0}(∂λ1L(λ(ε), µ))2]

= ((9/4)ε−2 + o(ε−2))((1/2)ε+ o(ε)) + ((1/4)ε−2 + o(ε−2))((1/2)ε+ o(ε))

= (5/4)ε−1 + o(ε−1)

Hence, σ2(∂̂λ1γ(λ(ε), µ)) = (5/4)ε−1 + o(ε−1) and RE(∂̂λ1γ(λ(ε), µ)) =
√

5ε−1/2 + o(ε−1/2). Also,

we can show that r2 = r̄2 = r̄3 = 1, r3 = 2, and

∂λ2γ(λ(ε), µ) = 1/2 + o(1)

σ2(∂̂λ2γ(λ(ε), µ)) = (5/4)ε−1 + o(ε−1)

∂λ3γ(λ(ε), µ) = (1/4)ε−1 + o(ε−1)

σ2(∂̂λ3γ(λ(ε), µ)) = (1/4)ε−4 + o(ε−4).

It then follows that RE(∂̂λ2γ(λ(ε), µ)) =
√

5ε−1/2+o(ε−1/2) and RE(∂̂λ3γ(λ(ε), µ)) = 2ε−1+o(ε−1).

Note that s1(ε) = s2(ε) = ε/2 + o(ε) and s3(ε) = ε2/4 + o(ε2). Therefore, s1(ε) and s2(ε) have the

largest asymptotic magnitudes, and they are asymptotically strictly larger than s3(ε). We previously

established that RE(γ̂(λ(ε), µ)) = ε−1/2 + o(ε−1/2), and so we can estimate the derivative with

respect to λ1 or λ2 with the same relative accuracy as the performance measure, which agrees with

Corollaries 5 and 6. Also, the partial derivatives with respect to λ1 or λ2 are strictly easier to

estimate than the partial with respect to λ3, as ε→ 0, in accordance with Corollary 7.
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5 Estimating the Performance Measure Using Importance Sam-

pling

In the previous sections, we showed that we can estimate certain derivatives of the denominator

of the ratio expression for the MTTF as accurately as we can estimate the denominator itself.

However, the relative errors of all of these estimates diverge to infinity in the limit when using naive

simulation. Thus, variance reduction techniques must be utilized to obtain efficient estimators. We

now describe an importance sampling scheme known as the “balanced failure biasing” method,

which was proposed by Shahabuddin (1991). If balanced failure biasing is used, Shahabuddin

showed that we can obtain stable estimates of γ(θ(ε)), independently of the rareness of system

failures (under the original measure); i.e., its relative error remains bounded as the failure rates go

to zero and the repair rates remain fixed. In the following section, we show that balanced failure

biasing can also be applied to the estimation of the derivatives of γ(θ(ε)) to obtain similar results.

As in Section 3, we do not require Assumptions A4 and A5 to hold in this section.

The basic idea behind importance sampling is as follows. Our goal is to estimate γ(θ(ε)) =

Eθ(ε)[1{τF < τ0}]. (The numerator of the ratio expression for the MTTF in (4) can be efficiently

estimated using naive simulation, so we do not use importance sampling to estimate this quantity.)

Let Ω be the set of all paths of the embedded DTMC X starting in state 0, and let F be the

corresponding σ-field. Recall that our original probability measure on F was Pθ(ε), and let P∗ be

some other probability measure defined on F such that Pθ(ε)(dω) = 0 implies P∗(dω) = 0 for all

ω ∈ Ω for which 1{τF < τ0}(ω) = 1. Finally, let E∗ denote the expectation operator induced by

P∗. Then,

Eθ(ε)[1{τF < τ0}] =
∫

1{τF < τ0}(ω) dPθ(ε)(ω) =
∫

1{τF < τ0}(ω)
dPθ(ε)
dP∗

(ω) dP∗(ω)

= E∗[1{τF < τ0} L∗(θ(ε))],

where L∗(θ(ε), ω) ≡ dPθ(ε)
dP∗

(ω) is the Radon-Nykodym derivative of Pθ(ε) with respect to P∗, or

simply the likelihood ratio. Hence, to evaluate γ(θ(ε)), we now compute the expectation of 1{τF <
τ0} L∗(θ(ε)) with respect to the probability measure P∗. This transformation is known as a “change

of measure.” (The reader is referred to Glynn and Iglehart 1989 for a more detailed description of

importance sampling.) By properly selecting P∗, we can obtain large reductions in the variance of

our estimators. Therefore, the main thrust of the research in importance sampling is in determining

how P∗ should be chosen.

Shahabuddin (1991) proposed the balanced failure biasing algorithm as a method of implement-

ing importance sampling in simulations of highly reliable Markovian systems. The general intuition

behind this method is to alter the transition probabilities of the embedded DTMC so as to increase

the probability of the event {τF < τ0}. Thus, {τF < τ0} will no longer be a “rare event” under the

importance sampling distribution, making its probability easier to estimate.

A description of the balanced failure biasing method is as follows. First, consider state 0, from
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which there are only failure transitions possible. Under the change of measure, we make all tran-

sitions from this state occur with equal probability. For example, if from state 0 there are only m

failure transitions possible, then each of the failure transitions would be assigned probability 1/m

under balanced failure biasing. Now, consider any state from which there are only repair transitions

possible. Balanced failure biasing does not change the transition probabilities of the (repair) transi-

tions from this state. For all of the other states not yet considered, there are both failure transitions

and repair transitions possible. For these states, under the original measure, the total probability

of taking a repair transition typically is much greater than the total probability of taking a failure

transition. To increase the probability of a system failure under the new measure, we inflate the

total probability of a failure transition to p1, where 0 � p1 < 1; i.e. p1 is independent of ε. The

individual failure transitions are made to occur with equal probability. The total probability of a

repair transition from the state is reduced to 1−p1, and the ratio of the individual repair transition

probabilities remains the same as when P (θ(ε)) is used. A more detailed description of balanced

failure biasing is given in Shahabuddin (1991).

In general, we have p1 = p̄1 +o(1), although typically in practice, p1 is selected independently of

ε. Extensive empirical work suggests that we should select 0.5 ≤ p1 ≤ 0.9; see Goyal et al. (1992).

(Shahabuddin 1991 also developed some heuristics for selecting p1.) Hence, under the importance

sampling measure, all transitions (x, y) ∈ Γ have probability of the order 1; i.e.,

P∗(θ(ε), x, y) = p∗(x, y) + o(1), (18)

where p∗(x, y) > 0 is independent of ε. This implies that all sample paths (x0, . . . , xn) ∈ ∆ also have

probability of order 1 under the importance sampling distribution, and so the event of a system

failure occurring before a regeneration is no longer rare under the probability measure corresponding

to balanced failure biasing.

Let L∗(θ(ε)) denote the likelihood ratio corresponding to balanced failure biasing; i.e.,

L∗(θ(ε)) =
τ−1∏
k=0

P (θ(ε), Xk, Xk+1)
P∗(θ(ε), Xk, Xk+1)

. (19)

Also, let γ̃(θ(ε)) denote the estimator of γ(θ(ε)) obtained by using balanced failure biasing, and let

σ2
∗(γ̃(θ(ε))) denote its variance. Then, Shahabuddin (1991) showed the following results:

Proposition 8 (Shahabuddin) Consider a model of any highly reliable Markovian system (as

described in Section 2) which satisfies Assumptions A1–A3. When using balanced failure biasing,

there exists a1 > 0 (which depends on the system) such that

(i) σ2
∗(γ̃(θ(ε))) = V ar∗[1{τF < τ0}L∗(θ(ε))] = a1ε

2r + o(ε2r),

(ii) RE(γ̃(θ(ε))) = σ∗(γ̃(θ(ε)))
γ(θ(ε)) =

√
a1ε2r+o(ε2r)

(a0εr+o(εr))
=
√
a1+o(1)

a0+o(1)

for all ε sufficiently small, where r is as defined in (22).
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Proposition 11 established the asymptotic expression for γ(θ(ε)), which is independent of the simu-

lation method used to estimate it. However, the variance of the estimate of γ(θ(ε)) depends on the

simulation method employed, and an expression for the variance associated with estimating γ(θ(ε))

using balanced failure biasing is given in Proposition 81. Proposition 82 shows that by using bal-

anced failure biasing, the relative error of the performance measure estimator remains bounded as

the failure rates go to zero and the repair rates remain fixed. Hence, we can obtain good estimates

of γ(θ(ε)) by using importance sampling, no matter how rarely system failures occur.

Now let us reconsider our previous example.

Example 1 (continued) Figure 2 is the transition probability diagram of the system under

balanced failure biasing. Note that

E∗[1{τF < τ0}(L∗(θ(ε)))2] = Eθ(ε)[1{τF < τ0}L∗(θ(ε))]

=
∑

(x0,...,xn)∈∆
n≥1

L∗(θ(ε))(x0, . . . , xn)Pθ(ε){(X0, . . . , XτF ) = (x0, . . . , xn)}.

For the paths (〈0, 0, 0〉, 〈1, 0, 0〉, 〈2, 0, 0〉) and (〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 2, 0〉), we have that

L∗(θ(ε))(x0, . . . , xn)Pθ(ε){(X0, . . . , XτF ) = (x0, . . . , xn)} =
9
p1
ε2 + o(ε2).

We can show that all other paths have L∗(θ(ε))(x0, . . . , xn)Pθ(ε){(X0, . . . , XτF ) = (x0, . . . , xn)} =

o(ε2) and that their sum over all of these paths is o(ε). Thus,

σ2
∗(γ̃(θ(ε))) =

(
9
p1
− 1

)
ε2 + o(ε2)

and RE(γ̃(θ(ε))) =
√

9
p1
− 1 + o(1).

6 Estimating Derivatives Using Importance Sampling

We now show that balanced failure biasing can also be applied to the estimation of the partial

derivatives of γ(λ(ε), µ) to obtain large reductions in the variances. As in Section 4, we require

Assumptions A4 and A5 to hold as well as A1–A3.

6.1 Estimating the Partial Derivatives w.r.t. Component Failure Rates Using

Importance Sampling

In Section 4.1 we denoted the partial derivative of γ(λ(ε), µ) with respect to λi, evaluated at the

parameter θ(ε) = (λ(ε), µ), by ∂λiγ(λ(ε), µ) ≡ ∂
∂λi

γ(λ(ε), µ) = E(λ(ε),µ)[1{τF < τ0} ∂λiL(λ(ε), µ)],

where ∂λiL(λ(ε), µ) is defined in (9). Using the change of measure corresponding to balanced failure

biasing, we obtain

∂λiγ(λ(ε), µ) = E∗[1{τF < τ0} (∂λiL(λ(ε), µ)) L∗(λ(ε), µ)],
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where L∗(λ(ε), µ) is defined in (19).

Let ∂̃λiγ(λ(ε), µ) denote the estimator of ∂λiγ(λ(ε), µ) obtained by using balanced failure biasing.

The following theorem gives an expression in terms of ε for the variance of this estimator; see

Section 9 for the proof.

Theorem 9 Consider a model of any highly reliable Markovian system (as described in Section 2)

which satisfies Assumptions A1–A5. Then when using balanced failure biasing, there exists ã′i(∗) > 0

such that

σ2
∗(∂̃λiγ(λ(ε), µ) ≡ V ar∗[1{τF < τ0} (∂λiL(λ(ε), µ)) L∗(λ(ε), µ)]

= ã′i(∗)εmin{2ri−2bi, 2r̄i−2b0} + o(εmin{2ri−2bi, 2r̄i−2b0})

for all ε sufficiently small.

Our basic approach for proving Theorem 9 is as follows. Note that

E∗[1{τF < τ0} (∂λiL(λ(ε), µ))2 (L∗(λ(ε), µ))2] = Eθ(ε)[1{τF < τ0} (∂λiL(λ(ε), µ))2 L∗(λ(ε), µ)],

and so we can analyze the second moment of the balanced failure biasing estimator using the same

method we employ to examine the second moment of the naive simulation derivative estimator

described in Section 4.1. More specifically, we express

E∗[1{τF < τ0} (∂λiL(λ(ε), µ))2 (L∗(λ(ε), µ))2]

= Eθ(ε)[(∂λiL(λ(ε), µ))2 L∗(λ(ε), µ) | τi ≤ τF < τ0] Pθ(ε){τi ≤ τF < τ0}

Eθ(ε)[(∂λiL(λ(ε), µ))2 L∗(λ(ε), µ) | τF < min{τi, τ0}] Pθ(ε){τF < min{τi, τ0}}. (20)

After obtaining bounds for the likelihood ratio, we can establish asymptotic expressions for the

conditional expectations using the technique employed to prove Theorem 3. We can also prove

Proposition 8 in a similar manner.

6.2 Examining the Difficulty of Estimating the Partial Derivatives Using Im-

portance Sampling

Theorem 9 provides an expression in terms of ε for the variance obtained using balanced failure

biasing of the estimator of the partial derivative of γ(λ(ε), µ) with respect to various component

failure rates. Hence, we are now in a position to examine the difficulties of estimating the different

partial derivatives.

The following corollary shows that when using balanced failure biasing, we can obtain stable

estimates of the partial derivative of γ(λ(ε), µ) with respect to the failure rate of any component

type.

Corollary 10 Suppose the assumptions of Theorem 9 hold, and consider any component type i.

Then, when using balanced failure biasing, RE(∂̃λiγ(λ(ε), µ)) remains bounded as ε→ 0.
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Proof. If ri − bi ≤ r̄i − b0, then 2ri − 2bi ≤ 2r̄i − 2b0, implying ∂λiγ(λ(ε), µ) ∼ εri−bi and

σ2
∗(∂̃λiγ(λ(ε), µ)) ∼ ε2ri−2bi . Hence, RE(∂̃λiγ(λ(ε), µ)) is of order 1 in this case. Similarly, we can

show the result holds when ri − bi > r̄i − b0, which completes the proof.

In the next corollary, which is a direct consequence of the previous result, it is shown that when

balanced failure biasing is used, we can estimate all partial derivatives of γ(λ(ε), µ) with equal

accuracy. This is in sharp contrast to the situation that arose when using naive simulation, in

which certain derivatives were easier to estimate than others (see Corollary 7).

Corollary 11 Suppose the assumptions of Theorem 9 hold, and consider any component types i

and j. Then, when using balanced failure biasing, RE(∂̃λiγ(λ(ε), µ))/RE(∂̃λjγ(λ(ε), µ)) remains

bounded as ε→ 0.

Now let us reconsider our previous example.

Example 1 (continued) By considering the most likely paths when τi ≤ τF < τ0 and τF <

min{τi, τ0} for i = 1, 2, 3, we can show that

σ2
∗(∂̃λ1γ(λ(ε), µ)) =

(
45
8p1
− 1

4

)
+ o(1)

σ2
∗(∂̃λ2γ(λ(ε), µ)) =

(
45
8p1
− 1

4

)
+ o(1)

σ2
∗(∂̃λ3γ(λ(ε), µ)) = (1/8)ε−2 + o(ε−2),

and so RE(∂̃λ1γ(λ(ε), µ)) = RE(∂̃λ2γ(λ(ε), µ)) = 2
√

45
8p1
− 1

4 + o(1) and RE(∂̃λ3γ(λ(ε), µ)) =
√

2 +

o(1). Recalling that RE(γ̃(θ(ε))) =
√

9
p1
− 1 + o(1), we see that each of the derivatives can be

estimated with the same asymptotic relative accuracy as the performance measure, which is what

we proved in Corollary 10. Also, we can estimate all derivatives with equal asymptotic relative

accuracy, which agrees with Corollary 11.

7 Empirical Results

In this section we present some results from simulating a large computing system. Goyal et al. (1992)

and Nakayama, Goyal, and Glynn (1991) previously studied the same system with different failure

rates for the components. The system consists of two types of processors, A and B, each having

a redundancy of two; two sets of disk controllers, each having a redundancy of two; and six disk

clusters consisting of four disks each. The data is replicated in each disk cluster in such a way that

one of the disks can fail and all of the data in the cluster is still accessible. The processors of one

type access the data through one set of disk controllers, and the other type of processors access

data through the other set. When a processor of one type fails, it causes a processor of the other

type to fail simultaneously with probability 0.01. The system fails when either both processors of
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Performance Numerical Naive Balanced

Measure Result Simulation Failure Biasing

MTTF 0.1609× 106 0.1588× 106 0.1595× 106

± 25.8% ± 6.2%

pAfr · ∂
∂pAfrMTTF −.7174× 105 −.6957× 105 −.7006× 105

± 54.9% ± 13.4%

d1fr · ∂
∂d1frMTTF −.2772× 103 −.7117× 103 −.2735× 103

± 569.7% ± 34.6%

Table 1: Estimates of MTTF and sensitivities with relative 99% confidence intervals

one type are failed or both disk controllers in one set are failed or two or more disks in any cluster

are failed. Figure 3 is a block diagram of the system.

The failure rate of the processors of types A and B are 1/1500 and 1/2000 per hour, respectively.

All of the disk controllers have failure rate 1/2000 per hour. The disks in the first cluster have

failure rate 1/60000 per hour, and the disks in all of the other clusters have a failure rate of 1/6000

per hour. All of the components can fail in two different modes, where the repair rate in the first

mode is 1 per hour and the repair rate in the second mode is 1/2 per hour. There is a single

repairperson who repairs failed components in random order service.

Using the SAVE package (see Goyal and Lavenberg 1987), we estimated the mean time to failure

of the system and its sensitivities with respect to pAfr, which is the failure rate of processors of

type A, and d1fr, the failure rate of the disks in the first cluster. (Note that the theory we

developed in the previous sections only considered the denominator term in the ratio expression for

the MTTF and its derivatives, whereas now we estimate the actual MTTF and its derivatives.) We

computed the values using a (non-simulation) numerical method, naive simulation, and simulation

using balanced failure biasing. All of the simulation results were obtained from simulating 1,000,000

events, where an event is either a component failure or repair. The results are given in Table 1.

There are several interesting points to note in Table 1. First, the absolute value of the numerical

value of the sensitivity with respect to pAfr is much larger than that with respect to d1fr, and

in fact, it turns out that the sensitivity with respect to pAfr was one of the largest sensitivities

in absolute value. When naive simulation was used, we were able to estimate this sensitivity with

about the same relative error (as measured by the relative width of the confidence interval) as the

MTTF. This agrees with the theory established in Corollaries 5 and 6. Furthermore, when using

naive simulation, the estimate of the sensitivity with respect to d1fr is very poor since it has such

a large confidence interval. Thus, we were able to obtain a better estimate of the sensitivity with

respect to pAfr than with respect to d1fr, which is in accord with Corollary 7. Proposition 8 and

Corollary 10 suggest that we should be able to obtain stable estimates for all of the performance

measures by using balanced failure biasing, and indeed this is the case. Finally, we were able to
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estimate both sensitivities with comparable relative errors; see Corollary 11. Nakayama, Goyal, and

Glynn (1990) also present similar results and a more comprehensive empirical study of derivative

estimators.

8 Conclusions and Directions for Future Research

In this paper we considered the estimation of various partial derivatives of the performance measure

mean time to failure in highly reliable Markovian systems. Analyzing the most likely paths to failure

enabled us to derive asymptotic expressions for the derivative estimators and their variances. Hence,

we could compare the difficulties of estimating the different derivatives. In particular we showed

that the performance measure and some of its derivatives can be estimated with the same limiting

accuracy, thus showing that the likelihood ratio method can be a quite efficient technique for

estimating derivatives when used in an appropriate problem setting.

A number of directions for future research are possible. Shahabuddin (1991) demonstated the

strong connection between estimating the mean time to failure and the steady-state unavailability in

highly reliable Markovian systems. Consequently, we expect that results similar to the ones shown

here can be proven for the derivatives of the steady-state unavailability. Transient performance

measures such as the system reliability present additional complications due to the fact that condi-

tional Monte Carlo cannot be used, and so the random holding times must be taken into account.

However, the empirical findings of Nakayama, Goyal, and Glynn (1990) for derivatives of transient

measures suggest that similar results can be obtained in this context. Furthermore, examining the

characteristics of likelihood ratio derivative estimators in highly reliable non-Markovian systems

may prove to be fruitful. Finally, there has been recent theoretical work on determining the asymp-

totic distribution of the time to system failure as system failures become rare; e.g., see Arisimov

and Sztrik (1989), Keilson (1979), Ushakov (1985), and Sztrik (1989). It would be interesting to

investigate if these types of results could be developed for derivatives. 1

9 Proofs

Here we provide the proofs for all of our results.

Proof of Theorem 2. Consider the sample path (x0, . . . , xn) ∈ ∆ of the embedded DTMC.
1This paper is based directly on material from the author’s Ph.D. dissertation, which was completed while the

author was in the Operations Research Department at Stanford University. The research at Stanford University

was supported by IBM under SUR-SST Contract 12480042. The author is very grateful to his advisor Peter W.

Glynn, with whom he had many enlightening discussions. Also, the author would like to thank Ambuj Goyal, Steve

Lavenberg, and Perwez Shahabuddin, the anonymous referees, and the area and associate editors for their helpful

comments.
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Using (7), the probability of the sample path for all sufficiently small ε is given by

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} =
n−1∏
k=0

P (θ(ε), xk, xk+1) = a(x0, . . . , xn)εm + o(εm),

for some integer integer m ≥ 0, where a(x0, . . . , xn) > 0 is independent of ε. Consequently, we can

decompose ∆ as ∆ = ∪∞m=0∆m, where

∆m = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} ∼ εm}. (21)

∆m is the set of sample paths in ∆ which have probability of the order εm and is independent of

ε for all ε sufficiently small. Using (1), (7), and Assumption A3, we can easily show that for all

(x0, . . . , xn) ∈ ∆, there exists at least one k, 0 ≤ k < n, such that xk+1 � xk and P (θ(ε), xk, xk+1) ∼
εd(xk,xk+1), where d(xk, xk+1) ≥ 1. Hence, Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} is at least of the order

ε for (x0, . . . , xn) ∈ ∆, implying ∆0 = ∅. Therefore,

∆ = ∪∞m=r∆m, (22)

where r ≥ 1 is an integer. We define r such that ∆r 6= ∅ and ∆m = ∅ for all m < r. (It turns out

that this r is exactly the same as the r given in Proposition 1.)

Now we show that ∆m, for each m ≥ r, consists of a finite number of sample paths. Let

(x0, . . . , xn) ∈ ∆m, and consider xk, 0 < k < n. Since τF < τ0, we must have that xk 6= 0.

If xk+1 � xk, then P (θ(ε), xk, xk+1) ∼ εd(xk,xk+1), where d(xk, xk+1) ≥ 1, by (7). Moreover,

xk+1 ≺ xk implies that P (θ(ε), xk, xk+1) = c(xk, xk+1) + o(1), where 0 < c(xk, xk+1) ≤ 1. Hence,

since (x0, . . . , xn) ∈ ∆m has probability of the order εm, the path can have at most m + 1 failure

transitions, including (x0, x1). As we have allowed for failure propagation, each failure transition

can result in the failure of at most K failed components, where K ≡
∑C
i=1 ni < ∞ is the total

number of components in the system. Since τF < τ0, at most K − 1 repair transitions can occur

after every failure transition, and so there must be no more than (m+1)(K−1) repair transitions on

the path. Hence, each path in ∆m has at most (m+1)K total transitions; i.e., for (x0, . . . , xn) ∈ ∆m,

n ≤ (m+ 1)K. (23)

It then follows that

|∆m| ≤ |E|(m+1)K , (24)

and since |E| <∞ and K <∞, we have |∆m| <∞ for all m.

Note that

Pθ(ε){τF < τ0} =
∑

(x0,...,xn)∈∆r
n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}

+
∞∑

m=r+1

∑
(x0,...,xn)∈∆m

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}.
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Since |∆r| <∞, ∑
(x0,...,xn)∈∆r

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} = a0ε
r + o(εr) (25)

for ε sufficiently small, where a0 > 0.

Now we want to show that
∞∑

m=r+1

∑
(x0,...,xn)∈∆m

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} = o(εr). (26)

Note that by (7),

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} =
n−1∏
k=0

P (θ(ε), xk, xk+1) =
n−1∏
k=0

c(xk, xk+1)εd(xk,xk+1)+o(εd(xk,xk+1)),

(27)

where c(xk, xk+1) > 0 for 0 ≤ k < n. Now define t(xk, xk+1) = 2c(xk, xk+1), where c(xk, xk+1) is in

(27). Thus,

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} ≤
n−1∏
k=0

t(xk, xk+1)εd(xk,xk+1) (28)

for all sufficiently small ε > 0. Define t̄ = max{t(x, y) : (x, y) ∈ Γ}, and note that t̄ < ∞ since

|E| <∞. Now let

w = max{t̄, 1}. (29)

Finally, note that for (x0, . . . , xn) ∈ ∆m,
∑n−1
k=0 d(xk, xk+1) = m, where d(xk, xk+1) are as defined

in (27).

Recall that

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} =
n−1∏
k=0

P (θ(ε), xk, xk+1) =
n−1∏
k=0

q(θ(ε), xk, xk+1)
q(θ(ε), xk)

and q(θ(ε), x) =
∑
y:(x,y)∈Γ q(θ(ε), x, y). Since |E| < ∞, we can express q(θ(ε), x) = c(x)εd(x) +

o(εd(x)), where c(x) > 0 and d(x) ≥ 0. Now define q∗(θ(ε), x) = c(x)εd(x); i.e., q∗(θ(ε), x) is the

same as q(θ(ε), x) without the o(εd(x)) term. The o(εd(x)) term in the expression for q(θ(ε), x) is non-

negative since q(θ(ε), x, y) =
∑d2(x,y)
k=d1(x,y) ck(x, y)εk with ck(x, y) ≥ 0 and d1(x, y) ≥ 0 for all (x, y) ∈ Γ

by (6). (If (x, y) is a repair transition, then q(θ(ε), x, y) = c(x, y)µ = c̄(x, y)ε0 since µ is fixed.)

Thus, q∗(θ(ε), xk) ≤ q(θ(ε), xk). Also, for (x, y) ∈ Γ, define q∗(θ(ε), x, y) as follows. For y ≺ x, let

q∗(θ(ε), x, y) = q(θ(ε), x, y). For y � x, let q∗(θ(ε), x, y) = 2cd1(x,y)(x, y)εd1(x,y), where cd1(x,y)(x, y)

and d1(x, y) are defined such that q(θ(ε), x, y) =
∑d2(x,y)
k=d1(x,y) ck(x, y)εk with cd1(x,y)(x, y) > 0. For

all sufficiently small ε, q∗(θ(ε), x, y) ≥ q(θ(ε), x, y), implying that

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} ≤
n−1∏
k=0

q∗(θ(ε), xk, xk+1)
q∗(θ(ε), xk)

≡
n−1∏
k=0

t(xk, xk+1)εd(xk,xk+1), (30)
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where t(xk, xk+1) > 0 is independent of ε and d(xk, xk+1) ≥ 0. Note that there is no o(εd(xk,xk+1))

term in (30) and for (x0, . . . , xn) ∈ ∆m,
∑n−1
k=0 d(xk, xk+1) = m. Define t̄ = max{t(x, y) : (x, y) ∈

Γ} <∞, since |E| <∞. Finally, define

w = max{t̄, 1}. (31)

Since each path in ∆m has at most (m+ 1)K total transitions as shown in (23),

n−1∏
k=0

P (θ(ε), xk, xk+1) ≤
n−1∏
k=0

q∗(θ(ε), xk, xk+1)
q∗(θ(ε), xk)

≤ w(m+1)Kεm (32)

for (x0, . . . , xn) ∈ ∆m. Consequently, using (24), we have∑
(x0,...,xn)∈∆m

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} ≤ ψ(ε) ≡ (w|E|)(m+1)Kεm, (33)

which gives us

ε−r
∞∑

m=r+1

∑
(x0,...,xn)∈∆m

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)} ≤ φ(ε) ≡
∞∑

m=r+1

(w|E|)(m+1)Kεm−r.

Note that lim supm→∞
m

√
(w|E|)(m+1)K = (w|E|)K <∞, so φ(ε) is finite for all sufficiently small ε

(specifically, the sum is finite if ε < ε0 ≡ (w|E|)−K); see Theorem 3.39 of Rudin (1976). Now for

ε < ε1 < ε0, we have ψ(ε) < ψ(ε1) and φ(ε1) <∞, and so

lim
ε→0

ε−r
∞∑

m=r+1

∑
(x0,...,xn)∈∆m

n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}

=
∞∑

m=r+1

∑
(x0,...,xn)∈∆m

n≥1

lim
ε→0

a(x0, . . . , xn)εm + o(εm)
εr

= 0

by the dominated convergence theorem (Theorem 16.4 of Billingsley 1986). Thus, (26) holds and

Pθ(ε){τF < τ0} =
∑

(x0,...,xn)∈∆r
n≥1

a(x0, . . . , xn)εr + o(εr) = a0ε
r + o(εr), (34)

where a0 > 0.

Finally, let (x0, . . . , xn) ∈ ∆m for some m ≥ r. Then

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn) | τF < τ0}

=
Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}

Pθ(ε){τF < τ0}

=
a(x0, . . . , xn)εm + o(εm)∑

(y0,...,yk)∈∆r
k>0

a(y0, . . . , yk)εr + o(εr)

→


a(x0,...,xn)∑

(y0,...,yk)∈∆r
k>0

a(y0,...,yk)
if (x0, . . . , xn) ∈ ∆r

0 otherwise
, (35)
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as ε→ 0. Hence, P0{(X0, . . . , Xτ ) = (x0, . . . , xn)} is given by (35).

The constant a0 in Proposition 11 can be calculated in terms of the limiting probability mea-

sure P0 from Theorem 2 as follows. We had defined a(x0, . . . , xn) such that Pθ(ε){(X0, . . . , Xτ ) =

(x0, . . . , xn)} = a(x0, . . . , xn)εm + o(εm) for (x0, . . . , xn) ∈ ∆m. It can be easily shown that

a0 =
∑

(x0,...,xk)∈∆r
a(x0, . . . , xk). From Theorem 2, we have (x0, . . . , xk) ∈ ∆r if and only if

P0{(X0, . . . , Xτ ) = (x0, . . . , xk)} > 0.

We now establish Theorem 3. We prove this by first showing a number of preliminary results.

(An outline of the proof is given after the statement of Theorem 3.) Our first lemma describes the

forms of the summands in the expression for ∂λiL(λ(ε), µ) given in (9).

Lemma 12 Suppose the assumptions of Theorem 3 hold, and consider any (x, y) ∈ Γ with x ∈ U .

Then for all ε sufficiently small, ∂λiP ((λ(ε), µ), x, y)/P ((λ(ε), µ), x, y) is of the form

(i) c0ε
−bi + o(ε−bi), where c0 6= 0, if y � x with p(y;x, i) > 0,

(ii) c0 + o(1), where c0 < 0, if either x 6= 0 and y ≺ x, or x 6= 0 and y � x with p(y;x, i) = 0,

(iii) c0ε
−b0 + o(ε−b0), where c0 < 0, if x = 0 and y � 0 with p(y; 0, i) = 0.

Proof. Suppose (0, y) ∈ Γ. Then,

P ((λ, µ), 0, y) =
∑C
k=1 nk(0)λkp(y; 0, k)∑C

l=1 nl(0)λl
,

and so
∂λiP ((λ, µ), 0, y)
P ((λ, µ), 0, y)

=
ni(0)

∑C
k=1 nk(0)λk(p(y; 0, i)− p(y; 0, k))∑C

k=1 nk(0)λkp(y; 0, k)
∑C
l=1 nl(0)λl

.

Now substitute λk = λ̃kε
bk for all component types k. Recall that bk ≥ b0 for all k with at least

one bj = b0 by the definition of b0. Thus,
∑C
l=1 nl(0)λl(ε) ∼ εb0 . If p(y; 0, i) = 0, then

∂λiP ((λ(ε), µ), 0, y)
P ((λ(ε), µ), 0, y)

=
−ni(0)∑C

l=1 nl(0)λl(ε)
= c(0, y)ε−b0 + o(ε−b0),

where c(0, y) < 0. Now assume that p(y; 0, i) > 0. First suppose bi > b0. Then there exists some

component type j such that bj = b0 by the definition of b0, and so p(y; 0, i) 6= p(y; 0, j) = 0 by As-

sumption A4. Consequently, ni(0)
∑C
k=1 nk(0)λk(ε)(p(y; 0, i)−p(y; 0, k)) ∼ εb0 . By Assumption A4,∑C

k=1 nk(0)λk(ε)p(y; 0, k) ∼ εbi , which implies that when bi > b0,

∂λiP ((λ(ε), µ), 0, y)
P ((λ(ε), µ), 0, y)

= c(0, y)ε−bi + o(ε−bi),

where c(0, y) > 0. Now suppose bi = b0. Then
∑C
k=1 nk(0)λk(ε)p(y; 0, k) ∼ εb0 , and by Assump-

tion A5, ni(0)
∑C
k=1 nk(0)λk(ε)(p(y; 0, i)− p(y; 0, k)) ∼ εb0 . Hence,

∂λiP ((λ(ε), µ), 0, y)
P ((λ(ε), µ), 0, y)

= c(0, y)ε−b0 + o(ε−b0),

31



when bi = b0, where c(0, y) 6= 0.

Now suppose (x, y) ∈ Γ with x 6= 0 and y � x. Then,

P ((λ, µ), x, y) =
∑C
k=1 nk(x)λkp(y;x, k)∑

z≺x µ(x, z) +
∑C
l=1 nl(x)λl

,

and so

∂λiP ((λ, µ), x, y)
P ((λ, µ), x, y)

=
ni(x)(

∑C
k=1 nk(x)λk(p(y;x, i)− p(y;x, k)) +

∑
z≺x µ(x, z)p(y;x, i))∑C

k=1 nk(x)λkp(y;x, k)(
∑
z≺x µ(x, z) +

∑C
l=1 nl(x)λl)

.

Substituting λk = λ̃kε
bk , since µ is fixed and by Assumption A4, we obtain

∂λiP ((λ(ε), µ), x, y)
P ((λ(ε), µ), x, y)

= c(x, y)ε−bi + o(ε−bi),

when p(y;x, i) > 0, where c(x, y) > 0. If p(y;x, i) = 0, then

∂λiP ((λ(ε), µ), x, y)
P ((λ(ε), µ), x, y)

= c(x, y) + o(1),

where c(x, y) < 0.

Finally, suppose (x, y) ∈ Γ with x 6= 0 and y ≺ x. Then,

P ((λ, µ), x, y) =
µ(x, y)∑

z≺x µ(x, z) +
∑C
k=1 nk(x)λk

,

where c0 > 0 and c1 > 0, and so

∂λiP ((λ, µ), x, y)
P ((λ, µ), x, y)

=
−ni(x)∑

z≺x µ(x, z) +
∑
k nk(x)λk

Now substituting λk = λ̃kε
bk , since µ is fixed, we obtain

∂λiP ((λ(ε), µ), x, y)
P ((λ(ε), µ), x, y)

= c(x, y) + o(1),

where c(x, y) < 0.

Before stating the next result, we first develop some notation. Consider component type i, and

define

∆i = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, ni(xk−1)p(xk;xk−1, i) > 0 (36)

for some 0 < k ≤ n such that xk � xk−1},

which is the set of sample paths for which τi ≤ τF < τ0, where τi is defined in (10). Similarly, we

define

∆̄i = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, p(xk+1;xk, i) = 0 for all 0 ≤ k < n such that xk+1 � xk},

which is the set of sample paths for which τF < min{τ0, τi}.
We have the following theorem. The proof is omitted since these results can be proven using an

argument similar to the one employed to show Theorem 2.
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Theorem 13 Suppose the assumptions of Theorem 3 hold. Then

(i) Pθ(ε){(X0, . . . , Xτ ) ∈ · | τi ≤ τF < τ0} ⇒ P i0{(X0, . . . , Xτ ) ∈ · },

(ii) Pθ(ε){(X0, . . . , Xτ ) ∈ · | τF < min{τ0, τi}} ⇒ P̄ i0{(X0, . . . , Xτ ) ∈ · },

as ε→ 0, where P i0 and P̄ i0 are some limiting probability measures on ∆i and ∆̄i, respectively.

We can decompose ∆i as ∆i = ∪∞m=r∆
i
m, where ∆i

m = ∆i∩∆m and ∆m is defined in (21). Note

that ∆i
m is the set of sample paths in ∆i that have probability of the order εm. Since |∆m| < ∞,

∆i
m ⊂ ∆m implies |∆i

m| < ∞. Also, ∆i = ∪∞m=ri∆
i
m, where ri ≥ r since ∆i ⊂ ∆. Similarly,

we can decompose ∆̄i as ∆̄i = ∪∞m=r̄i∆̄
i
m, where ∆̄i

m = ∆̄i ∩ ∆m and r̄i ≥ r since ∆̄i ⊂ ∆. We

can show that P i0{(X0, . . . , Xτ ) = (x0, . . . , xn)} > 0 if and only if (x0, . . . , xn) ∈ ∆i
ri , and that

P̄ i0{(X0, . . . , Xτ ) = (x0, . . . , xn)} > 0 if and only if (x0, . . . , xn) ∈ ∆̄i
r̄i .

Employing arguments similar to the ones used in the proof of Theorem 13, we can show

that the constants in (13) and (14) are given by ai0 =
∑

(x0,...,xn)∈∆i
ri
a(x0, . . . , xn) > 0 and

āi0 =
∑

(x0,...,xn)∈∆̄i
r̄i
a(x0, . . . , xn) > 0.

The next lemma shows that given τi ≤ τF < τ0, ∂λiL(λ(ε), µ) is of the order ε−bi , and given

τF < min{τi, τ0}, ∂λiL(λ(ε), µ) is of the order ε−b0 .

Lemma 14 Suppose the assumptions of Theorem 3 hold. Then there exist limiting random vari-

ables L′λi and L̄′λi such that

(i) Pθ(ε){εbi ∂λiL(λ(ε), µ) ∈ · | τi ≤ τF < τ0} ⇒ P i0{L′λi ∈ · }

(ii) Pθ(ε){εb0 ∂λiL(λ(ε), µ) ∈ · | τF < min{τi, τ0}} ⇒ P̄ i0{L̄′λi ∈ · }

as ε→ 0, where P i0{|L′λi | < Mi} = 1 for some constant Mi, P̄ i0{|L̄′λi | < M̄i} = 1 for some constant

M̄i, and P i0 and P̄ i0 are the limiting probability distributions given in Theorem 13.

Proof. We only show 1, as 2 can be proven in a similar manner. By Lemma 12, we can express

∂λiL(λ(ε), µ) =
τ−1∑
k=0

∂λiP ((λ(ε), µ), Xk, Xk+1)
P ((λ(ε), µ), Xk, Xk+1)

=
τ−1∑
k=0

r(Xk, Xk+1)ε−bi +
τ−1∑
k=0

ρ(ε,Xk, Xk+1), (37)

where

r(x, y) =



c(x, y) if ∂λiP ((λ(ε),µ),x,y)

P ((λ(ε),µ),x,y) = c(x, y)ε−bi + o(ε−bi),

where c(x, y) 6= 0

0 if ∂λiP ((λ(ε),µ),x,y)

P ((λ(ε),µ),x,y) = o(ε−bi)

, (38)

and

ρ(ε, x, y) =
∂λiP ((λ(ε), µ), x, y)
P ((λ(ε), µ), x, y)

− r(x, y)ε−bi . (39)
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Note that r(x, y) is independent of ε and ρ(ε, x, y) = o(ε−bi) for all (x, y) ∈ Γ. Since we are working

with discrete point distributions,

Pθ(ε)

{
τ−1∑
k=0

r(Xk, Xk+1) ∈ ·
∣∣∣∣∣ τi ≤ τF < τ0

}
⇒ P i0

{
τ−1∑
k=0

r(Xk, Xk+1) ∈ ·
}

as ε→ 0, where P i0 is the limiting distribution in Theorem 13. All sample paths with τi ≤ τF < τ0

must include a transition (x, y) such that ni(x)p(y;x, i) > 0. By Lemma 12, each of these paths

has at least one failure transition (x, y) with r(x, y) 6= 0. Furthermore, |∆i
ri | <∞ and all paths in

∆i
ri have finitely many transitions by (23). Thus, P i0

{
|
∑τ−1
k=0 r(Xk, Xk+1)| < Mi

}
= 1 for some Mi.

Now we show that the remainder term in (37) goes to 0 in probability. Let δ > 0, and note that

Pθ(ε)

{∣∣∣∣∣
τ−1∑
k=0

εbiρ(ε,Xk, Xk+1)

∣∣∣∣∣ < δ

∣∣∣∣∣ τi ≤ τF < τ0

}

=
∑

(x0,...,xn)∈∆i

n≥1

Pθ(ε)

{∣∣∣∣∣
τ−1∑
k=0

εbiρ(ε,Xk, Xk+1)

∣∣∣∣∣ < δ, (X0, . . . , Xτ ) = (x0, . . . , xn)

∣∣∣∣∣ τi ≤ τF < τ0

}
.

For all paths (x0, . . . , xn) ∈ ∆i
ri , observe that

∣∣∣∑n−1
k=0 ε

biρ(ε, xk, xk+1)
∣∣∣ < δ for all sufficiently small

ε > 0 since ρ(ε, x, y) = o(ε−bi) for all (x, y) ∈ Γ and by (23). Furthermore, |∆i
ri | < ∞, and so by

Theorem 13,

Pθ(ε)

{∣∣∣∣∣
τ−1∑
k=0

εbiρ(ε,Xk, Xk+1)

∣∣∣∣∣ < δ, (X0, . . . , Xτ ) = (x0, . . . , xn)

∣∣∣∣∣ τi ≤ τF < τ0

}
→ P i0{(X0, . . . , Xτ ) = (x0, . . . , xn)}

as ε→ 0 for all paths (x0, . . . , xn) ∈ ∆i
ri . All other paths (x0, . . . , xn) ∈ ∆i satisfy

Pθ(ε)

{∣∣∣∣∣
τ−1∑
k=0

εbiρ(ε,Xk, Xk+1)

∣∣∣∣∣ < δ, (X0, . . . , Xτ ) = (x0, . . . , xn)

∣∣∣∣∣ τi ≤ τF < τ0

}
≤ Pθ(ε) {(X0, . . . , Xτ ) = (x0, . . . , xn) | τi ≤ τF < τ0}

→ P i0{(X0, . . . , Xτ ) = (x0, . . . , xn)} = 0

as ε→ 0 by Theorem 13. The bounded convergence theorem then implies that

lim
ε→0

Pθ(ε)

{∣∣∣∣∣
τ−1∑
k=0

εbiρ(ε,Xk, Xk+1)

∣∣∣∣∣ < δ

∣∣∣∣∣ τi ≤ τF < τ0

}
=

∑
(x0,...,xn)∈∆i

n≥1

P i0{(X0, . . . , Xτ ) = (x0, . . . , xn)} = 1,

proving that the remainder term goes to 0 in probability. Hence, using the converging together

lemma, we have L′λi =
∑τ−1
k=0 r(Xk, Xk+1), and the proof is complete.

Our final lemma shows that for k ≥ 1, Eθ(ε)[(∂λiL(λ(ε), µ))k | τi ≤ τF < τ0] ∼ ε−kbi and

Eθ(ε)[(∂λiL(λ(ε), µ))k | τF < min{τi, τ0}] ∼ ε−kb0 .
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Lemma 15 Suppose the assumptions of Theorem 3 hold. Then, for k ≥ 1,

(i) Eθ(ε)[εkbi (∂λiL(λ(ε), µ))k | τi ≤ τF < τ0]→ Ei0[L′λi
k],

(ii) Eθ(ε)[εkb0 (∂λiL(λ(ε), µ))k | τF < min{τi, τ0}]→ Ēi0[L̄′kλi ],

as ε→ 0, where Ei0 and Ēi0 are the expectation operators under the limiting probability measures P i0
and P̄ i0 given in Theorem 13 and L′λi and L̄′λi are the limiting random variables in Lemma 14.

Proof. We will only prove that 1 holds, as 2 can be shown in a similar manner. First, we will show

that Eθ(ε)[|εbi∂λiL(λ(ε), µ)|p | τi ≤ τF < τ0] is bounded for all sufficiently small ε, where p ≡ k + δ

and δ > 0 is some constant. By the triangle inequality,

Eθ(ε)
[
|εbi ∂λiL(λ(ε), µ)|p | τi ≤ τF < τ0

]
≤

∞∑
m=ri

∑
(x0,...,xn)∈∆im

n≥1

(
n−1∑
k=0

εbi
∣∣∣∣∂λiP ((λ(ε), µ), xk, xk+1)
P ((λ(ε), µ), xk, xk+1)

∣∣∣∣
)p

· Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn) | τi ≤ τF < τ0}.

Define r̄ = max{|r(x, y)| : (x, y) ∈ Γ}, where r(x, y) is defined in (38). Since |E| < ∞, |r̄| < ∞.

Also, define ρ̄(ε) = max{|ρ(ε, x, y)| : (x, y) ∈ Γ}, where ρ(ε, x, y) is defined in (39). Note that

ρ̄(ε) = o(ε−bi) for all sufficiently small ε. Thus, for (x, y) ∈ Γ,

∂λiP ((λ(ε), µ), x, y)
P ((λ(ε), µ), x, y)

= r(x, y)ε−bi + ρ(ε, x, y) ≤ r̄ε−bi + ρ̄(ε) ≤ 2r̄ε−bi

for all ε sufficiently small. Hence, using (23), for (x0, . . . , xn) ∈ ∆i
m,

n−1∑
k=0

εbi
∣∣∣∣∂λiP ((λ(ε), µ), xk, xk+1)
P ((λ(ε), µ), xk, xk+1)

∣∣∣∣ ≤ 2(m+ 1)Kr̄, (40)

giving us

Eθ(ε)
[
|εbi∂λiL(λ(ε), µ)|p | τi < τF < τ0

]
≤

∞∑
m=ri

∑
(x0,...,xn)∈∆im

n≥1

(2(m+ 1)Kr̄)p
Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}

Pθ(ε){τi ≤ τF < τ0}

=
(2Kr̄)p

ai0ε
ri + o(εri)

∞∑
m=ri

(m+ 1)p
∑

(x0,...,xn)∈∆im
n≥1

Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}

by (13). Using (33) and the fact that ∆i ⊂ ∆,

Eθ(ε)
[
|εbi∂λiL(λ(ε), µ)|p | τi ≤ τF < τ0

]
≤ (2Kr̄)p

ai0ε
ri + o(εri)

∞∑
m=ri

(m+ 1)p(w|E|)(m+1)Kεm

=
(2Kr̄)p

ai0 + o(1)
(w|E|)(r+1)K φ(ε)
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where w < ∞ is defined in (31) and φ(ε) =
∑∞
m=0(m + r + 1)p

(
wK |E|Kε

)m
. Thus, to prove our

result, we first need to show φ(ε) is bounded as ε→ 0.

Since w < ∞, |E| < ∞, and K < ∞, there exists ε0 > 0 such that wK |E|Kε0 < 1, implying

φ(ε0) < ∞. Also, (m + r + 1)p
(
wK |E|Kε

)m
≤ (m + r + 1)p

(
wK |E|Kε0

)m
for all 0 < ε < ε0.

Consequently, by the dominated convergence theorem, φ(ε) → c0 as ε → 0, where c0 < ∞ is some

constant, proving the boundedness. Hence, φ(ε) = c0 + o(1) for all sufficiently small ε, and so

Eθ(ε)
[
|εbi∂λiL(λ(ε), µ)|p | τi ≤ τF < τ0

]
≤ (2Kr̄)p

ai0 + o(1)
(w|E|)(r+1)K (c0 + o(1)),

which is bounded for all sufficiently small ε since K <∞ and r̄ <∞. Finally, using Lemma 14 and

the corollary to Theorem 25.12 of Billingsley (1986), we have our result.

Now we can finally prove Theorem 3.

Proof of Theorem 3. By Lemma 15, for p ≥ 1,

Eθ(ε)[(∂λiL(λ(ε), µ))p | τi ≤ τF < τ0] = c0(p)ε−pbi + o(ε−pbi)

Eθ(ε)[(∂λiL(λ(ε), µ))p | τF < min{τi, τ0}] = c1(p)ε−pb0 + o(ε−pb0)

for all sufficiently small ε, where c0, c1 6= 0. Thus, using (12), (13), and (14),

Eθ(ε)[1{τF < τ0} (∂λiL(λ(ε), µ))p] = c0(p)ai0ε
ri−pbi + o(εri−pbi) + c1(p)āi0ε

r̄i−pb0 + o(εr̄i−pb0)

= c2(p)εmin{ri−pbi, r̄i−pb0} + o(εmin{ri−pbi, r̄i−pb0})

for all sufficiently small ε, where c2(p) 6= 0. From this the result easily follows.

Proof of Theorem 9. Consider the first conditional expectation in (20). (We can analyze the

other conditional expectation in the same manner.) We first establish a bound on the likelihood

ratio. For any (x0, . . . , xn) ∈ ∆m, n ≥ 1,

L∗(θ(ε))(x0, . . . , xn) = Pθ(ε){(X0, . . . , Xτ ) = (x0, . . . , xn)}
n−1∏
k=0

1
P∗(θ(ε), xk, xk+1)

≤ w(m+1)Kεm
n−1∏
k=0

1
P∗(θ(ε), xk, xk+1)

by (32). By (18), we can find a constant 0 < h < 1 such that P∗(θ(ε), x, y) ≥ h for all sufficiently

small ε > 0 since |E| <∞. This implies that

L∗(θ(ε))(x0, . . . , xn) ≤ w(m+1)Kεm
(

1
h

)n
≤
(
w

h

)(m+1)K

εm (41)

by (23). Also, we can show that

L∗(θ(ε))(x0, . . . , xn) ∼ εm (42)
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when (x0, . . . , xn) ∈ ∆m, m ≥ r.
Consider any path (x0, . . . , xn) ∈ ∆i, n ≥ 1. By (42), we can express

L∗(λ(ε), µ)(x0, . . . , xn) = u(x0, . . . , xn)εri + υ(x0, . . . , xn),

where

u(x0, . . . , xn) =


c(x0, . . . , xn) if L∗(λ(ε), µ)(x0, . . . , xn) = c(x0, . . . , xn)εri + o(εri),

where c(x0, . . . , xn) > 0

0 if L∗(λ(ε), µ)(x0, . . . , xn) = o(εri)

,

and

υ(ε, x0, . . . , xn) = L∗(λ(ε), µ)(x0, . . . , xn)− u(x0, . . . , xn)εri .

Note that u(x0, . . . , xn) is independent of ε and υ(ε, x0, . . . , xn) = o(εri) for all (x0, . . . , xn) ∈ ∆i.

Since we are working with discrete point distributions,

Pθ(ε)


(
τ−1∑
k=0

r(Xk, Xk+1)

)2

u(X0, . . . , Xτ ) ∈ ·

∣∣∣∣∣∣ τi ≤ τF < τ0


⇒ P i0


(
τ−1∑
k=0

r(Xk, Xk+1)

)2

u(X0, . . . , Xτ ) ∈ ·


as ε → 0, where P i0 is the limiting distribution in Theorem 13. As we argued in the proof of

Lemma 14, all sample paths satisfying τi ≤ τF < τ0 must include some transition (x, y) such that

r(x, y) 6= 0. Furthermore, all paths (x0, . . . , xn) ∈ ∆i
ri have u(x0, . . . , xn) > 0 by (42). Therefore,

there exists some constant M̃i <∞ such that P i0

{(∑τ−1
k=0 r(Xk, Xk+1)

)2
u(X0, . . . , Xτ ) < M̃i

}
= 1

since |∆i
ri | <∞ and by (23).

Using an argument similar to that employed in the proof of Lemma 14, we can show that

Pθ(ε){ε2bi−2ri (∂λiL(λ(ε), µ))2 L∗(λ(ε), µ) ∈ · | τi ≤ τF < τ0} ⇒ P i0{L′λi
2
Li ∈ · }

as ε→ 0, where L′λi is defined in Lemma 14 and Li = u(X0, . . . , Xτ ). Likewise, using (41), we can

prove that

Eθ(ε)[ε
2bi−2ri (∂λiL(λ(ε), µ))2 L∗(λ(ε), µ) | τi ≤ τF < τ0]→ Ei0[L′λi

2
Li]

as ε→ 0 in the same manner we established Lemma 15. The result then easily follows.
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