Monte Carlo Estimation of Economic Capital

Yajuan Li1, Zachary T. Kaplan1, and Marvin K. Nakayama1

1Computer Science Department
New Jersey Institute of Technology

Work supported in part by NSF Grant CMMI-1537322.

2021 INFORMS Simulation Society Workshop
Credit portfolio
- \(m = 10^3 \) or \(10^4 \) obligors: loans, bonds, etc., subject to default
- Obligors dependent
- Determine capital to protect against large losses with high probability.

Goal: use Monte Carlo to estimate economic capital \(\eta = \xi - \mu \)
- \(\xi = F^{-1}(p) \) is \(p \)-quantile or value-at-risk (VaR) of loss CDF \(F \).
- Deutsche Bank (2018): \(p = 0.999 \) or 0.9998
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Economic Capital (EC) (\eta = F^{-1}(p) - \mu)</td>
</tr>
<tr>
<td>2</td>
<td>Simple Random Sampling (SRS)</td>
</tr>
<tr>
<td>3</td>
<td>Importance Sampling (IS)</td>
</tr>
<tr>
<td>4</td>
<td>Methods that Combine IS and SRS</td>
</tr>
<tr>
<td></td>
<td>Measure-Specific Importance Sampling (MSIS)</td>
</tr>
<tr>
<td></td>
<td>Importance Sampling with a Defensive Mixture (ISDM)</td>
</tr>
<tr>
<td></td>
<td>Double Estimator (DE)</td>
</tr>
<tr>
<td>5</td>
<td>Asymptotic Analysis of i.i.d. Sum Model</td>
</tr>
<tr>
<td>6</td>
<td>Numerical Results</td>
</tr>
<tr>
<td>7</td>
<td>“Green Simulation”</td>
</tr>
<tr>
<td>8</td>
<td>Concluding Remarks</td>
</tr>
</tbody>
</table>
Loss $Y = c(X) \sim F$ over some time horizon (e.g., 1 year)

- $c : \mathbb{R}^d \rightarrow \mathbb{R}$, with \mathbb{R}^d-valued $X \sim G$.
- Factor model: Glasserman & Li (2005), Bassamboo et al. (2008)

Unknown

- **CDF:** F with derivative f (when it exists)
- **Mean:** $\mu = \mathbb{E}[Y]$
- **p-quantile (value-at-risk):** $\xi = F^{-1}(p) = \inf\{ x : F(x) \geq p \}$
- **Economic capital (EC):** $\eta = \xi - \mu$

Klaassen & van Eeghen (2009), Lütkebohmert (2009), Scandizzo (2016)

AKA credit, relative or mean-adjusted VaR: Jorion (2003, 2007), McNeil et al. (2015)
Simple Random Sampling (SRS)

- Generate inputs X_1, X_2, \ldots, X_n i.i.d. from G, compute loss $Y_i = c(X_i) \sim F$.

<table>
<thead>
<tr>
<th>Estimand</th>
<th>Expression</th>
<th>SRS Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>$\mu = \mathbb{E}[Y]$</td>
<td>$\hat{\mu}{SRS,n} = \frac{1}{n} \sum{i=1}^{n} Y_i$</td>
</tr>
<tr>
<td>CDF</td>
<td>$F(y) = P(Y \leq y) = \mathbb{E}[I(Y \leq y)]$</td>
<td>$\hat{F}{SRS,n}(y) = \frac{1}{n} \sum{i=1}^{n} I(Y_i \leq y)$</td>
</tr>
<tr>
<td>p-quantile</td>
<td>$\xi = F^{-1}(p)$</td>
<td>$\hat{\xi}{SRS,n} = \hat{F}{SRS,n}^{-1}(p)$</td>
</tr>
<tr>
<td>EC</td>
<td>$\eta = \xi - \mu$</td>
<td>$\hat{\eta}{SRS,n} = \hat{\xi}{SRS,n} - \hat{\mu}_{SRS,n}$</td>
</tr>
</tbody>
</table>

- $\hat{\eta}_{SRS,n}$ satisfies CLT as $n \to \infty$.

Li, Kaplan, & Nakayama (NJIT)
Importance Sampling (IS)

- \(\hat{\eta}_{SRS,n} = \hat{\xi}_{SRS,n} - \hat{\mu}_{SRS,n} \) has large variance, \(p \approx 1 \).
- Recall: \(Y = c(X) \sim F, \ X \sim G \).
- **Importance Sampling (IS)** [Glynn 1996]
 - Sample \(X \sim H \) so event of interest more likely.
 - Unbias results by multiplying by correction factor.

- Rewrite **tail CDF** \(1 - F(y) = \mathbb{E}[I(Y > y)] \) using change of measure

\[
1 - F(y) = \mathbb{E}_G \left[I \left(c(X) > y \right) \right] = \int I \left(c(x) > y \right) dG(x) \\
= \int I \left(c(x) > y \right) \frac{dG(x)}{dH(x)} dH(x) = \mathbb{E}_H \left[I \left(c(X) > y \right) L(X) \right]
\]

where \(L(x) = \frac{dG(x)}{dH(x)} \) is likelihood ratio (LR).
Importance Sampling (IS)

- IS algorithm: generate X_1, X_2, \ldots, X_n i.i.d. H

<table>
<thead>
<tr>
<th>Estimand</th>
<th>Expression</th>
<th>IS Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>$F(y) = 1 - \mathbb{E}_H [I(c(X) > y) L(X)]$</td>
<td>$\hat{F}{IS,n}(y) = 1 - \frac{1}{n} \sum{i=1}^{n} I(c(X_i) > y) L(X_i)$</td>
</tr>
<tr>
<td>p-quantile</td>
<td>$\xi = F^{-1}(p)$</td>
<td>$\hat{\xi}{IS,n} = \hat{F}{IS,n}^{-1}(p)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$\mu = \mathbb{E}_G [c(X)] = \mathbb{E}_H [c(X) L(X)]$</td>
<td>$\hat{\mu}{IS,n} = \frac{1}{n} \sum{i=1}^{n} c(X_i) L(X_i)$</td>
</tr>
<tr>
<td>EC</td>
<td>$\eta = \xi - \mu$</td>
<td>$\hat{\eta}{IS,n} = \hat{\xi}{IS,n} - \hat{\mu}_{IS,n}$</td>
</tr>
</tbody>
</table>

- $\hat{\eta}_{IS,n}$ obeys CLT as $n \to \infty$.

Li, Kaplan, & Nakayama (NJIT)
Methods that Combine IS and SRS

- SRS: Estimates μ well, but ξ poorly
- IS: Estimates ξ well, but μ poorly
- Combine IS and SRS
 - Measure-specific IS (MSIS) [Shahabuddin et al. 1988]
 - IS with defensive mixture (ISDM) [Hesterberg 1995, Owen & Zhou 2000]
 - Double estimator (DE)
Measure-Specific Importance Sampling (MSIS)

- **Measure-specific IS (MSIS)** [Shahabuddin et al. 1988]
 - Estimate ξ using IS.
 - Independently estimate μ using SRS.
- Fix overall sample size n and allocation $\delta \in (0, 1)$.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample Size</th>
<th>Estimators</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>δn</td>
<td>$\hat{\xi}_{\text{IS},\delta n}$</td>
</tr>
<tr>
<td>SRS</td>
<td>$(1 - \delta)n$</td>
<td>$\hat{\mu}_{\text{SRS},(1-\delta)n}$</td>
</tr>
</tbody>
</table>

- MSIS EC estimator $\hat{\eta}_{\text{MSIS},n} = \hat{\xi}_{\text{IS},\delta n} - \hat{\mu}_{\text{SRS},(1-\delta)n}$
 - CLT as $n \to \infty$.
Importance Sampling with a Defensive Mixture (ISDM)

- Problem with IS: \(L(x) = \frac{dG(x)}{dH(x)} \) can be huge.
- Instead sample \(X \) from mixture distribution:
 \[X \sim H_{\text{ISDM}} = \delta H + (1 - \delta) G \]

 [Hesterberg 1995, Owen and Zhou 2000]

- IS with defensive mixture (ISDM)

 \[L_{\text{ISDM}}(x) = \frac{dG(x)}{dH_{\text{ISDM}}(x)} = \frac{dG(x)}{\delta dH(x) + (1 - \delta) dG(x)} \leq \frac{1}{1 - \delta} \]

- ISDM algorithm: generate \(X_1, X_2, \ldots, X_n \) i.i.d. \(H_{\text{ISDM}} \)

 - Estimate both \(\xi \) and \(\mu \) from ISDM data.

- ISDM EC estimator \(\hat{\eta}_{\text{ISDM},n} = \hat{\xi}_{\text{ISDM},n} - \hat{\mu}_{\text{ISDM},n} \)

 - CLT: special case of IS
Double Estimator (DE)

* Use **both** IS and SRS to estimate **both** ξ and μ.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample Size</th>
<th>Estimators</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>δn</td>
<td>$\hat{\xi}{IS,\delta n}$ and $\hat{\mu}{IS,\delta n}$</td>
</tr>
<tr>
<td>SRS</td>
<td>$(1 - \delta)n$</td>
<td>$\hat{\xi}{SRS,(1-\delta)n}$ and $\hat{\mu}{SRS,(1-\delta)n}$</td>
</tr>
</tbody>
</table>

DE: linear combination of the 4 estimators using weights $\nu_1, \nu_2 \in [0, 1]$,

$$
\hat{\eta}_{DE,n} = \left[\nu_1 \hat{\xi}_{IS,\delta n} + (1 - \nu_1) \hat{\xi}_{SRS,(1-\delta)n} \right] - \left[\nu_2 \hat{\mu}_{IS,\delta n} + (1 - \nu_2) \hat{\mu}_{SRS,(1-\delta)n} \right]
$$

- **CLT** as $n \to \infty$.
- Derived optimal weights ν_1, ν_2 to minimize $\text{Var}[\hat{\eta}_{DE,n}]$.

Li, Kaplan, & Nakayama (NJIT)
Asymptotic Analysis of i.i.d. Sum Model

- Compare 5 methods
 - **SRS** Simple random sampling
 - **IS** Importance sampling
 - **MSIS** Measure-specific importance sampling
 - **ISDM** IS with defensive mixture
 - **DE** Double estimator

- **Loss:** \(Y \equiv Y_m = \sum_{k=1}^{m} X_k \sim F_m \) with density \(f_m \)
 - \(X_k \sim G_0 \) light tailed
 - \(Q_0(\theta) = \ln \mathbb{E}[e^{\theta X_k}] \) is CGF of \(G_0 \)
 - \(Q_0'(\theta) = \frac{d}{d\theta} Q_0(\theta) \)

- **EC** \(\eta_m = \xi_m - \mu_m \)
- Analyze as \(m \to \infty \)
 - Quantile level \(p \equiv p_m = 1 - e^{-\beta m} \), fixed \(\beta > 0 \) [Glynn 1996]

- **IS via exponential twist**
 - i.i.d. \(X_k \sim \tilde{G}_{0,\theta} \), \(d\tilde{G}_{0,\theta}(x) = e^{\theta x - Q_0(\theta)} dG_0(x) \)
 - Glynn (1996): Estimate \(\xi_m \) with \(\theta = \theta^\ast \) as root of
 \[-\theta^\ast Q_0'(\theta^\ast) + Q_0(\theta^\ast) = -\beta\]
Asymptotic Analysis of i.i.d. Sum Model

- MSIS, ISDM, DE: fixed $\delta, \nu_1, \nu_2 \in (0, 1)$ as $m \to \infty$.
- For generic estimand φ_m, compare estimators $\hat{\varphi}_m$ in terms of relative error (RE)

$$\text{RE}[\hat{\varphi}_m] = \frac{\sqrt{\text{Var}[\hat{\varphi}_m]}}{|\varphi_m|}$$

- Approximate RE ($\tilde{\text{RE}}$) for EC and ξ
 - Quantile approximation [Glynn 1996]
 \[\xi_m = mQ_0'(\theta_x), \quad \text{which satisfies} \quad \frac{\xi_m - \xi_m}{m} \to 0 \quad \text{as} \quad m \to \infty\]
 - Saddlepoint approximation [Jensen 1995] to density f_m
 \[\tilde{f}_m(x) = \frac{1}{\sqrt{2\pi mQ''_0(\theta_x)}} \exp\left[mQ_0(\theta_x) - x\theta_x\right], \quad \text{for} \quad mQ'_0(\theta_x) = x\]
 - $f_m(\xi_m)$ appears in $\text{Var}[\hat{\xi}_m]$ and $\text{Var}[\hat{\eta}_m]$
Suppose loss \(Y_m = \sum_{k=1}^{m} X_k \), and quantile level \(p_m = 1 - e^{-\beta m} \), \(\beta > 0 \).

Under regularity conditions, the estimators satisfy the following as \(m \to \infty \):

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean (\mu_m (\theta \neq 0))</th>
<th>Quantile (\xi_m (\theta = \theta_\star))</th>
<th>EC (\eta_m (\theta = \theta_\star))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS</td>
<td>(O(m^{-1/2}))</td>
<td>(\text{Expo} \uparrow)</td>
<td>(\text{Expo} \uparrow)</td>
</tr>
<tr>
<td>IS</td>
<td>(\text{Expo} \uparrow)</td>
<td>(O(m^{-1/2}))</td>
<td>(\text{Expo} \uparrow)</td>
</tr>
<tr>
<td>MSIS</td>
<td>(O(m^{-1/2}))</td>
<td>(O(m^{-1/2}))</td>
<td>(O(m^{-1/2}))</td>
</tr>
<tr>
<td>ISDM</td>
<td>(O(1))</td>
<td>(O(m^{-1/2}))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>DE</td>
<td>(\text{Expo} \uparrow)</td>
<td>(\text{Expo} \uparrow)</td>
<td>(\text{Expo} \uparrow)</td>
</tr>
</tbody>
</table>

“\(\text{Expo} \uparrow \)” = exponentially increasing in \(m \)
Numerical (Non-Simulation) Results: i.i.d. sum model with $X_k \sim \text{exponential}(1)$

- SRS
- IS(θ_*)
- MSIS(θ_*)
- ISDM(θ_*)
- DE(θ_*)

$\text{RE}[\hat{\eta}_m]$ or $\text{RE}[\hat{\eta}_m]$

10^0 10^1

10^0 10^1

- SRS: Approx
- IS(θ_*): Approx
- MSIS(θ_*): Approx
- ISDM(θ_*): Approx
Credit portfolio with \(m = 1000 \) dependent obligors, 10 factors, Gaussian copula

- EC with quantile level \(p = 0.999 \)
- IS: modification of Glasserman and Li (2005) for estimating \(P(Y > x) \)
- Root-mean-square relative error (RMSRE) \(\sqrt{\mathbb{E}[(\hat{\eta}_n - \eta)^2]/\eta} \) for \(n = 2000 \)
- Coverage of nominal 95% confidence intervals (10^3 indep reps)
 - IS results unreliable: coverage \(\approx 0.05 \)
Feng & Staum (2017), Dong, Feng & Nelson (2018), …

Goal: for \(c : \mathbb{R}^d \to \mathbb{R} \) "expensive" to compute, estimate

\[
\mu(\theta) \equiv \mathbb{E}_{G_\theta} [c(X)] = \int c(x) \, dG_\theta(x), \quad \forall \theta \in \Theta.
\]

Idea: **reuse** existing data \((c(X_i), X_i)\) for \(X_i \sim G_{\theta_0}\) by change of measure

\[
\mu(\theta) = \int c(x) \frac{dG_\theta(x)}{dG_{\theta_0}(x)} \, dG_{\theta_0}(x) = \int c(x) \frac{dG_\theta(x)}{dG_{\text{ISDM},\theta,\theta_0}(x)} \, dG_{\text{ISDM},\theta,\theta_0}(x)
\]

to get unbiased estimator of \(\mu(\theta)\), where

\[
G_{\text{ISDM},\theta,\theta_0} = \delta G_{\theta_0} + (1 - \delta) G_\theta
\]

i.i.d. sum \(c(X) = \sum_{k=1}^m X_k\) for any \(\theta \neq \theta_0\) as \(m \to \infty\):

<table>
<thead>
<tr>
<th>Method</th>
<th>RE of (\hat{\mu}_m(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>Expo ↑</td>
</tr>
<tr>
<td>ISDM</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Concluding Remarks

- EC: \(\eta = F^{-1}(p) - \mu \) for \(p \approx 1 \)
- i.i.d. sum model: theoretical analysis
 - MSIS has **vanishing** relative error (RE), and ISDM has **bounded** RE
 - SRS, IS, and DE have **unbounded** RE
- Portfolio credit risk model with dependent obligors
 - Similar empirical behavior
- “Green simulation”

Questions?