Monte Carlo Estimation of Economic Capital

Yajuan Li¹, Zachary T. Kaplan¹, and Marvin K. Nakayama¹

¹Computer Science Department New Jersey Institute of Technology

Work supported in part by NSF Grant CMMI-1537322.

2021 INFORMS Simulation Society Workshop

- Credit portfolio
 - $m = 10^3$ or 10^4 obligors: loans, bonds, etc., subject to default
 - Obligors dependent
 - Determine capital to protect against large losses with high probability.
- Goal: use Monte Carlo to estimate economic capital $\eta = \xi \mu$
 - $\xi = F^{-1}(p)$ is *p*-quantile or value-at-risk (VaR) of loss CDF *F*.
 - Deutsche Bank (2018): *p* = 0.999 or 0.9998

Table of contents

- Economic Capital (EC) $\eta = F^{-1}(p) \mu$
- **2** Simple Random Sampling (SRS)
- Importance Sampling (IS)
- 4 Methods that Combine IS and SRS
 - Measure-Specific Importance Sampling (MSIS)
 - Importance Sampling with a Defensive Mixture (ISDM)
 - Double Estimator (DE)
- 5 Asymptotic Analysis of i.i.d. Sum Model
- 6 Numerical Results
- Green Simulation"
- 8 Concluding Remarks

• Loss
$$Y=c(oldsymbol{X})\sim F$$
 over some time horizon (e.g., 1 year)

- $c: \Re^d \to \Re$, with \Re^d -valued $\pmb{X} \sim G$.
- Factor model: Glasserman & Li (2005), Bassamboo et al. (2008)

Unknown

- CDF: F with derivative f (when it exists)
- Mean: $\mu = \mathbb{E}[Y]$
- *p*-quantile (value-at-risk): $\xi = F^{-1}(p) = \inf\{x : F(x) \ge p\}$
- Economic capital (EC): $\eta = \xi \mu$
 - Klaassen & van Eeghen (2009), Lütkebohmert (2009), Scandizzo (2016)
 - AKA credit, relative or mean-adjusted VaR: Jorion (2003,2007), McNeil et al. (2015)

• Generate inputs X_1, X_2, \ldots, X_n i.i.d. from G, compute loss $Y_i = c(X_i) \sim F$.

Estimand	Expression	SRS Estimator
Mean	$\mu = \mathbb{E}[\ m{Y}]$	$\widehat{\mu}_{\mathrm{SRS},n} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
CDF	$F(y) = \mathbb{P}(Y \leq y) = \mathbb{E}[I(Y \leq y)]$	$\widehat{F}_{\mathrm{SRS},n}(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \leq y)$
<i>p</i> -quantile	$\xi = {\mathcal F}^{-1}(p)$	$\widehat{\xi}_{SRS,n} = \widehat{F}_{SRS,n}^{-1}(p)$
EC	$\eta = \xi - \mu$	$\widehat{\eta}_{SRS,n} = \widehat{\xi}_{SRS,n} - \widehat{\mu}_{SRS,n}$

• $\widehat{\eta}_{\text{SRS},n}$ satisfies CLT as $n \to \infty$.

Importance Sampling (IS)

- $\widehat{\eta}_{\text{SRS},n} = \widehat{\xi}_{\text{SRS},n} \widehat{\mu}_{\text{SRS},n}$ has large variance, $p \approx 1$.
- Recall: $Y = c(\mathbf{X}) \sim F$, $\mathbf{X} \sim G$.
- Importance Sampling (IS) [Glynn 1996]
 - Sample $\pmb{X} \sim \pmb{H}$ so event of interest more likely.
 - Unbias results by multiplying by correction factor.

• Rewrite tail CDF $1 - F(y) = \mathbb{E}[I(Y > y)]$ using change of measure

$$\begin{aligned} \mathsf{L} - F(y) &= \mathbb{E}_{G} \left[I\left(c(\mathbf{X}) > y\right) \right] = \int I\left(c(\mathbf{x}) > y\right) \mathrm{d}G(\mathbf{x}) \\ &= \int I\left(c(\mathbf{x}) > y\right) \frac{\mathrm{d}G(\mathbf{x})}{\mathrm{d}H(\mathbf{x})} \mathrm{d}H(\mathbf{x}) = \mathbb{E}_{H} \left[I\left(c(\mathbf{X}) > y\right) L(\mathbf{X}) \right] \end{aligned}$$

where $L(\mathbf{x}) = \frac{dG(\mathbf{x})}{dH(\mathbf{x})}$ is likelihood ratio (LR).

• IS algorithm: generate
$$X_1, X_2, \ldots, X_n$$
 i.i.d. H

EstimandExpressionIS EstimatorCDF
$$F(y) = 1 - \mathbb{E}_H [I(c(X) > y) L(X)]$$
 $\widehat{F}_{IS,n}(y) = 1 - \frac{1}{n} \sum_{i=1}^n I(c(X_i) > y) L(X_i)$ p -quantile $\xi = F^{-1}(p)$ $\widehat{\xi}_{IS,n} = \widehat{F}_{IS,n}^{-1}(p)$ Mean $\mu = \mathbb{E}_G [c(X)] = \mathbb{E}_H [c(X) L(X)]$ $\widehat{\mu}_{IS,n} = \frac{1}{n} \sum_{i=1}^n c(X_i) L(X_i)$ EC $\eta = \xi - \mu$ $\widehat{\eta}_{IS,n} = \widehat{\xi}_{IS,n} - \widehat{\mu}_{IS,n}$ • $\widehat{\eta}_{IS,n}$ obeys CLT as $n \to \infty$.

Methods that Combine IS and SRS

- SRS: Estimates μ well, but ξ poorly
- IS: Estimates ξ well, but μ poorly
- Combine IS and SRS
 - Measure-specific IS (MSIS) [Shahabuddin et al. 1988]
 - IS with defensive mixture (ISDM) [Hesterberg 1995, Owen & Zhou 2000]
 - Double estimator (DE)

- Measure-specific IS (MSIS) [Shahabuddin et al. 1988]
 - Estimate ξ using IS.
 - Independently estimate μ using SRS.
- Fix overall sample size n and allocation $\delta \in (0, 1)$.

Method	Sample Size	Estimators
IS	δn	$\widehat{\xi}_{IS,\delta n}$
SRS	$(1-\delta)$ n	$\widehat{\mu}_{SRS,(1-\delta)}$ n

• MSIS EC estimator $\widehat{\eta}_{MSIS,n} = \widehat{\xi}_{IS,\delta n} - \widehat{\mu}_{SRS,(1-\delta)n}$

• CLT as $n \to \infty$.

Importance Sampling with a Defensive Mixture (ISDM)

- Problem with IS: LR $L(\mathbf{x}) = \frac{dG(\mathbf{x})}{dH(\mathbf{x})}$ can be huge.
- Instead sample X from mixture distribution:

$$oldsymbol{X}$$
 ~ H_{ISDM} = δH + $(1-\delta) G$

[Hesterberg 1995, Owen and Zhou 2000]

• IS with defensive mixture (ISDM)

$$L_{\text{ISDM}}(\boldsymbol{x}) = \frac{dG(\boldsymbol{x})}{dH_{\text{ISDM}}(\boldsymbol{x})} = \frac{dG(\boldsymbol{x})}{\delta dH(\boldsymbol{x}) + (1-\delta)dG(\boldsymbol{x})} \leq \frac{1}{1-\delta}$$

- ISDM algorithm: generate X_1, X_2, \dots, X_n i.i.d. H_{ISDM}
 - Estimate both ξ and μ from ISDM data.
- ISDM EC estimator $\widehat{\eta}_{\text{ISDM},n} = \widehat{\xi}_{\text{ISDM},n} \widehat{\mu}_{\text{ISDM},n}$
 - CLT: special case of IS

• Use **both** IS and SRS to estimate **both** ξ and μ .

MethodSample SizeEstimatorsIS δn $\widehat{\xi}_{IS,\delta n}$ and $\widehat{\mu}_{IS,\delta n}$ SRS $(1-\delta)n$ $\widehat{\xi}_{SRS,(1-\delta)n}$ and $\widehat{\mu}_{SRS,(1-\delta)n}$

• DE: linear combination of the 4 estimators using weights $v_1, v_2 \in [0, 1]$,

$$\widehat{\eta}_{\mathsf{DE},n} = \underbrace{\left[\upsilon_{1} \ \widehat{\xi}_{\mathsf{IS},\delta n} + (1 - \upsilon_{1}) \ \widehat{\xi}_{\mathsf{SRS},(1-\delta)n}\right]}_{\widehat{\xi}_{\mathsf{DE},n}} - \underbrace{\left[\upsilon_{2} \ \widehat{\mu}_{\mathsf{IS},\delta n} + (1 - \upsilon_{2}) \ \widehat{\mu}_{\mathsf{SRS},(1-\delta)n}\right]}_{\widehat{\mu}_{\mathsf{DE},n}}$$

- CLT as $n \to \infty$.
- Derived optimal weights v_1, v_2 to minimize $Var[\hat{\eta}_{DE,n}]$.

- Compare 5 methods
 - SRS Simple random sampling
 - IS Importance sampling

- MSIS Measure-specific importance sampling
- ISDM IS with defensive mixture
- **DE** Double estimator

• Loss:
$$Y\equiv Y_m=\sum_{k=1}^m X_k\sim F_m$$
 with density f_m

- $X_k \sim G_0$ light tailed
- $Q_0(heta) = \ln \mathbb{E}[e^{ heta X_k}]$ is CGF of G_0
- $Q_0'(\theta) = \frac{d}{d\theta}Q_0(\theta)$
- EC $\eta_m = \xi_m \mu_m$
- Analyze as $m \to \infty$
 - Quantile level $p \equiv p_m = 1 e^{-\beta m}$, fixed $\beta > 0$ [Glynn 1996]
- IS via exponential twist
 - i.i.d. $X_k \sim \widetilde{G}_{0,\theta}$, $d\widetilde{G}_{0,\theta}(x) = e^{\theta x Q_0(\theta)} dG_0(x)$
 - Glynn (1996): Estimate ξ_m with $\theta = \theta_{\star}$ as root of

$$-\theta_{\star}Q_0'(\theta_{\star}) + Q_0(\theta_{\star}) = -\beta$$

Asymptotic Analysis of i.i.d. Sum Model

- MSIS, ISDM, DE: fixed $\delta, v_1, v_2 \in (0, 1)$ as $m \to \infty$.
- For generic estimand φ_m , compare estimators $\widehat{\varphi}_m$ in terms of *relative error* (RE)

$$\mathsf{RE}[\widehat{\varphi}_m] = \frac{\sqrt{\mathsf{Var}[\widehat{\varphi}_m]}}{|\varphi_m|}$$

- Approximate RE (RĔ) for EC and ξ
 - Quantile approximation [Glynn 1996]

$$\check{\xi}_m = m Q_0'(heta_\star), \quad ext{ which satisfies } \quad rac{\check{\xi}_m - \xi_m}{m} o 0 \ \ ext{as } \ \ m o \infty$$

• Saddlepoint approximation [Jensen 1995] to density f_m

$$\check{f}_m(x) = rac{1}{\sqrt{2\pi m Q_0''(heta_x)}} \exp\left[m Q_0(heta_x) - x heta_x
ight], ext{ for } m Q_0'(heta_x) = x$$

• $f_m(\xi_m)$ appears in $\operatorname{Var}[\widehat{\xi}_m]$ and $\operatorname{Var}[\widehat{\eta}_m]$

Theorem

• Suppose loss
$$Y_m = \sum_{k=1}^m X_k$$
, and quantile level $p_m = 1 - e^{-\beta m}$, $\beta > 0$.

• Under regularity conditions, the estimators satisfy the following as $m \to \infty$:

	Approx Relative Error (RĔ)		
Method	Mean $\mu_m \ (\theta \neq 0)$	Quantile $\xi_m \ (heta = heta_\star)$	EC $\eta_m (\theta = \theta_\star)$
SRS	$O(m^{-1/2})$	Expo ↑	Expo ↑
IS	<i>Ехро</i> ↑	$O(m^{-1/2})$	Expo ↑
MSIS	$O(m^{-1/2})$	$O(m^{-1/2})$	$O(m^{-1/2})$
ISDM	<i>O</i> (1)	$O(m^{-1/2})$	<i>O</i> (1)
DE	Expo ↑	Expo ↑	Expo ↑

• "Expo ↑" = exponentially increasing in m

Numerical (Non-Simulation) Results: i.i.d. sum model with $X_k \sim exponential(1)$

Li, Kaplan, & Nakayama (NJIT)

Numerical (Simulation) Results: Portfolio Credit Risk Model

Credit portfolio with m = 1000 dependent obligors, 10 factors, Gaussian copula

- EC with quantile level p = 0.999
- IS: modification of Glasserman and Li (2005) for estimating $\mathbb{P}(Y > x)$
- Root-mean-square relative error (RMSRE) $\sqrt{\mathbb{E}[(\widehat{\eta}_n \eta)^2]}/\eta$ for n = 2000
- Coverage of nominal 95% confidence intervals (10³ indep reps)
 - $\bullet~$ IS results unreliable: coverage ≈ 0.05

"Green Simulation"

- Feng & Staum (2017), Dong, Feng & Nelson (2018), ...
- Goal: for $c: \Re^d \to \Re$ "expensive" to compute, estimate

$$\mu(heta) \equiv \mathbb{E}_{G_{ heta}} \left[c(oldsymbol{X})
ight] = \int c(oldsymbol{x}) \, \mathrm{d} G_{ heta}(oldsymbol{x}), \quad orall \, heta \in \Theta.$$

• Idea: reuse existing data $(c(X_i), X_i)$ for $X_i \sim G_{\theta_0}$ by change of measure

$$\mu(\theta) = \int c(\mathbf{x}) \frac{\mathrm{d}G_{\theta}(\mathbf{x})}{\mathrm{d}G_{\theta_0}(\mathbf{x})} \,\mathrm{d}G_{\theta_0}(\mathbf{x}) = \int c(\mathbf{x}) \frac{\mathrm{d}G_{\theta}(\mathbf{x})}{\mathrm{d}G_{\mathsf{ISDM},\theta,\theta_0}(\mathbf{x})} \,\mathrm{d}G_{\mathsf{ISDM},\theta,\theta_0}(\mathbf{x})$$

to get unbiased estimator of $\mu(\theta)$, where

$$G_{\mathsf{ISDM}, heta, heta_0} = \delta G_{ heta_0} + (1-\delta) G_{ heta}$$

• i.i.d. sum $c(\mathbf{X}) = \sum_{k=1}^{m} X_k$ for any $\theta \neq \theta_0$ as $m \to \infty$:

Method	RE of $\widehat{\mu}_m(\theta)$	
IS	Expo ↑	
ISDM	<i>O</i> (1)	

- EC: $\eta = F^{-1}(p) \mu$ for $p \approx 1$
- i.i.d. sum model: theoretical analysis
 - MSIS has vanishing relative error (RE), and ISDM has bounded RE
 - SRS, IS, and DE have unbounded RE
- Portfolio credit risk model with dependent obligors
 - Similar empirical behavior
- "Green simulation"

Questions?