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Risk Management

Expected Loss quantilep-
µ ξ = F     p(  )-1

Economic Capital
η = ξ − µLoss Density

(VaR)

 p1 −

Credit portfolio

m = 103 or 104 obligors: loans, bonds, etc., subject to default
Obligors dependent
Determine capital to protect against large losses with high probability.

Goal: use Monte Carlo to estimate economic capital η = ξ − µ
ξ = F−1(p) is p-quantile or value-at-risk (VaR) of loss CDF F .
Deutsche Bank (2018): p = 0.999 or 0.9998
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Notation

Expected Loss quantilep-
µ ξ = F     p(  )-1

Economic Capital
η = ξ − µLoss Density

(VaR)

 p1 −

Loss Y = c(XXX ) ∼ F over some time horizon (e.g., 1 year)

c : <d → <, with <d -valued XXX ∼ G .
Factor model: Glasserman & Li (2005), Bassamboo et al. (2008)

Unknown

CDF: F with derivative f (when it exists)
Mean: µ = E[Y ]
p-quantile (value-at-risk): ξ = F−1(p) = inf{ x : F (x) ≥ p }
Economic capital (EC): η = ξ − µ

Klaassen& van Eeghen (2009), Lütkebohmert (2009), Scandizzo (2016)
AKA credit, relative or mean-adjusted VaR: Jorion (2003,2007), McNeil et al. (2015)
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Simple Random Sampling (SRS)

Generate inputs XXX 1,XXX 2, . . . ,XXX n i.i.d. from G , compute loss Yi = c(XXX i ) ∼ F .

Estimand Expression SRS Estimator

Mean µ = E[Y ] µ̂SRS,n = 1
n

∑n
i=1 Yi

CDF F (y) = P(Y ≤ y) = E[ I (Y ≤ y) ] F̂SRS,n(y) = 1
n

∑n
i=1 I (Yi ≤ y)

p-quantile ξ = F−1(p) ξ̂SRS,n = F̂−1
SRS,n(p)

EC η = ξ − µ η̂SRS,n = ξ̂SRS,n − µ̂SRS,n

η̂SRS,n satisfies CLT as n→∞.
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Importance Sampling (IS)

η̂SRS,n = ξ̂SRS,n − µ̂SRS,n has large variance, p ≈ 1.

Recall: Y = c(XXX ) ∼ F , XXX ∼ G .

Importance Sampling (IS) [Glynn 1996]

Sample XXX ∼ H so event of interest more likely.
Unbias results by multiplying by correction factor.

Expected Loss quantilep-
µ ξ = F     p(  )-1

Economic Capital
η = ξ − µLoss Density

(VaR)

 p1 −

Rewrite tail CDF 1− F (y) = E[ I (Y > y) ] using change of measure

1− F (y) = EG

[
I
(
c(XXX ) > y

) ]
=

∫
I
(
c(xxx) > y

)
dG (xxx)

=

∫
I
(
c(xxx) > y

) dG (xxx)

dH(xxx)
dH(xxx) = EH

[
I
(
c(XXX ) > y

)
L(XXX )

]
where L(xxx) = dG(xxx)

dH(xxx) is likelihood ratio (LR).
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Importance Sampling (IS)

IS algorithm: generate XXX 1,XXX 2, . . . ,XXX n i.i.d. H

Estimand Expression IS Estimator

CDF F (y) = 1− EH [ I (c(XXX ) > y) L(XXX ) ] F̂IS,n(y) = 1− 1
n

∑n
i=1 I

(
c(XXX i ) > y

)
L(XXX i )

p-quantile ξ = F−1(p) ξ̂IS,n = F̂−1IS,n(p)

Mean µ = EG [ c(XXX ) ] = EH [ c(XXX ) L(XXX ) ] µ̂IS,n = 1
n

∑n
i=1 c(XXX i ) L(XXX i )

EC η = ξ − µ η̂IS,n = ξ̂IS,n − µ̂IS,n

η̂IS,n obeys CLT as n→∞.
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Methods that Combine IS and SRS

Expected Loss quantilep-
µ ξ = F     p(  )-1

Economic Capital
η = ξ − µLoss Density

(VaR)

 p1 −

SRS: Estimates µ well, but ξ poorly

IS: Estimates ξ well, but µ poorly

Combine IS and SRS

Measure-specific IS (MSIS) [Shahabuddin et al. 1988]
IS with defensive mixture (ISDM) [Hesterberg 1995, Owen & Zhou 2000]
Double estimator (DE)
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Measure-Specific Importance Sampling (MSIS)

Measure-specific IS (MSIS) [Shahabuddin et al. 1988]

Estimate ξ using IS.
Independently estimate µ using SRS.

Fix overall sample size n and allocation δ ∈ (0, 1).

Method Sample Size Estimators

IS δn ξ̂IS,δn

SRS (1− δ)n µ̂SRS,(1−δ)n

MSIS EC estimator η̂MSIS,n = ξ̂IS,δn − µ̂SRS,(1−δ)n

CLT as n→∞.
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Importance Sampling with a Defensive Mixture (ISDM)

Problem with IS: LR L(xxx) = dG(xxx)
dH(xxx) can be huge.

Instead sample XXX from mixture distribution:

XXX ∼ HISDM = δH + (1− δ)G

[Hesterberg 1995, Owen and Zhou 2000]
Expected Loss quantilep-

µ ξ = F     p(  )-1

Economic Capital
η = ξ − µLoss Density

(VaR)

 p1 −

IS with defensive mixture (ISDM)

LISDM(xxx) =
dG (xxx)

dHISDM(xxx)
=

dG (xxx)

δ dH(xxx) + (1− δ) dG (xxx)
≤ 1

1− δ

ISDM algorithm: generate XXX 1,XXX 2, . . . ,XXX n i.i.d. HISDM

Estimate both ξ and µ from ISDM data.

ISDM EC estimator η̂ISDM,n = ξ̂ISDM,n − µ̂ISDM,n

CLT: special case of IS
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Double Estimator (DE)

Use both IS and SRS to estimate both ξ and µ.

Method Sample Size Estimators

IS δn ξ̂IS,δn and µ̂IS,δn

SRS (1− δ)n ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n

DE: linear combination of the 4 estimators using weights υ1, υ2 ∈ [0, 1],

η̂DE,n =
[
υ1 ξ̂IS,δn + (1− υ1) ξ̂SRS,(1−δ)n

]
︸ ︷︷ ︸

ξ̂DE,n

−
[
υ2 µ̂IS,δn + (1− υ2) µ̂SRS,(1−δ)n

]︸ ︷︷ ︸
µ̂DE,n

CLT as n→∞.
Derived optimal weights υ1, υ2 to minimize Var[η̂DE,n].
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Asymptotic Analysis of i.i.d. Sum Model

Compare 5 methods
• SRS Simple random sampling • MSIS Measure-specific importance sampling
• IS Importance sampling • ISDM IS with defensive mixture

• DE Double estimator

Loss: Y ≡ Ym =
∑m

k=1 Xk ∼ Fm with density fm
Xk ∼ G0 light tailed
Q0(θ) = lnE[eθXk ] is CGF of G0

Q ′0(θ) = d
dθQ0(θ)

EC ηm = ξm − µm
Analyze as m→∞

Quantile level p ≡ pm = 1− e−βm, fixed β > 0 [Glynn 1996]

IS via exponential twist

i.i.d. Xk ∼ G̃0,θ, dG̃0,θ(x) = eθx−Q0(θ) dG0(x)
Glynn (1996): Estimate ξm with θ = θ? as root of

−θ?Q ′0(θ?) + Q0(θ?) = −β
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Asymptotic Analysis of i.i.d. Sum Model

MSIS, ISDM, DE: fixed δ, υ1, υ2 ∈ (0, 1) as m→∞.

For generic estimand ϕm, compare estimators ϕ̂m in terms of relative error (RE)

RE[ϕ̂m] =

√
Var[ϕ̂m]

|ϕm|

Approximate RE (RĔ) for EC and ξ

Quantile approximation [Glynn 1996]

ξ̆m = mQ ′0(θ?), which satisfies
ξ̆m − ξm

m
→ 0 as m→∞

Saddlepoint approximation [Jensen 1995] to density fm

f̆m(x) =
1√

2πmQ ′′0 (θx)
exp [mQ0(θx)− xθx ] , for mQ ′0(θx) = x

fm(ξm) appears in Var[ξ̂m] and Var[η̂m]
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Asymptotic Analysis of i.i.d. Sum Model

Theorem

Suppose loss Ym =
∑m

k=1 Xk , and quantile level pm = 1− e−βm, β > 0.

Under regularity conditions, the estimators satisfy the following as m→∞:

Approx Relative Error (RĔ)
Method Mean µm (θ 6= 0) Quantile ξm (θ = θ?) EC ηm (θ = θ?)

SRS O(m−1/2) Expo ↑ Expo ↑
IS Expo ↑ O(m−1/2) Expo ↑

MSIS O(m−1/2) O(m−1/2) O(m−1/2)

ISDM O(1) O(m−1/2) O(1)

DE Expo ↑ Expo ↑ Expo ↑

“Expo ↑” = exponentially increasing in m
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Numerical (Non-Simulation) Results: i.i.d. sum model with Xk ∼ exponential(1)
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Numerical (Simulation) Results: Portfolio Credit Risk Model

Credit portfolio with m = 1000 dependent obligors, 10 factors, Gaussian copula

EC with quantile level p = 0.999

IS: modification of Glasserman and Li (2005) for estimating P(Y > x)

Root-mean-square relative error (RMSRE)
√
E[(η̂n − η)2]/η for n = 2000

Coverage of nominal 95% confidence intervals (103 indep reps)

IS results unreliable: coverage ≈ 0.05
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“Green Simulation”

Feng & Staum (2017), Dong, Feng & Nelson (2018), . . .
Goal: for c : <d → < “expensive” to compute, estimate

µ(θ) ≡ EGθ
[ c(XXX ) ] =

∫
c(xxx) dGθ(xxx), ∀ θ ∈ Θ.

Idea: reuse existing data (c(XXX i ),XXX i ) for XXX i ∼ Gθ0 by change of measure

µ(θ) =

∫
c(xxx)

dGθ(xxx)

dGθ0(xxx)
dGθ0(xxx) =

∫
c(xxx)

dGθ(xxx)

dGISDM,θ,θ0(xxx)
dGISDM,θ,θ0(xxx)

to get unbiased estimator of µ(θ), where

GISDM,θ,θ0 = δGθ0 + (1− δ)Gθ

i.i.d. sum c(XXX ) =
∑m

k=1 Xk for any θ 6= θ0 as m→∞:

Method RE of µ̂m(θ)

IS Expo ↑
ISDM O(1)

Li, Kaplan, & Nakayama (NJIT) Economic Capital ISIM 2021 Workshop 17 / 18



Concluding Remarks

EC: η = F−1(p)− µ for p ≈ 1

i.i.d. sum model: theoretical analysis

MSIS has vanishing relative error (RE), and ISDM has bounded RE
SRS, IS, and DE have unbounded RE

Portfolio credit risk model with dependent obligors

Similar empirical behavior

“Green simulation”

Questions?
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