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Abstract

Suppose that there are k ≥ 2 different systems (i.e., stochastic processes), where each system

has an unknown steady-state mean performance. We consider the problem of running a single-

stage simulation using common random numbers to construct simultaneous confidence intervals

for µi − maxj 6=i µj , i = 1, 2, . . . , k. This is known as multiple comparisons with the best (MCB).

Under an assumption that the stochastic processes representing the simulation output of the dif-

ferent systems satisfy a functional central limit theorem, we prove that our confidence intervals are

asymptotically valid (as the run lengths of the simulations of each system tends to infinity). We

develop algorithms for two different cases: when the asymptotic covariance matrix has sphericity,

and when the covariance matrix is arbitrary.
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1 Introduction

Suppose that there are k ≥ 2 different systems (i.e., stochastic processes) having (unknown) steady-

state means µi, i = 1, 2, . . . , k. We want to compare the systems based on their steady-state

means, where we assume that larger means are better. (The situation when smaller means are

more desirable can be similarly treated.) For example, the different systems may represent various

designs for a manufacturing system, where the designs have different buffer allocations, and we

want to compare the systems relative to their steady-state throughputs. We estimate the steady-

state means by simulation using a variance-reduction technique known as common random numbers

(CRN); e.g., see Section 2.1 of Bratley, Fox, and Schrage (1987). In many situations, CRN is known

to significantly increase the statistical efficiency of a simulation comparing different systems.

We will develop simultaneous confidence intervals for µi − maxj 6=i µj , i = 1, 2, . . . , k. This

problem is known as multiple comparisons with the best (MCB). Note that if µi −maxj 6=i µj > 0,

then system i is the best. On the other hand, if µi −maxj 6=i µj < 0 and µi −maxj 6=i µj > −ε for

some ε > 0, then system i is not the best but it is within ε of the best. MCB methods have the

advantage over making all pairwise comparisons µi − µj , i < j, since only k − 1 comparisons are

needed for MCB, as opposed to k(k−1)/2 for the all-pairwise case. This leads to sharper confidence

intervals.

Hsu (1981) first developed a single-stage MCB procedure to compare the means of indepen-

dent normal populations, where independent sampling is used within each population. Other work

on single-stage MCB procedures for comparing independent normally-distributed populations in-

cludes Hsu (1984ab) and Edwards and Hsu (1983). Two-stage procedures for normally-distributed

independent populations are examined by Matejcik and Nelson (1995). Nelson and Hsu (1993),

Yang and Nelson (1991), and Nelson (1993) developed MCB methods to be used when the different

normally-distributed populations are no longer independent but instead there is an induced corre-

lation (i.e., common random numbers) among the populations. Nelson and Matejcik (1995) studied

two-stage MCB procedures using common random numbers for normally-distributed populations.

See Hochberg and Tamhane (1987) and Hsu (1996) for details of these and other MCB methods.

There also has been work on MCB procedures for steady-state simulations when the differ-

ent systems are independent. (In practice, the independence is achieved by using non-overlapping

streams of random numbers to drive the simulations of the different systems.) Yuan and Nel-

son (1993) studied single-stage MCB methods for the steady-state means of autoregressive pro-
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cesses. Nakayama (1996ab) developed asymptotically valid MCB intervals for single-stage steady-

state simulations when the systems are mutually independent assuming that a functional central

limit theorem holds. Some two-stage multiple-comparison procedures for steady-state simulations

without CRN are analyzed by Damerdji and Nakayama (1996).

All of the previous work on MCB with common random numbers assumes that the observations

within a population are normally distributed and independent. We now extend those results by

establishing the asymptotic validity of these methods for steady-state simulations, where typically

there are autocorrelations present in the output processes. Our techniques are based on the method

of (non-overlapping) batch means, an approach frequently applied in simulation practice (e.g., see

Section 3.3.1 of Bratley, Fox, and Schrage 1987) and statistics (e.g., see Carlstein 1986).

To establish the asymptotic validity of our methods, we will assume that the systems jointly sat-

isfy a functional central limit theorem. We will develop techniques for two different situations. The

first method will be asymptotically valid when the asymptotic covariance matrix in the functional

central limit theorem satisfies the property of sphericity (e.g., see pp. 208–210 of Hochberg and

Tamhane 1987). Sphericity is often used to model the dependence among repeated measurements

on a single subject in clinical trials (see pp. 208–209 of Hochberg and Tamhane 1987), and it has

also been applied in the simulation literature as a way of modeling the effects of CRN (Nelson 1993,

Nelson and Matejcik 1995). For cases when a sphericity assumption cannot be justified, we develop

an alternative method based on the Bonferroni inequality.

The rest of the paper is organized as follows. In Section 2, we develop the notation and state

our functional-central-limit-theorem assumption. Section 3 contains our MCB procedure under the

sphericity assumption, and our Bonferroni method is presented in Section 4. Some empirical results

are given in Section 5. All of the proofs are collected in Section 6.

2 Notation and Assumptions

We want to compare the steady-state behavior of k ≥ 2 systems, labeled 1, 2, . . . , k. For system

i = 1, 2, . . . , k, let Yi = {Yi(t) : t ≥ 0} ∈ D1[0,∞) be a real-valued (measureable) stochastic process

representing the simulation output of system i, where D1[0,∞) is the space of right-continous real-

valued functions on [0,∞) having left limits (e.g., see Ethier and Kurtz 1986 or Glynn 1990).

Essentially all stochastic processes used in applications possess sample paths in D1[0,∞). Discrete-

time processes {Yi,l : l = 0, 1, 2, . . .} can be handled by taking Yi(t) = Yi,btc, where bβc denotes the
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greatest integer less than or equal to β ∈ <.

We assume that the processes are dependent, where the dependence arises from using common

random numbers. This entails using the same stream of random numbers to drive the simulations

of the different systems; see Section 2.1 of Bratley, Fox, and Schrage (1987) for details on CRN. Let

Y = (Y1,Y2, . . . ,Yk)T and Y (t) = (Y1(t), Y2(t), . . . , Yk(t))T , where the superscript T denotes the

transpose. (Throughout the paper all vectors are assumed to be column vectors.) We then have

that Y ∈ D[0,∞), where D[0,∞) is the space of right-continous <k-valued functions on [0,∞)

having left limits.

To establish our results, we restrict our attention to processes Y that satisfy a functional central

limit theorem (FCLT). Letting “⇒” denote weak convergence (see Billingsley 1968 for details), we

assume the following:

A1 There exist a (unknown) nonsingular matrix Γ = (Γi,j : 1 ≤ i, j ≤ k) ∈ <k×k and a (unknown)

constant µ = (µ1, µ2, . . . , µk)T ∈ <k such that Xn ⇒ ΓB as n → ∞, where B is a standard k-

dimensional Brownian motion, Xn = (X1,n, X2,n, . . . , Xk,n)T , and Xi,n = {Xi,n(s) : 0 ≤ s ≤ 1}

is defined as Xi,n(s) = n1/2
(
Ȳi,n(s)− µis

)
with Ȳi,n = {Ȳi,n(s) : 0 ≤ s ≤ 1} defined as Ȳi,n(s) =

1
n

∫ ns
0 Yi(t) dt for i = 1, 2, . . . , k.

Both Xn and Ȳn = (Ȳ1,n, Ȳ2,n, . . . , Ȳk,n)T lie in C[0, 1], the space of continuous <k-valued func-

tions on [0, 1]; see Ethier and Kurtz (1986) or Glynn (1990) for details on the space C[0, 1]. Also,

Xn is a rescaled, normalized, integrated version of the original process Y, and the time parameter

of Xn and Ȳn are rescaled by n as compared to Y.

Assumption A1 and the converging-together lemma guarantee that for each i,

1
n

∫ n

0
Yi(t) dt− µi =

1√
n
Xi,n(1) ⇒ 0 · (ΓB)i(1) = 0

as n → ∞, where (C)i denotes the i-th element of a vector C. Hence, the µi appearing in A1

are precisely the steady-state means of the process Y. Also, recall that by definition, a standard

k-dimensional Brownian motion satisfies B = (B1, B2, . . . , Bk)T , where each Bi is a standard 1-

dimensional Brownian motion with B1, B2, . . . , Bk mutually independent.

Several authors have used a FCLT assumption in analyses of steady-state simulations; e.g., see

Glynn and Iglehart (1990) and Nakayama (1994,1996ab). Also, functional central limit theorems

have been established for a rich class of stochastic processes, including Markov processes in discrete

and continuous time, stationary processes satisfying appropriate mixing conditions, and generalized
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semi-Markov processes; see Glynn and Iglehart (1990), Chapter 7 of Ethier and Kurtz (1986),

Chapter 11 of Stroock and Varadhan (1979), and Haas (1997) for further details. (The last three

references specifically address the multivariate case, which is appropriate in our setting.)

We will develop procedures under two different assumptions on the asymptotic covariance matrix

Σ = ΓΓT of Y. First, we will assume that Σ has a special structure known as sphericity, and then

we will allow Σ to be arbitrary. In both cases, we do not assume that Γ (or µ) is known.

3 MCB Procedure Under Sphericity

We first assume that the covariance matrix Σ = (Σi,j : i, j = 1, 2, . . . , k) has the following form

known as sphericity, which was proposed by Huynh and Feldt (1970):

A2 Σi,i = 2ψi + τ2 for i = 1, 2, . . . , k and Σi,j = ψi + ψj for i 6= j, where τ > 0 and ψi,

i = 1, 2, . . . , k, are (unknown) constants such that τ2 > (k
∑k
i=1 ψ

2
i )

1/2 −
∑k
i=1 ψi (which ensures

that Σ is positive definite).

Grieve and Ag (1984) developed an empirical test to determine if a sample covariance matrix

has sphericity. Also, sphericity generalizes compound symmetry (i.e., Σi,i = 1 for i = 1, 2, . . . , k,

and Σi,j = ρ for i 6= j), which was used by Schruben and Margolin (1978), Nozari et al. (1987), and

Tew and Wilson (1993) to model the effects of common random numbers. Finally, for his MCB

procedures using CRN with normally-distributed populations, Nelson (1993) also used a sphericity

assumption, and he showed empirically that the coverage of his resulting confidence intervals was

robust as long as all of the covariances are positive. Thus, from a practical viewpoint, it seems that

Assumption A2 is not overly restrictive.

The following MCB procedure, which generalizes a method developed in Nelson (1993), is to

be used under A2.

Procedure S:

1. Specify the number of systems k, the desired confidence level 1 − α, the number of batches

m ≥ 2, and the run length n to be used for all systems, where n is large.

2. Simulate the k systems using common random numbers for run length n.
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3. Compute

S2
s (n) =

1
(k − 1)(m− 1)

k∑
i=1

m∑
j=1

(
Zi,j(n)− µ̂i(n)− 1

k

k∑
l=1

Zl,j(n) +
1
k

k∑
l=1

µ̂l(n)

)2

,

where

Zi,j(n) =
1

n/m

∫ jn/m

(j−1)n/m
Yi(t) dt, j ≥ 1,

is the j-th (non-overlapping) batch mean of size n/m for system i, and µ̂i(n) = 1
n

∫ n
0 Yi(t) dt

is the sample mean of system i.

4. Define the MCB confidence intervals

Is,i(n) =

(µ̂i(n)−max
j 6=i

µ̂j(n)− νSs(n)
√

2
m

)−
,

(
µ̂i(n)−max

j 6=i
µ̂j(n) + νSs(n)

√
2
m

)+


(1)

for µi −maxj 6=i µj , i = 1, 2, . . . , k, where x− = min(x, 0), x+ = max(x, 0), and ν = ν(α, k,m)

is the upper (1 − α)-quantile point of the maximum of a (k − 1)-variate t distribution with

(k− 1)(m− 1) degrees of freedom and common correlation 1/2; see pp. 374–375 and Table 4

of Hochberg and Tamhane (1987) for more details on the multivariate t distribution.

The following result shows that the MCB confidence intervals formed in the above method are

asymptotically valid.

Theorem 1 If Assumptions A1 and A2 hold, then limn→∞ P {µi −maxj 6=i µj ∈ Is,i(n), ∀ i = 1, 2, . . . , k} ≥

1− α.

4 Bonferroni-MCB Procedure

If the covariance matrix Σ does not satisfy Assumption A2 (or if we are not comfortable with this

assumption), then we can instead use the following procedure, which is based on the Bonferroni

inequality. It places no restrictions on the structure of Σ, and it is based on an idea of Clark and

Yang (1986).

Procedure B:

1. Specify the number of systems k, the desired confidence level 1 − α, the number of batches

m ≥ 2, and the run length n to be used for all systems, where n is large.

2. Simulate the k systems using common random numbers for run length n.
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3. Compute

S2
b,i,j(n) =

1
m− 1

m∑
l=1

(Zi,l(n)− Zj,l(n)− (µ̂i(n)− µ̂j(n)))2

for all i 6= j.

4. Define the MCB confidence intervals

Ib,i(n) =

 min
j∈C(n)
j 6=i

(
µ̂i(n)− µ̂j(n)− φSb,i,j(n)√

m

)−, (min
j 6=i

(
µ̂i(n)− µ̂j(n) + φ

Sb,i,j(n)√
m

))+

(2)

for µi −maxj 6=i µj , i = 1, 2, . . . , k, where φ = φ(α, k,m) is the upper (1−α/(k− 1))-quantile

point of a univariate t distribution with m− 1 degrees of freedom, and

C(n) =
{
i : min

j 6=i

(
µ̂i(n)− µ̂j(n) + φ

Sb,i,j(n)√
m

)
≥ 0

}
.

In (2), we define minj∈∅ xj = 0.

Theorem 2 If Assumption A1 holds, then limn→∞ P {µi −maxj 6=i µj ∈ Ib,i(n), ∀ i = 1, 2, . . . , k} ≥

1− α.

As the number of systems k gets large, the conservativeness of the Bonferroni inequality over-

whelms the benefits of common random numbers. Thus, Procedure B should only be used when k

is small; i.e., k ≤ 5.

5 Empirical Results

We now present some results from simulating four different M/M/1 queueing systems, labeled 1,

. . . , 4. The mean interarrival time of customers in each of the systems is 1, and the mean service

times for systems 1–4 are 0.3, 0.4, 0.45, and 0.5, respectively. Let µi be the steady-state expected

number of customers in system i, i = 1, . . . , 4, and we compared the different systems in terms of

this performance measure by constructing our MCB confidence intervals in (1) and (2). For other

empirical work on MCB using batch means (but without common random numbers), see Goldsman

and Nelson (1990).

We implemented common random numbers in two different ways. First, we used CRN for

everything (i.e., both the interarrival times and the service times). Next, only the interarrival

times for the different systems were generated using CRN; the service times among the different

systems are independent.
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Observed coverages when using CRN for
Run length everything only interarrival times

102 0.600 0.777
103 0.728 0.840
104 0.821 0.851
105 0.826 0.875

Table 1: Observed coverages for Procedure S

Observed coverages when using CRN for
Run length everything only interarrival times

102 0.692 0.892
103 0.854 0.917
104 0.926 0.901
105 0.942 0.919

Table 2: Observed coverages for Procedure B

We performed coverage experiments by running 2000 independent replications, where in each

replication nominal 90% MCB confidence intervals are constructed using 5 batches for each system.

We performed this experiment for four different run lengths n ranging from 102 to 105.

Tables 1 and 2 contain the results when applying Procedures S and B, respectively. The second

column gives the observed coverage when CRN was used for everything, and the third column is

for when CRN was used only for the interarrival times. Note that for small run lengths, most of

the observed coverages for both Procedures S and B are significantly below the nominal level. For

the largest run lengths, the observed coverage for Procedure S is still somewhat below the nominal

level, but Procedure B’s is above 90%.

In general the observed coverages for Procedure S (and also for Procedure B) are closer to the

nominal level for each run length when CRN is not used for everything. Thus, we conclude that in

practice, the performance of both procedures may depend on the way that CRN is implemented.

6 Proofs

Lemma 1 Suppose Assumption 1 holds, and define the function gs : C[0, 1]→ < as

gs(x) =

 m

(k − 1)(m− 1)

k∑
i=1

m∑
j=1

(
∆mxi

(
j

m

)
− xi(1)

m
− 1
k

k∑
l=1

∆mxl

(
j

m

)
+

k∑
l=1

xl(1)
km

)2
1/2

,
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where ∆dxi(t) = xi(t) − xi(t − 1/d) for d ∈ < with d > 0. If Σ satisfies Assumption A2, then

g2
s(ΓB) has the same distribution as τ2χ2

(k−1)(m−1)/((k − 1)(m− 1)) and is independent of ΓB(1),

where χ2
(k−1)(m−1) is a χ2 random variable with (k − 1)(m− 1) degrees of freedom.

Proof. Consider any x ∈ C[0, 1] satisfying x(0) = 0. (When applying the function gs to Xn

or B, this corresponds to requiring that Xn(0) = 0 or B(0) = 0, which hold by definition.) We

start by examining the summands in the definition of gs(x). The second term of gs satisfies

xi(1)/m = (1/m)
∑m
l=1 ∆mxi (l/m), which is the sample mean of the ∆mxi(l/m), l = 1, 2, . . . ,m.

Similarly, the fourth term satisfies
∑k
l=1 xl(1)/(km) = (1/km)

∑k
l=1

∑m
p=1 ∆mxl (p/m), which is the

sample mean of the ∆mxl(p/m), l = 1, 2, . . . , k, p = 1, 2, . . . ,m.

Recall that standard 1-dimensional Brownian motion has independent and normally distributed

increments. Thus, B(1) has a standard k-dimensional normal distribution, and so ΓB(1) is normally

distributed with mean 0 and covariance matrix Σ. Also, after bringing the m from outside the

summations inside in the definition of gs, we see that m1/2(ΓB(i/m) − ΓB((i − 1)/m)) has a

normal distribution with mean 0 and covariance matrix Σ. The result then follows from Theorem 1

of Huynh and Feldt (1970) (also see Hochberg and Tamhane 1987, pp. 210–211).

Proof of Theorem 1. For our given collection of k systems, we define (1), (2), . . . , (k) such that

µ(1) ≤ µ(2) ≤ · · · ≤ µ(k); i.e., system (j) has the j-th smallest steady-state mean. Now consider the

event

A(n) = {µi − µ(k) ≥ µ̂i(n)− µ̂(k)(n)−H(n), ∀ i 6= (k)},

where H(n) = νSs(n)
√

2
m . By slightly modifying an argument used in Hsu (1984b) (also see

Hochberg and Tamhane 1987, pp. 150–151) we can show that

A(n) ⊂ {µi −max
j 6=i

µj ∈ Is,i(n)} (3)

for all n.

We now prove that

lim
n→∞

P{A(n)} = 1− α. (4)

It is straightforward to show that gs(Xn) = Ss(n)
√
n/m, and so

P{A(n)} = P

{
(µ̂i(n)− µi)− (µ̂(k)(n)− µ(k)) ≤ νgs(Xn)

√
2
n
, ∀i 6= (k)

}
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= P
{√

n (µ̂i(n)− µi)−
√
n
(
µ̂(k)(n)− µ(k)

)
−
√

2νgs(Xn) ≤ 0, ∀ i 6= (k)
}

= P {u(Xn) ≤ 0} ,

where the function u : C[0, 1]→ <k−1 is defined as u(x) = (xi(1)−x(k)(1)−
√

2νgs(x) : i 6= (k)), and

0 ∈ <k−1 is the (k − 1)-dimensional vector with all components 0. By the fact that the projection

mapping is continuous and since Γ is non-singular, u is continuous at ΓB with probability 1, and

so the continuous mapping principle (see Theorem 5.1 of Billingsley 1968 or Glynn 1990) ensures

that u(Xn)⇒ u(ΓB) as n→∞.

Now we will prove that

P {u(Xn) ≤ 0} → P {u(ΓB) ≤ 0} as n→∞. (5)

By Theorem 2.1 of Billingsley (1968), it is sufficient to show that u(ΓB) has a continuous distribu-

tion function. Note that ΓB(1) has a k-dimensional normal distribution with mean 0 and covariance

matrix Σ = ΓΓT . Now define the function v : C[0, 1]→ <k−1 as v(x) = (xi(1)− x(k)(1) : i 6= (k)).

Then, it is straightforward to verify that under Assumption A2, v(ΓB) has a (k − 1)-dimensional

normal distribution with mean 0 and covariance matrix Ξ = (Ξi,j : i, j 6= (k)), where Ξi,i = 2τ2

and Ξi,j = τ2 for i 6= j. Lemma 1 implies that ΓB(1) is independent of gs(ΓB). Thus, since the

distribution functions of the normal and χ2 distributions are continuous, it follows that u(ΓB) has

a continuous distribution function, and so (5) holds.

Now we will show that P {u(ΓB) ≤ 0} = 1−α. Let Φ denote a standard 1-dimensional normal

distribution function, and let F denote the distribution function of gs(ΓB)/τ . By Lemma 1 and

by the form of the covariance matrix Ξ of v(ΓB), we get that

P {u(ΓB) ≤ 0} = P

{
max
i6=(k)

(
(ΓB)i(1)− (ΓB)(k)(1)

√
2τ

)
≤
√

2νgs(ΓB)√
2τ

}

=
∫ ∞

0

∫ ∞
−∞

k−1∏
l=1

Φ

(
(
√

1/2)z + νw√
1/2

)
dΦ(z) dF (w) = 1− α,

where the last two equalities follow from equations (1.1a) and (1.2a), respectively, on pp. 374–375

of Hochberg and Tamhane (1987). Hence, we have established (4). Putting this together with (3)

completes the proof.

To prove Theorem 2, we will need the following result.
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Lemma 2 Suppose Assumption 1 holds, and define the function gb = (gb,i,j : i 6= j) : C[0, 1] →

<k(k−1) as

gb,i,j(x) =

[
m

m− 1

m∑
l=1

(
∆mxi

(
l

m

)
−∆mxj

(
l

m

)
−
(
xi(1)
m
− xj(1)

m

))2
]1/2

for i 6= j. Then for each i 6= j, (m − 1)g2
b,i,j(ΓB)/Λi,j has a χ2 distribution with m − 1 degrees of

freedom and is independent of ΓB(1), where Λi,j = Σi,i + Σj,j − 2Σi,j.

Proof. Consider any x ∈ C[0, 1] satisfying x(0) = 0. Note that

xi(1)
m
− xj(1)

m
=

1
m

m∑
l=1

(
∆mxi

(
l

m

)
−∆mxj

(
l

m

))
,

which is the sample mean of the ∆mxi(l/m)−∆mxj(l/m), l = 1, 2, . . . ,m. Also, m1/2(ΓB(l/m)−

ΓB((l−1)/m)) has a k-variate normal distribution with mean 0 and covariance matrix Σ, which does

not necessarily satisfy Assumption 2. Therefore, Qi,j,l ≡ m1/2 (∆m(ΓB)i(l/m)−∆m(ΓB)j(l/m))

is normally distributed with mean 0 and variance Λi,j = Σi,i + Σj,j − 2Σi,j . Also, since Brownian

motion has independent increments, the Qi,j,l, l = 1, 2, . . . ,m, are mutually independent. Thus,

(m− 1)g2
b,i,j(ΓB)/Λi,j has a χ2 distribution with m− 1 degrees of freedom.

Now we need to show that (m− 1)g2
b,i,j(ΓB)/Λi,j is independent of ΓB(1). Define the function

b = (bi,j : i 6= j) : C[0, 1]→ <k(k−1) as

bi,j(x) =

[
m

m− 1

m∑
l=1

(
∆mxi

(
l

m

)
−∆mxj

(
l

m

))2
]1/2

for i 6= j. Also, define the mapping Θ : C[0, 1] → C[0, 1] to be (Θx)(t) = x(t) − tx(1). It can

be shown that gb = b ◦ Θ. Since B1, B2, . . . , Bk are mutually independent, we can easily modify

the proof on page 84 of Billingsley (1968) to show that process {B(t) − tB(1) : 0 ≤ t ≤ 1} is

independent of B(1). Thus, {ΓB(t) − tΓB(1) : 0 ≤ t ≤ 1} is independent of ΓB(1). This implies

Θ(ΓB) is independent of ΓB(1), and so gb(ΓB) = (b ◦Θ)(ΓB) is independent of ΓB(1).

Proof of Theorem 2. Consider the event

E(n) = {µi − µ(k) ≥ µ̂i(n)− µ̂(k)(n)− φSb,i,(k)(n), ∀ i 6= (k)}.

By slightly modifying the proof of Theorem 4.1.2 in Hsu (1996), we can prove that E(n) ⊂ {µi −

maxj 6=i µj ∈ Ib,i(n)} for all n.
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We now show that

lim
n→∞

P{E(n)} ≥ 1− α (6)

Note that gb,i,j(Xn) = Sb,i,j(n)
√
n/m, and so using an argument similar to that applied in the

proof of Theorem 1, we can establish that

P{E(n)} → P
{

(ΓB)i(1)− (ΓB)(k)(1) ≤ φgb,i,(k)(ΓB), ∀ i 6= (k)
}

(7)

as n→∞.

Now we will show that the right-hand side of (7) is at least 1−α. Bonferroni’s inequality implies

that

P
{

(ΓB)i(1)− (ΓB)(k)(1) ≤ φgb,i,(k)(ΓB), ∀ i 6= (k)
}

≥ 1−
∑
i6=(k)

P

{
(ΓB)i(1)− (ΓB)(k)(1)

gb,i,(k)(ΓB)
> φ

}
= 1− α,

where the last step follows from Lemma 2 and the fact that (ΓB)i(1) − (ΓB)(k)(1) is normally

distributed with mean 0 and variance Λi,j . Hence, (6) holds, and the proof is complete.
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