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Abstract

We establish general conditions for the asymptotic validity of single-stage multiple-comparison

procedures (MCPs) under the following general framework. There is a finite number of in-

dependent alternatives to compare, where each alternative can represent, e.g., a population,

treatment, system or stochastic process. Associated with each alternative is an unknown

parameter to be estimated, and the goal is to compare the alternatives in terms of the pa-

rameters. We establish the MCPs’ asymptotic validity, which occurs as the sample size of

each alternative grows large, under two assumptions. First, for each alternative, the estima-

tor of its parameter satisfies a central limit theorem (CLT). Second, we have a consistent

estimator of the variance parameter appearing in the CLT. Our framework encompasses

comparing means (or other moments) of independent (not necessarily normal) populations,

functions of means, quantiles, steady-state means of stochastic processes, and optimal solu-

tions of stochastic approximation by the Kiefer-Wolfowitz algorithm. The MCPs we consider

are multiple comparisons with the best, all pairwise comparisons, all contrasts, and all linear

combinations, and they allow for unknown and unequal variance parameters and unequal

sample sizes across alternatives.
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1 Introduction

Suppose that there are k alternatives to compare, where the ith alternative has an unknown

parameter θi that needs to be estimated. Each alternative might represent, e.g., a population,

treatment, system or stochastic process. The alternatives are to be compared relative to the

θi, i = 1, . . . , k. For example, we may be faced with 5 possible designs for a fault-tolerant

computer system, and we want to compare the alternatives in terms of the 0.9-quantile of

the time to failure.

To do this, we consider single-stage multiple-comparison procedures (MCPs). In this

paper we focus on multiple comparisons with the best (MCB; Hsu (1984)), all pairwise com-

parisons, all contrasts, and all linear combinations of θ1, . . . , θk, but the same ideas also

apply to other multiple-comparison procedures (Hochberg and Tamhane, 1987). MCB pro-

duces simultaneous confidence intervals for θi−maxj 6=i θj, i = 1, . . . , k, which provide useful

information when one is interested in identifying the best alternative and larger parameter

values are better.

We establish the asymptotic validity of our single-stage MCPs under the following two

assumptions. First, each parameter θi has an estimator θ̂i(n) based on a sample size of

n from alternative i, where θ̂1, . . . , θ̂k are independent, and θ̂i(n) satisfies a central limit

theorem (CLT); i.e., there exists a constant η such that nη[θ̂i(n)− θi]⇒ N(0, σ2
i ) for each i

as n→∞, where 0 < σi <∞, ⇒ denotes weak convergence (Billingsley, 1999) and N(a, b)

denotes a normal distribution with mean a and variance b. In many applications, η = 1/2,

but we also allow other values. Second, we assume there is a consistent estimator for the

variance parameter σ2
i appearing in the CLT. Our framework encompasses comparing means

(or other moments) of independent populations or treatments, functions of means, quantiles,
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steady-state means of stochastic processes, and optimal solutions to stochastic approximation

via the Kiefer-Wolfowitz (1952) algorithm. We allow for unequal sample sizes and unequal

variance parameters across alternatives.

While much of the previous work on MCPs focuses on finite-sample methods for com-

paring means of normally distributed populations by collecting independent and identically

distributed (i.i.d.) samples within each population (e.g., see Hochberg and Tamhane (1987)

and Hsu (1996)), there are also some large-sample procedures. Hjort (1988) considers the

setting where the estimators θ̂1, . . . , θ̂k may be dependent (the present paper assumes in-

dependence), and they satisfy a joint CLT with η = 1/2 (we allow η 6= 1/2), and there

is a consistent estimator of the covariance matrix in the CLT. He constructs large-sample

Scheffé-type (1953) simultaneous confidence intervals for f(θ1, . . . , θk) for all suitably smooth

functions f . He provides analysis demonstrating that the resulting simultaneous confidence

intervals are usually worse than those based on Bonferroni’s inequality; in contrast, most

of our proofs apply sharper inequalities than Bonferroni’s, leading to intervals shorter than

those using Bonferroni’s inequality. Hochberg and Tamhane (1987, Section 10.1.1) and

Piegorsch (1991) present large-sample MCPs for comparing treatments with Bernoulli re-

sponses. Nakayama (1997) establishes the asymptotic validity of single-stage MCPs based

on standardized time series methods (Schruben, 1983) for steady-state simulations. Stan-

dardized time series methods yield variance estimators that are not consistent, so the results

in the present paper do not cover those in Nakayama (1997).

The rest of the paper has the following organization. Section 2 describes the mathematical

framework we adopt, and we present the single-stage MCPs in Sections 3. Section 4 shows

that the assumptions (CLT and consistent estimator for the variance parameter) hold in a

wide variety of contexts. We describe in Section 4.1 some settings where our assumptions do

not hold. Section 5 contains numerical results from a Monte Carlo experiment. All proofs

are collected in Section 6. Nakayama (2007) presents without proof the MCB procedure we

develop.
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2 Mathematical Framework

Suppose there are k <∞ alternatives, where each alternative i has an unknown parameter

θi to be estimated. We have an estimation process θ̂i = [θ̂i(n) : n > 0], where θ̂i(n) is the

estimator of θi based on a sample size of n from alternative i. In the case of comparing pop-

ulations, treatments, or stochastic systems relative to a terminating performance measure, n

denotes the number of i.i.d. samples taken from an alternative. When comparing stochastic

processes using simulations, n represents the run length of the simulation of a stochastic pro-

cess. For example, when θi is the steady-state mean of a continuous-time stochastic process

Xi = [Xi(t) : t ≥ 0], we can define an estimator θ̂i(n) = (1/n)
∫ n

0
Xi(t) dt. We assume that

the estimation processes satisfy the following CLT:

Assumption 1 The estimation processes θ̂1, . . . , θ̂k are independent, and there exists a finite

positive constant η such that for each i,

nη
[
θ̂i(n)− θi

]
⇒ N(0, σ2

i ) (1)

as n→∞, where σi > 0 is a finite constant.

In most applications, η has the canonical value of 1/2, but we do not require this. In

our previous example when θi represents a steady-state mean of a stochastic process Xi,

Assumption 1 holds with η = 1/2 in a wide variety of contexts; e.g., see Asmussen (2003)

for many examples.

We call σ2
i the variance parameter of alternative i. We assume that there is a variance-

estimation process Vi = [Vi(n) : n > 0], where Vi(n) ≥ 0 is the estimator of σ2
i based on a

sample size of n from alternative i. We assume Vi is consistent:

Assumption 2 For each alternative i, Vi(n)⇒ σ2
i as n→∞.

For our previous example when θi represents a steady-state mean, if we further assume

that the process Xi is regenerative (e.g., see Glynn and Iglehart (1993)), then we can use the
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regenerative method to construct an estimator Vi(n) satisfying Assumption 2. In Section 4 we

provide further details on this and other examples of settings satisfying our two assumptions.

3 Multiple-Comparison Procedures

We now present the MCPs for comparing the parameters θi, i = 1, 2, . . . , k, of independent

alternatives. For each one, we let 1− α, 0 < α < 1, denote the desired joint confidence level

of the simultaneous confidence intervals constructed. Also, let n = (n1, n2, . . . , nk), where

ni is the sample size taken from alternative i. Thus, for each alternative i, we have the

estimators θ̂i(ni) and Vi(ni) of θi and σ2
i , respectively. Also, define

Wi,j(n) =

√
Vi(ni)

n2η
i

+
Vj(nj)

n2η
j

for each pair i, j = 1, 2, . . . , k, where η is defined in Assumption 1.

3.1 MCB Procedure

To construct the joint MCB intervals, define the constant γ to satisfy Φ(γ) = (1−α)1/(k−1),

where Φ is the distribution function of a standard (mean 0 and variance 1) normal distribu-

tion. For each i, define

D+
i (n) =

(
min
j 6=i

{
θ̂i(ni)− θ̂j(nj) + γWi,j(n)

})+

,

A(n) = {i : D+
i (n) > 0},

D−i (n) =

 0 if A(n) = {i},

minj∈A(n),j 6=i{θ̂i(ni)− θ̂j(nj)− γWi,j(n)} otherwise,

and define the MCB intervals

Ii(n) = [D−i (n), D+
i (n) ] (2)
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for θi−maxj 6=i θj, i = 1, . . . , k. The following result, whose proof is in Section 6.1, establishes

the asymptotic validity of the MCB intervals in (2).

Theorem 1 Suppose ni = ζin for i = 1, 2, . . . , k, where ζi > 0 is any constant. If Assump-

tions 1 and 2 hold, then

lim
n→∞

P

{
θi −max

j 6=i
θj ∈ Ii(n), i = 1, 2, . . . , k

}
≥ 1− α.

The proof of Theorem 1 relies on Slepian’s (1962) inequality, which is sharper than

Bonferroni’s inequality but nevertheless still results in conservative intervals. We can re-

duce the conservatism by avoiding both inequalities and instead applying an asymptotic

version of a method developed by Dunnett (1955) for multiple comparisons with a control.

Piegorsch (1991) develops this idea to yield an asymptotic version of an MCB method of Hsu

(1996, Theorem 4.1.2) to compare treatments with Bernoulli responses; i.e., when we sample

i.i.d. Bernoulli random variables Xi,1, Xi,2, . . . from each alternative i, and we compare θi =

E[Xi,1], i = 1, . . . , k, using estimators θ̂i(n) = (1/n)
∑n

j=1Xi,j and Vi(n) = θ̂i(n)(1− θ̂i(n)).

This approach requires replacing the constant γ with other quantities γ̃i, i = 1, . . . , k, that

depend on all the Vi(ni), i = 1, . . . , k, so γ̃i, i = 1, . . . , k, must be numerically evaluated after

all samples are collected. However, we do not develop this method for our general setting

because of its added computational burden.

3.2 All Pairwise Comparisons

We now consider making all pairwise comparisons. To do this, first choose the constant

γ′ = qk/
√

2, where qk is the upper α point of the range of k i.i.d. standard normals; i.e.,

P{max1≤i<j≤k |Zi −Zj| ≤ qk} = 1− α, where Z1, . . . , Zk are i.i.d. N(0, 1) random variables.

To obtain appropriate values for qk, we can consult Table 8 of Hochberg and Tamhane (1987)

or use a statistical package such as R (R Development Core Team, 2008). Then we construct
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the (two-sided) simultaneous confidence intervals

I ′i,j(n) =
[
θ̂i(ni)− θ̂j(nj) ± γ′Wi,j(n)

]
(3)

for θi − θj, 1 ≤ i < j ≤ k. The following result, whose proof is given in Section 6.2, is an

asymptotic version of the Tukey-Kramer method (Tukey, 1953; Kramer, 1956) generalized

to apply to our framework.

Theorem 2 Suppose ni = ζin for i = 1, 2, . . . , k, where ζi > 0 is any constant. If Assump-

tions 1 and 2 hold, then

lim
n→∞

P
{
θi − θj ∈ I ′i,j(n), ∀ i < j

}
≥ 1− α.

Hochberg and Tamhane (1987, Section 10.1.1) present the special case of (3) for Bernoulli

response. Also, Piegorsch (1991) empirically studies the small-sample performance of (3) in

the case of Bernoulli response.

The proof of Theorem 2 makes use of the inequality of Hayter (1984), which is sharper

than the Bonferroni inequality. Thus, Theorem 2 yields shorter confidence intervals than

those based on the Bonferroni inequality.

Theorem 2 shows that the joint intervals in (3) are conservative. One could obtain exact

intervals when the ratios of the variances are known by developing an asymptotic version

of a procedure by Spurrier and Isham (1985) for comparing k = 3 normal means (also see

pp. 86–88 of Hochberg and Tamhane (1987) for an extension by Hayter (1985)). However,

we do not develop this idea further.

3.3 All Contrasts

Now we examine all contrasts
∑k

i=1 ciθi with c = (c1, c2, . . . , ck) ∈ C, where C = {c ∈ <k :∑k
i=1 ci = 0} is the k-dimensional contrast space. This can be used to analyze a weighted
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average of the parameters, such as θ1 − (θ2 + θ3)/2. For each c = (c1, c2, . . . , ck) ∈ C, we

now define the confidence interval

Ic(n) =

[
k∑
i=1

ciθ̂i(ni) ±
2∑k

l=1 |cl|

k∑
i=1

k∑
j=1

c+i c
−
j γ
′Wi,j(n)

]

for
∑k

i=1 ciθi, where γ′ is defined as in Section 3.2.

Theorem 3 Suppose ni = ζin for i = 1, 2, . . . , k, where ζi > 0 is any constant. If Assump-

tions 1 and 2 hold, then

lim
n→∞

P

{
k∑
i=1

ciθi ∈ Ic(n), ∀ c = (c1, c2, . . . , ck) ∈ C

}
≥ 1− α.

Theorem 3 is intended for constructing only those confidence intervals with c ∈ C that are

of interest.

3.4 All Linear Combinations

Now we consider all linear combinations
∑k

i=1 aiθi with a = (a1, a2, . . . , ak) ∈ <k. This can

be used to analyze simultaneously parameters and a weighted average of the parameters,

such as θ1, θ2, θ3 and θ1 − (θ2 + θ3)/2. For each a = (a1, a2, . . . , ak) ∈ <k and p ≥ 1, we

define the confidence interval

Īa,p(n) =

 k∑
i=1

aiθ̂i(ni) ± γ̄p

{
k∑
i=1

(
|ai|

√
Vi(ni)

n2η
i

)p}1/p


for
∑k

i=1 aiθi, where γ̄p satisfies P{(
∑k

i=1 Z
q
i )

1/q ≤ γ̄p} = 1−α, with Z1, . . . , Zk i.i.d. N(0, 1)

and q ≥ 1 satisfying 1/p + 1/q = 1. In the special case when p = 1 and q =∞, we have γ̄1

satisfies Φ(γ̄1) = (1−α)1/k. When p = q = 2, then γ̄2 satisfies P
{√

χ2
k ≤ γ̄2

}
= 1−α, where

χ2
k is a chi-squared random variable with k degrees of freedom. Then we have the following,

which is an asymptotic generalization of a method of Dalal (1978), originally developed for
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comparing means of normal populations, to handle our general framework.

Theorem 4 Suppose ni = ζin for i = 1, 2, . . . , k, where ζi > 0 is any constant. If Assump-

tions 1 and 2 hold, then for any p ≥ 1,

lim
n→∞

P

{
k∑
i=1

aiθi ∈ Īa,p(n), ∀ a = (a1, a2, . . . , ak) ∈ <k
}

= 1− α.

Hjort (1988) establishes the same result for the case that p = q = 2 and η = 1/2 but

allows θ̂1, . . . , θ̂k to be dependent.

4 Examples

We now discuss examples of estimation settings satisfying Assumptions 1 and 2. Most of

the examples below are taken from Glynn and Whitt (1992a; 1992b). As we shall see,

Assumptions 1 and 2 hold in a wide spectrum of contexts arising in practice.

Example 1 (Means) Consider k independent populations, and let Xi,1, Xi,2, . . . be i.i.d.

samples from the ith population. We want to compare the populations in terms of their

means θi = E[Xi,1], i = 1, . . . , k. If we define an estimator of θi to be θ̂i(n) = (1/n)
∑n

j=1Xi,j,

then Assumption 1 holds with η = 1/2 when σ2
i ≡ E[(Xi,1−θi)2] <∞. A consistent estimator

of σ2
i is Vi(n) = (1/(n − 1))

∑n
j=1[Xi,j − θ̂i(n)]2, so Assumption 2 holds. Thus, the MCPs

in Section 3 are asymptotically valid when comparing means of independent populations

using these definitions of θ̂i(n) and Vi(n). Note that we did not assume normality, and

this example covers the problem of comparing alternative stochastic systems relative to a

terminating performance measure by simulating independent replications.

Example 2 (Function of means) Consider k independent populations, and letXi,1,Xi,2, . . .

be i.i.d. samples from the ith population, where Xi,j = (X
(1)
i,j , X

(2)
i,j , . . . , X

(d)
i,j ) ∈ <d. Let

µi = E[Xi,1], and let gi : <d → <. We now want to compare the populations in terms of
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θi = gi(µi), i = 1, . . . , k. An example is comparing the coefficients of variation of k popula-

tions. In this case, we take d = 2 and gi(x1, x2) =
√
x2 − x2

1/x1, and let Xi,j = (Yi,j, Y
2
i,j),

where Yi,j is the jth i.i.d. sample from population i. Also, this framework encompasses com-

paring the rth moments, r ≥ 1, of independent populations by taking d = 1 and gi(x) = xr.

Assume that gi is continuously differentiable in a neighborhood of µi. Let ∇gi denote

the gradient of gi, and assume that ∇gi(µi) 6= 0. We define an estimator of θi to be

θ̂i(n) = gi(X̄i(n)), where X̄i(n) = (1/n)
∑n

j=1Xi,j. Let ‖ · ‖ denote the Euclidean norm on

<d, and assume E[‖Xi,1‖2] <∞ for each i. Let Σi = E[(Xi,1 −µi)(Xi,1 −µi)>] denote the

covariance matrix of Xi,1, where superscript > denotes transpose, and assume each Σi is

positive definite. Then Assumption 1 holds with η = 1/2 and σ2
i = ∇gi(µi)>Σi∇gi(µi);

e.g., see p. 124 of Serfling (1980). We can define a consistent estimator of σ2
i as fol-

lows. Let Σ̂i(n) = (1/(n − 1))
∑n

j=1(Xi,j − X̄i(n))(Xi,j − X̄i(n))>, and then Vi(n) =

∇gi(X̄i(n))>Σ̂i(n)∇gi(X̄i(n)) satisfies Assumption 2. Thus, the MCPs in Section 3 are

asymptotically valid when comparing functions of means using these definitions of θ̂i(n) and

Vi(n).

Example 3 (Quantiles) For a distribution function G on < and 0 < y < 1, let G−1(y) =

inf{x : G(x) ≥ y} be the yth quantile of G. Let Fi be the distribution function of the

ith population, and for a fixed 0 < p < 1, let θi = F−1
i (p), so we are comparing the k

independent populations in terms of their pth quantiles. Let Xi,1, Xi,2, . . . , Xi,n be i.i.d.

samples from the ith population, where Xi,j ∈ <. Define the empirical distribution function

Fi,n(x) = (1/n)
∑n

j=1 1{Xi,j ≤ x}, where 1{A} denotes the indicator function of the event

{A}. An estimator of θi is then

θ̂i(n) = F−1
i,n (p). (4)

If each Fi has a density function fi (with respect to Lebesgue measure) such that fi(θi) > 0,
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then Assumption 1 holds with η = 1/2 and

σ2
i =

p(1− p)
f 2
i (θi)

; (5)

e.g., see p. 77 of Serfling (1980). We can construct a consistent estimator of σ2
i , which is not

the variance of Fi, as follows. For each n > 0, define a constant qi,n such that

qi,n = p+

√
p(1− p)

n
+ o

(
1

n1/2

)

as n → ∞, where a function g(n) = o(h(n)) means g(n)/h(n) → 0 as n → ∞. Then the

estimator

Vi(n) = n
[
F−1
i,n (qi,n)− F−1

i,n (p)
]2

(6)

satisfies Assumption 2; e.g., see p. 94 of Serfling (1980). Thus, the MCPs in Section 3 are

asymptotically valid when comparing quantiles using these definitions of θ̂i(n) and Vi(n).

Example 4 (Steady-state mean rewards of stochastic processes) LetX1, . . . , Xk be

k independent stochastic processes, where Xi = [Xi(t) : t ≥ 0] lives on a state space Si. Let

fi be a real-valued “reward” function on Si. Assume that each Xi has a steady-state in the

sense that there exists a finite constant θi such that (1/t)
∫ t

0
fi(Xi(s)) ds ⇒ θi as t → ∞.

Under great generality, θ̂i(t) = (1/t)
∫ t

0
fi(Xi(s)) ds satisfies Assumption 1 with η = 1/2

and some σ2
i ; e.g., see Asmussen (2003) for examples of processes satisfying such a CLT.

Autocorrelations typically present in Xi make constructing a consistent estimator of σ2
i a

delicate undertaking. Examples of such estimators for which Assumption 2 holds under vari-

ous conditions include spectral estimators (Damerdji, 1991), regenerative estimators (Glynn

and Iglehart, 1993), autoregressive estimators (Fishman, 1978, p. 252), and batch means and

batched area estimators in which the number of batches m → ∞ at an appropriate rate as

the run length n increases (Damerdji, 1994).
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We now provide details on the regenerative estimator of σ2
i . Assume that there exist

nonnegative times Ai,0 < Ai,1 < Ai,2 < · · · such that Xi is regenerative with respect to the

sequence (Ai,j : j ≥ 0). For j ≥ 1, define τi,j = Ai,j − Ai,j−1 and Yi,j =
∫ Ai,j

Ai,j−1
fi(Xi(s)) ds,

and let Ni(t) = sup{Ai,j : Ai,j ≤ t}. If E[τi,1] <∞ and 0 < E[(Yi,1− θiτi,1)2] <∞, then θi =

E[Yi,1]/E[τi,1] and σ2
i = E[(Yi,1 − θiτi,1)2]/E[τi,1]. We then define Vi(t) = (1/t)

∑Ni(t)
j=1 [Yi,j −

θi(t)τi,j]
2, which satisfies Assumption 2; see Glynn and Iglehart (1993).

Example 5 (Kiefer-Wolfowitz stochastic approximation) Suppose there are k sys-

tems, and for each system i, let Zi(ρi) be a random variable denoting the (random) perfor-

mance of system i under parameter value ρi ∈ <. Let βi(ρi) = E[Zi(ρi)], and assume that βi

is three-times differentiable on <. Let the minimizer of βi be θi = ρ∗i , and assume that ρ∗i is

the unique solution to β′i(ρi) = 0, where prime denotes derivative. The goal is to compare the

k systems in terms of θ1, . . . , θk. To estimate each θi, we apply the Kiefer-Wolfowitz (1952)

stochastic approximation algorithm, which generates a sequence ρi,1, ρi,2, . . . that converges

a.s. to ρ∗i . Specifically, for each system i, let (ci,n : n ≥ 0) and (hi,n : n ≥ 0) be deterministic

sequences of nonnegative constants, and the algorithm produces successive estimates of θi as

ρi,n+1 = ρi,n − ci,nXi,n+1, where Xi,n+1 satisfies for each (measurable) set A of real numbers,

P{Xi,n+1 ∈ A | (ρi,j, Xi,j), j ≤ n} = P

{
Zi(ρi,n + hi,n+1)− Zi(ρi,n − hi,n+1)

2hi,n+1

∈ A
}
,

with Zi(ρi,n+hi,n+1) and Zi(ρi,n−hi,n+1) generated independently. Then define the estimator

θ̂i(n) = ρi,n for n ≥ 0. For given positive constants ci and hi, suppose we set ci,n = cin
−1

and hi,n = hin
−1/3. Assume that ciβ

′′
i (ρ∗i ) > 1/3. Then under suitable regularity conditions,

it follows from Ruppert (1982) that as n→∞,

n1/3(θ̂i(n)− θi)⇒ N(0, σ2
i ),

with σ2
i = c2iVar[Zi(ρ

∗
i )]/((ciβ

′′
i (ρ∗i )− 1/3)(4h2

i )). Thus, Assumption 1 holds with noncanon-

ical η = 1/3. For directions on constructing a variance estimator Vi(n) satisfying Assump-
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tion 2, see Ventner (1967), p. 189.

Glynn and Whitt (1992a; 1992b) provide additional examples, including others with

noncanonical η, satisfying our assumptions. Actually, they show that stronger results than

Assumptions 1 and 2 hold, namely, that θ̂i(n) satisfies a functional central limit theorem

(Billingsley, 1999) and Vi(n) is strongly consistent.

4.1 When Assumptions 1 and 2 Are Violated

While Assumptions 1 and 2 hold for many situations arising in practice, we now discuss

cases where they are not satisfied. Assumption 1 requires that the k parameters θ1, . . . , θk

are estimated independently, but there are practical settings when the estimation processes

θ̂1, . . . , θ̂k may be dependent. For example, suppose there are d populations, and we perform

i.i.d. sampling within each population. Suppose we want to simultaneously compare the

means and compare the variances (and possibly also compare functions of these parameters,

e.g., coefficients of variation) of the populations, using the same samples within a population

to estimate all the parameters. When the populations are not normally distributed, the

sample mean and sample variance are dependent (Lukacs, 1956), so our MCPs do not apply in

this case. Instead, one could use the asymptotic procedure of Hjort (1988), which allows the

estimators θ̂1, . . . , θ̂k to be dependent (and constructs simultaneous intervals for all suitably

smooth functions of the estimators), but at the cost of wider intervals.

Also, Assumption 1 requires a CLT with scaling nη and normal limit. In the setting of

i.i.d. sampling to compare means of independent (not necessarily normal) populations, as in

Example 1, this corresponds to the domain of normal attraction of the normal distribution,

for which a necessary and sufficient condition is that the variance is finite; see p. 181 of

Gnedenko and Kolmogorov (1968). Thus, Assumption 1 is violated for populations having

infinite variance.

Assumption 2 requires consistent estimation of the parameter σ2
i . If we are comparing

steady-state mean rewards of stochastic processes (Example 4), one approach to estimate
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σ2
i is to use a standardized time series (STS) method (Schruben, 1983). However, STS

estimators are not consistent (Glynn and Iglehart (1990), Proposition 4.26), so Assumption 2

does not hold and our MCPs do not apply. As an alternative, we could employ the MCPs

of Nakayama (1997), which are designed to use STS estimators.

5 Numerical Results

We now present results from a Monte Carlo experiment comparing independent normally

distributed populations in terms of their pth quantiles for various values of 0 < p < 1. There

are k = 4 independent populations, where the ith population has a N(µi, 1) distribution. In

all our experiments, we fixed µ1 = µ2 = µ3 = 1 and µ4 = 1.1. Let θi denote the pth quantile

of the ith population, and we estimate each θi using (4). Our goal is to construct MCB

intervals for θ1, . . . , θ4. For any fixed p, population 4 is the best since θ4 is the largest among

θ1, . . . , θ4, which we assume is unknown. We used the same sample size ni = n for each

population with the values n = 20, 80 and 320, and we varied the quantile level p between

0.1 and 0.9. We assume that σ2
i in (5) is unknown, and we estimate σ2

i using Vi(n) in (6)

with qi,n = p+
√
p(1− p)/n. We ran 104 independent replications for each set of parameters,

where we constructed MCB intervals having nominal joint confidence level 1 − α = 0.9 in

each replication.

Table 1 gives the coverage results from our simulations. For a fixed quantile level p,

coverage increases as the sample size n for each population increases, with the coverage

levels for the largest sample size n = 320 reasonably close to the nominal level of 90%. This

agrees with our asymptotic theory in Theorem 1. Also, comparing the coverages for the

different quantile levels p for the same n, we see that the coverages are typically lower for

p = 0.1 and 0.9 than for p = 0.3, 0.5 or 0.7 when n is either 20 or 80, which is when coverages

are far below the nominal level of 0.9. This may indicate that extreme quantiles are harder

to estimate than those closer to the median.
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Table 1: Coverage results, in percents, for MCB intervals for the pth quantiles, with sample
size n.

n
p 20 80 320

0.1 71.8 74.0 84.9
0.3 83.6 85.4 88.2
0.5 82.4 84.2 85.7
0.7 85.6 87.9 89.3
0.9 74.3 77.3 87.9

For comparison, Table 2 contains results from experiments constructing MCB intervals

for the means, i.e., θi = µi. In this case the coverage levels are all greater than the nominal

level 0.9.

Nakayama (2007) presents results from constructing MCB intervals for quantiles and

means of exponentially distributed populations, and the results there are similar. Thus, it

appears that MCB intervals for quantiles require larger sample sizes than for means for the

asymptotics to take effect.

Table 2: Coverage results, in percents, for MCB intervals for the means, with sample size n.

n
20 80 320

91.3 91.2 91.5

6 Proofs

6.1 Proof of Theorem 1

Recall that each ni = ζin, where ζi > 0 is any constant, so n = (ζ1n, . . . , ζkn). Define

(1), (2), . . . , (k) such that θ(1) ≤ θ(2) ≤ · · · ≤ θ(k); i.e., alternative (j) has the jth smallest
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parameter, where ties can be broken arbitrarily. Then, define the events

G(n) =
{
θi − θ(k) ≥ θ̂i(ni)− θ̂(k)(n(k))− γWi,(k)(n), ∀ i 6= (k)

}
,

G1(n) =

{
θi −max

j 6=i
θj ≤

[
min
j 6=i

(
θ̂i(ni)− θ̂j(nj) + γWj,i(n)

)]+

, ∀ i

}
,

G2(n) =

{
θi −max

j 6=i
θj ≥ −

[
min

j∈A(n), j 6=i

(
θ̂i(ni)− θ̂j(nj)− γWi,j(n)

)]−
, ∀ i

}
.

Note that {θi−maxj 6=i θj ∈ Ii(n), i = 1, 2, . . . , k} = G1(n)∩G2(n), and by slightly modifying

the argument used by Hsu (1996, pp. 91–92), we can show that G(n) ⊆ G1(n)
⋂
G2(n) for

all n. We now show that

lim
n→∞

P (G(n)) ≥ 1− α, (7)

which will then establish Theorem 1.

Note that

Wi,j(n) =
1

nη

√
Vi(ni)

ζ2η
i

+
Vj(nj)

ζ2η
j

,

so

P (G(n)) = P

nη (θ̂i(ni)− θi)− (θ̂(k)(n(k))− θ(k))√
(Vi(ni)/ζ

2η
i ) + (V(k)(n(k))/ζ

2η
(k))
≤ γ, ∀ i 6= (k)

 .

Assumption 1 implies

(nη(θ̂i(ni)− θi), i = 1, . . . , k) =

(
nηi
ζηi

(θ̂i(ni)− θi), i = 1, . . . , k

)
⇒ (Yi, i = 1, . . . , k) (8)

as n → ∞, where Y1, . . . , Yk are independent with each Yi ∼ N(0, σ2
i /ζ

2η
i ). It then follows

from Assumption 2 and Theorem 3.9 of Billingsley (1999) that

(nη(θ̂i(ni)− θi), Vi(ni) : i = 1, . . . , k)⇒ (Yi, σ
2
i : i = 1, . . . , k) (9)

as n → ∞. Thus, the continuous mapping theorem (e.g., Billingsley, 1999, Theorem 2.7)
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yields nη (θ̂i(ni)− θi)− (θ̂(k)(n(k))− θ(k))√
(Vi(ni)/ζ

2η
i ) + (V(k)(n(k))/ζ

2η
(k))

: i 6= (k)

⇒ (Zi : i 6= (k)) (10)

as n→∞, where

Zi =
Yi − Y(k)√

(σ2
i /ζ

2η
i ) + (σ2

(k)/ζ
2η
(k))
∼ N(0, 1).

Consequently, the absolute continuity of the distributions of Zi, i 6= (k), guarantees

lim
n→∞

P (G(n)) = P{Zi ≤ γ, ∀ i 6= (k)} (11)

by the Portmanteau Theorem (e.g., Billingsley, 1999, Theorem 2.1). Note that Cov(Zi, Zj) =

λiλj > 0 for i 6= j, where λi = ((σ2
(k)/ζ

2η
(k))/((σ

2
i /ζ

2η
i ) + (σ2

(k)/ζ
2η
(k))))

1/2, so Slepian’s (1962)

inequality implies

P{Zi ≤ γ, ∀ i 6= (k)} >
∏
i 6=(k)

P{Zi ≤ γ} =
∏
i 6=(k)

(1− α)1/(k−1) = 1− α (12)

since γ satisfies Φ(γ) = (1− α)1/(k−1) and each Zi ∼ N(0, 1). Thus, (11) and (12) establish

(7), completing the proof.

6.2 Proof of Theorem 2.

Since ni = ζin with ζi > 0 fixed, we have by (9) and arguing as in (11) that

P{θi − θj ∈ I ′i,j(n), ∀ i < j}

= P

{∣∣∣nη(θ̂i(ni)− θi)− nη(θ̂j(nj)− θj)∣∣∣ ≤ γ′
√

(Vi(ni)/ζ
2η
i ) + (Vj(nj)/ζ

2η
j ), ∀ i < j

}
→ P

{
|Yi − Yj| ≤ γ′

√
(σ2

i /ζ
2η
i ) + (σ2

j/ζ
2η
j ), ∀ i < j

}
≥ P

{
|Y ′i − Y ′j | ≤ γ′

√
2, ∀ i < j

}
= 1− α,
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as n→∞ since γ′ = qk/
√

2, where the inequality follows from Hayter (1984) and Y ′1 , . . . , Y
′
k

are i.i.d. N(0, 1) random variables.

6.3 Proof of Theorem 3

The result immediately follows from Theorem 2 and the following lemma, due to Tukey

(1953); also see pages 81–82 of Hochberg and Tamhane (1987).

Lemma 1 Let x = (x1, x2, . . . , xk) ∈ <k, and let ξi,j, 1 ≤ i < j ≤ k, be nonnegative real

numbers. Then |xi − xj| ≤ ξi,j for all i < j if and only if

∣∣∣∣∣
k∑
i=1

cixi

∣∣∣∣∣ ≤ 2∑k
l=1 |cl|

k∑
i=1

k∑
j=1

c+i c
−
j ξi,j ∀ c = (c1, c2, . . . , ck) ∈ C.

6.4 Proof of Theorem 4

We need the following variation of Hölder’s inequality.

Lemma 2 Let p, q ≥ 1 be such that 1/p + 1/q = 1. Let x = (x1, x2, . . . , xk) ∈ <k, and let

ξ ≥ 0 be a real number. Then |
∑k

i=1 aixi| ≤ ξ(
∑k

i=1 |ai|p)1/p for all a = (a1, . . . , ak) ∈ <k if

and only if
(∑k

i=1 x
q
i

)1/q

≤ ξ.

Let bi = ai

√
Vi(ni)/n

2η
i and b = (b1, . . . , bk). Then since ni = ζin,

P

{
k∑
i=1

aiθi ∈ Īa,p(n), ∀ a ∈ <k
}

= P


∣∣∣∣∣
k∑
i=1

bi

(
θ̂i(ζin)− θi√
Vi(ζin)/(ζin)2η

)∣∣∣∣∣ ≤ γ̄p

(
k∑
i=1

|bi|p
)1/p

, ∀ b ∈ <k


= P


[

k∑
i=1

(
θ̂i(ζin)− θi√
Vi(ζin)/(ζin)2η

)q]1/q

≤ γ̄p



18



by Lemma 2. Using arguments similar to those applied to establish (10), we can show that

(
θ̂i(ζin)− θi√
Vi(ζin)/(ζin)2η

, i = 1, . . . , k

)
⇒ (Ri, i = 1, . . . , k)

as n → ∞, where R1, . . . , Rk are i.i.d. N(0, 1). The continuous mapping theorem then

implies [
k∑
i=1

(
θ̂i(ζin)− θi√
Vi(ζin)/(ζin)2η

)q]1/q

⇒

[
k∑
i=1

Rq
i

]1/q

as n→∞. Hence, since each Ri has an absolutely continuous distribution, the Portmanteau

theorem implies

lim
n→∞

P

{
k∑
i=1

aiθi ∈ Īa,p(n), ∀ a ∈ <k
}

= P


[

k∑
i=1

Rq
i

]1/q

≤ γ̄p

 ,

and the result follows by the definition of γ̄p.
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