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Abstract

We prove strong laws of large numbers and central limit theorems for some permuted estimators

from regenerative simulations. These limit theorems provide the basis for constructing asymptoti-

cally valid confidence intervals for the permuted estimators.
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1 Introduction

In Calvin and Nakayama (1998), we introduced a new class of estimators for certain performance

measures that can be estimated using the regenerative method for simulation. (For more details on

the standard regenerative method, see, for example, Iglehart 1978 or Shedler 1993.) Our method

applies to simulations of systems with two sequences of regeneration points. The basic idea for

constructing the new estimator is to first generate a sample path of a fixed number of cycles from the

first sequence of regeneration points and compute one estimate of the performance measure from the

path. We can then divide up the path into segments based on the second sequence of regeneration

points, and for each permutation of the segments create another sample path, from which we

compute another estimate. Finally, we construct the new estimator, which we call the permuted

estimator, as the average of the estimates over all permutations. Calvin and Nakayama (1998)

derive explicit formulae for the permuted estimators, and so one does not actually have to compute

all permutations to construct the permuted estimators. The permuted estimators only require the
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user to keep track of several extra accumulators during the simulation. The amount of extra storage

is fixed and does not increase with the simulation run length, and so the permuted estimators are

computationally efficient.

In Calvin and Nakayama (1998), we studied the small-sample behavior of the permuted esti-

mators. It was proven that for any fixed number of cycles from the first sequence of regenerative

cycles, the permuted estimators have no greater variance than and the same bias as the corre-

sponding standard estimators; hence, the mean squared errors (MSEs) are no larger. While the

permutation method has no effect (i.e., no MSE reduction) on ratio estimators for the long-run

average reward, the MSE of estimators of other performance measures are typically strictly reduced

by permuting.

In this paper we examine the asymptotic behavior of some permuted estimators, proving strong

laws of large numbers and central limit theorems. These results are important because they estab-

lish the strong consistency of the permuted estimators and allow one to construct asymptotically

valid confidence intervals. Since the permuted estimators are not expressed as the sum of quantities

defined over a sequence of regenerative cycles, it was not originally clear how to exploit the regen-

erative structure to prove central limit theorems for the estimators. To overcome this difficulty, we

will derive a new representation of our estimator that will allow us to exploit the regenerative struc-

ture to establish our asymptotic results. We consider here three performance measures analyzed in

Calvin and Nakayama (1998): the second moment of a cumulative cycle reward, the time-average

variance constant, and the expected cumulative reward until hitting a set of states F , of which the

mean time to failure is a special case.

In some sense the permuted estimators are constructed by reusing the collected data, and as

such, they are related to other statistical techniques. For example, the bootstrap (Efron 1979)

takes a given sample and resamples the data with replacement. In contrast, one can think of our

approach as resampling the data without replacement (i.e., a permutation), and then averaging

over all possible resamples. Other related methods include U -statistics (Serfling 1980, Chapter 5),

V -statistics (Sen 1977), and permutation tests (e.g., Conover 1980).

The rest of the paper has the following structure. We discuss the general assumptions in

Section 2. In Sections 3, 4 and 5, we derive strong laws of large numbers and central limit theorems

for the estimators of the second moment of a cumulative cycle reward, the time-average variance
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constant, and the expected cumulative reward until hitting F , respectively. In Section 6 we analyze

a small model and derive the exact theoretical values for the second moment and the asymptotic

variances associated with its standard and permuted estimators. We present empirical results in

Section 7. We defer some of the more technical proofs to an appendix.

2 General Framework

Let X = {X(t) : t ≥ 0} be a continuous-time stochastic process having sample paths that are

right continuous with left limits on a state space S ⊂ �d. Note that we can handle discrete-time

processes {Xn : n = 0, 1, 2, . . .} in this framework by letting X(t) = X�t� for all t ≥ 0, where �a� is

the greatest integer less than or equal to a.

Let T = {T (i) : i = 0, 1, 2, . . .} be an increasing sequence of nonnegative finite stopping times.

Consider the random pair (X,T ) and for i = 0, 1, 2, . . ., define the shift

θT (i)(X,T ) = ((X(T (i) + t)t≥0, (T (k) − T (i))k≥i) .

We define the pair (X,T ) to be a delayed regenerative process (in the classic sense) if

(i) θT (i)(X,T ), i = 0, 1, 2, . . ., are identically distributed;

(ii) for each i ≥ 0, θT (i)(X,T ) does not depend on the “prehistory”

(
(X(t))t<T (i), T (0), T (1), . . . , T (i)

)
.

See p. 19 of Kalashnikov (1994), p. 52 of Shedler (1993), or Section 2.6 of Kingman (1972) for more

details.

We assume that T1 = {T1(i) : i = 0, 1, 2, . . .} with T1(0) = 0 and T2 = {T2(i) : i = 0, 1, 2, . . .}
are two disjoint increasing sequences of nonnegative finite stopping times such that (X,T1) and

(X,T2) are both regenerative processes. For example, if X is an irreducible, positive-recurrent

Markov chain on a countable state space S, then we can define T1 and T2 to be the sequences of

hitting times to the states v ∈ S and w ∈ S, respectively, where we assume that X(0) = v and

w 
= v.

We want to estimate some performance measure α by generating a sample path segment �Xm =

{X(t) : 0 ≤ t < T1(m)} of a fixed number m of regenerative T1-cycles of our regenerative process.
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We use the terminology “Tl-cycles” to denote cycles determined by the sequence Tl for l = 1, 2; i.e.,

the i-th Tl-cycle is the path segment {X(t) : Tl(i − 1) ≤ t < Tl(i)}. Then the standard estimator

of α, denoted by α̂(m), can be written in the form α̂(m) = h( �Xm), where h is a specified function

that depends on m and α.

Calvin and Nakayama (1998) derive their permuted estimators as follows. First let M2 ≡
M2( �Xm) = 1 + sup{i : T2(i) ≤ T1(m)} be the number of times that stopping times from sequence

T2 occur by the end of the mth T1-cycle on the path �Xm. Divide the sample path �Xm into segments,

where the first segment is from time 0 to time T2(0), the last segment is from time T2(M2) to time

T1(m), and the other segments are the T2-cycles in the path. Then permute the T2-cycles in the

path �Xm to create a new path �X ′
m, and compute an estimator h( �X ′

m) based on the permuted

path �X ′
m. There are N( �Xm) ≡ (M2 − 1)! possible paths that can be constructed by permuting the

T2-cycles. Let these paths be �X
(1)
m ≡ �Xm, �X

(2)
m , . . . , �X

(N( �Xm))
m , and the new estimator is given by

α̃(m) =
1

N( �Xm)

N( �Xm)∑
j=1

h( �X(j)
m ), (1)

which we call the permuted estimator. Calvin and Nakayama (1998) derive explicit formulae for

the permuted estimators for three different performance measures; e.g., see equations (6), (10),

(14), (15) in the current paper. Hence, one does not actually have to carry out all permutations to

compute the permuted estimators for these cases.

As noted in Calvin and Nakayama (1998), another way of looking at our permuted estimator

is as follows. We first generate the original path �Xm and based on this, we construct the N( �Xm)

new paths �X
(1)
m , . . . , �X

(N( �Xm))
m . We then select one of the new paths at random uniformly from

�X
(1)
m , . . . , �X

(N( �Xm))
m , and let this be �X ′

m. Calvin and Nakayama (1998) show that �X ′
m

D= �Xm, where

“D=” denotes equality in distribution, and so we can think of h( �X ′
m) as a standard estimator of α

since it has the same distribution as α̂(m) = h( �Xm). Then we construct our permuted estimator

α̃(m) to be the conditional expectation of h( �X ′
m) with respect to the uniform random choice of �X ′

m

given the original path �Xm. In other words, if E∗ denotes conditional expectation with respect to

choosing �X ′
m from the uniform distribution on �X

(i)
m , 1 ≤ i ≤ N( �Xm), given �Xm, then we write

α̃(m) = E∗
[
h( �X ′

m)
]
.

Assuming that E[|h( �Xm)|] < ∞, the permuted estimator has the same mean as the standard one
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since for all m,

E[α̃(m)] = E
[
E∗[h( �X ′

m)]
]
= E[h( �X ′

m)] = E[α̂(m)], (2)

because �X ′
m

D= �Xm. Moreover, if E[h( �Xm)2] < ∞, then decomposing the variance by conditioning

on �Xm gives us that for all m,

Var (α̂(m)) = Var
(
h( �X ′

m)
)

= Var
(
E∗[h( �X ′

m)]
)

+ E
[
Var(h( �X ′

m) | �Xm)
]
. (3)

Thus, since E
[
Var(h( �X ′

m) | �Xm)
]
≥ 0, the variance of the permuted estimator α̃(m) = E∗

[
h( �X ′

m)
]

is no greater than that of the standard estimator α̂(m).

3 Estimating the Second Moment of Cumulative Cycle Reward

Suppose that we want to estimate

α = E

(∫ T1(1)

T1(0)
g(X(t)) dt

)2
 , (4)

for some “reward” function g : S → �. Under the regenerative method of simulation, the standard

estimator of α is

α̂(m) =
1
m

m∑
k=1

Y (k)2, (5)

where

Y (k) = Y (g; k) =
∫ T1(k)

T1(k−1)
g(X(t)) dt.

(We will suppress the dependence of Y on g in our notation unless it is needed for clarity.)

Performance measures α having the form in (4) arise in many practical contexts. For example,

suppose X is the server-busy process of a queue, the T1 sequence corresponds to a customer arriving

to an empty system, and g(x) = 1 for x > 0 and g(0) = 0. Then α is the second moment of the

length of a busy period. We also show in Section 4 how to estimate the time-average variance

constant of a process by slightly modifying this framework.

Calvin and Nakayama (1998) explicitly calculate the permuted estimator in (1) for the perfor-

mance measure in (4). To write an expression for the permuted estimator, we need some notation.

For our two sequences of stopping times T1 and T2, let H(1; 2) ≡ H(1; 2;m) ⊂ {1, 2, . . . ,m}
denote the set of indices of the T1-cycles in which at least one T2 stopping time occurs, and

define the complementary set J(1; 2) ≡ J(1; 2;m) = {1, 2, . . . ,m} − H(1; 2). More specifically,
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H(1; 2) = {i ≤ m : T1(i − 1) < T2(j) < T1(i) for some j}. We analogously define the sets H(2; 1)

and J(2; 1) with the roles of T1 and T2 reversed. Let h12 ≡ h12(m) = |H(1; 2)|. For k ∈ H(1; 2),

define T ′
2(k) = inf{t > T1(k − 1) : T2(l) = t for some l}, which is the first occurrence of a stopping

time from sequence T2 after the (k − 1)st stopping time from the sequence T1. Similarly define

T̃2(k) = sup{t < T1(k) : T2(l) = t for some l}, which is the last occurrence of a stopping time from

sequence T2 before the kth occurrence of the stopping-time sequence T1. Then, for k ∈ H(1; 2), we

let

Y12(k) =
∫ T ′

2(k)

T1(k−1)
g(X(t)) dt,

which is the contribution to Y (k) until a stopping time from sequence T2 occurs, and let

Y21(k) =
∫ T1(k)

T̃2(k)
g(X(t)) dt,

which is the contribution to Y (k) from the last occurrence of a stopping time from sequence T2 in

the kth T1-cycle until the end of the cycle. Also, for l ∈ J(2; 1), let

Y22(l) =
∫ T2(l)

T2(l−1)
g(X(t)) dt,

which is the integral of g(X(t)) over the lth T2-cycle in which there is no occurrence of a stopping

time from sequence T1. Also, define

Ȳ12(m) =
1
h12

∑
k∈H(1;2)

Y12(k),

and

Ȳ21(m) =
1
h12

∑
k∈H(1;2)

Y21(k).

Finally, define βl, l = 1, 2, . . . , h12, such that H(1; 2) = {β1, β2, . . . , βh12} and β1 < β2 < · · · < βh12 ;

i.e., βl is the lth smallest element of the set H(1; 2). Also, define β0 = βh12 . For k = βl ∈ H(1; 2)

for some l = 1, 2, . . . , h12, define ψ(k) = βl−1; i.e., ψ(k) is the index in H(1; 2) that occurs just

before k if k is not the first index, and ψ(k) is the last element in H(1; 2) if k is the first element.
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Then, our permuted estimator is given by α̃(m) = α̂(m) if M2 < 3, and otherwise by

α̃(m) =
1
m

 ∑
k∈J(1;2)

Y (k)2 +
∑

k∈H(1;2)

[
Y12(k)2 + Y21(k)2

]

+
2

h12 − 1

∑
k∈H(1;2)

Y12(k)

 ∑
j∈H(1;2)

Y21(j) − Y21(ψ(k))

 +
∑

k∈J(2;1)

Y22(k)2

+ 2(Ȳ12(m) + Ȳ21(m))
∑

k∈J(2;1)

Y22(k) +
2

1 + h12

∑
j,l∈J(2;1)

j �=l

Y22(j)Y22(l)

 . (6)

As noted by Calvin and Nakayama (1998), it follows from (2) and (3) that if E
[
Y (1)4

]
< ∞, then for

any fixed number m of T1-cycles, the estimator satisfies E[α̃(m)] = α and Var(α̃(m)) ≤ Var(α̂(m))

when α̂(m) is the standard estimator of α as defined in (5).

Our goal now is to study the asymptotic properties of the permuted estimator. In particular,

we want to prove a strong law of large numbers and a central limit theorem for the permuted

estimator α̃(m). Notice that part of the permuted estimator in (6) is a sum of quantities defined

over regenerative cycles, but part of the estimator is a sum of products of terms defined over

different regenerative cycles (for example in the last line of (6)). Thus, it was not originally clear

how to establish limit theorems for the permuted estimator. Now we derive a new representation

of our estimator that will allow us to exploit the regenerative structure to prove our asymptotic

results. To do this, we need some more notation. Define Bk ⊂ J(2; 1) to be the set of indices of

those T2-cycles that do not contain any occurrences of the stopping times from the sequence T1

and that are between T1(k−1) and T1(k). Let 1{ · } denote the indicator function of the event { · },
and for T1-cycle indices k = 1, 2, . . ., define

Z1(k) = Y (k)2 1{k 
∈ H(1; 2)},

Z2(k) = Y12(k)2 1{k ∈ H(1; 2)},

Z3(k) = Y21(k)2 1{k ∈ H(1; 2)},

Z4(k) = Y12(k) 1{k ∈ H(1; 2)},

Z5(k) = Y21(k) 1{k ∈ H(1; 2)},

Z6(k) =
∑
l∈Bk

Y22(l) 1{k ∈ H(1; 2)},

Z7(k) =
∑
l∈Bk

Y22(l)2 1{k ∈ H(1; 2)},
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Figure 1: A sample path.

Z8(k) = 1{k ∈ H(1; 2)}.

Also, define Z(k) = (Z1(k), Z2(k), . . . , Z8(k)), k = 1, 2, . . ., and note that Z(k) is a random vector

defined over the kth T1-cycle. (Throughout this paper, all vectors are column vectors.) Hence,

Z(1), Z(2), . . . are i.i.d. Let µ = (µ1, µ2, . . . , µ8) = E[Z(1)], and let Σ = (σi,j : i, j = 1, 2, . . . , 8)

be the covariance matrix of Z(1), where σi,j = Cov(Zi(1), Zj(1)). We prove in Lemma 4 in the

appendix that all of the means and covariances are finite if E[Y (|g|; 1)4] < ∞. For i = 1, 2, . . . , 8,

define the sample means

Z̄i(m) =
1
m

m∑
k=1

Zi(k),

and define Z̄(m) = (Z̄1(m), Z̄2(m), . . . , Z̄8(m)).

To illustrate some of our notation, we provide in Figure 1 an example of a sample path of a

continuous-time process X on a continuous state space S. The sample path is the zigzag line in

the figure. Assume that the reward function g(x) = x for all x ∈ S. The T1 (resp., T2) sequence

corresponds to hits to state v = 0 at the horizontal axis (resp., state w at the horizontal dashed

line). Hence, the number of T1-cycles is m = 5, and there are six T2-cycles on the path. In the first

and fourth (resp., second, third, and fifth) T1-cycles, there are no occurrences (resp., at least one

occurrence) of T2 stopping times, and so H(1; 2) = {2, 3, 5}, and J(1; 2) = {1, 4}. Also, the third

and fourth (resp., first, second, fifth, and sixth) T2-cycles have (resp., do not have) occurrences of

T1 stopping times within them; thus, H(2; 1) = {3, 4}, and J(2; 1) = {1, 2, 5, 6}. Therefore, if k = 1

or 4, then Y12(k) = Y21(k) = 0, and so Z1(k) > 0 and Zi(k) = 0 for i = 2, 3, . . . , 8. On the other
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hand, if k = 2, 3, 5, then Z1(k) = 0, and Zi(k) > 0 for i = 2, 3, 4, 5, 8. For i = 6 or 7, Zi(k) > 0

when k = 2 and 5, but Zi(k) = 0 when k = 3.

In the proof of Theorem 1 below, we show that the asymptotic variance of
√
m(α̃(m) − α) is

σ2
α = ∇fα(µ)T Σ ∇fα(µ), (7)

where the function fα : �8 → � is defined for z = (z1, z2, . . . , z8) ∈ �8 as

fα(z) = z1 + z2 + z3 +
2z4z5

z8
+ z7 +

2z6(z4 + z5)
z8

+
2z2

6

z8
,

∇fα(z) is the column vector of partial derivatives of fα evaluated at z, and the superscript T

denotes transpose. (Henceforth, we sometimes refer to σ2
α as the asymptotic variance associated

with α̃(m).) Thus, applying the following approach, we can estimate σ2
α from the same simulation

that is used to construct the permuted estimator α̃(m). First generate a sample path of m T1-cycles

and compute α̃(m). From the same sample path, compute the vectors (Z1(k), Z2(k), . . . , Z8(k)),

k = 1, 2, . . . ,m, and the sample means Z̄i(m), i = 1, 2, . . . , 8. For example, to compute Z̄2(m),

we take the average of the Z2(k) over all m T1-cycle indices k, where Z2(k) is the square of the

contribution to Y (k) from the beginning of the k-th T1-cycle until the first occurrence of a T2-cycle

if a T2-cycle occurs during the k-th T1-cycle, and Z2(k) = 0 otherwise. Also, we estimate the

covariance σi,j , i, j = 1, 2, . . . , 8, by

σ̂i,j(m) =
1

m− 1

m∑
k=1

(
Zi(k) − Z̄i(m)

) (
Zj(k) − Z̄j(m)

)
,

and let Σ̂(m) = (σ̂i,j(m) : i, j = 1, 2, . . . , 8). Then our estimator of σ2
α is given by σ̂2

α(m) =

∇fα(Z̄(m))T Σ̂(m)∇fα(Z̄(m)). To compute σ̂2
α(m) in a simulation, we only need accumulators

to keep track of the sums of the Zi(k), Zi(k)2, and Zi(k)Zj(k) for i, j = 1, 2, . . . , 8. Thus, our

estimator can be updated “on the fly” as the simulation progresses; i.e., the user does not have to

store all of the (Z1(k), Z2(k), . . . , Z8(k)), k = 1, 2, . . . ,m, and use a second pass through the data.

Let “⇒” denote convergence in distribution, and let N(x, y) denote a normal random variable

with mean x and variance y. Then the following holds.

Theorem 1 Consider estimating α defined in (4). Assume that E
[
Y (|g|; 1)4] < ∞. Then as

m → ∞,

(i) α̃(m) → α a.s.;
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(ii)
√
m (α̃(m) − α) /σ̂α(m) ⇒ N(0, 1).

Theorem 1 allows us to construct asymptotically valid confidence intervals. Specifically, an

asymptotically valid 100(1 − δ)% confidence interval for α is

[
α̃(m) − κδσ̂α(m)√

m
, α̃(m) +

κδσ̂α(m)√
m

]
,

where κδ is the upper δ/2 critical point of a standard normal distribution; i.e., P{N(0, 1) ≤ κδ} =

1−δ/2. Also, note that in Theorem 1, it is natural to assume a finite fourth moment for our central

limit theorem since we are estimating a second moment.

Proof of Theorem 1. Observe that

∑
j,l∈J(2;1)

j �=l

Y22(j)Y22(l) =

 ∑
l∈J(2;1)

Y22(l)

2

−
∑

l∈J(2;1)

Y22(l)2 =

(
m∑

k=1

Z6(k)

)2

−
m∑

k=1

Z7(k). (8)

Thus,

α̃(m) = fα(Z̄(m)) +R1(m) +R2(m) +R3(m) +R4(m),

where

R1(m) =
(

2m∑m
k=1 Z8(k) − 1

− 2m∑m
k=1 Z8(k)

)
Z̄4(m)Z̄5(m),

R2(m) =
−2

m(h12 − 1)

∑
k∈H(1;2)

Y12(k)Y21(ψ(k)),

R3(m) =
(

2m
1 +

∑m
k=1 Z8(k)

− 2m∑m
k=1 Z8(k)

)
Z̄6(m)2,

R4(m) =
−2

1 +
∑m

k=1 Z8(k)
Z̄7(m).

To establish the theorem, it suffices to prove that as m → ∞, fα(Z̄(m)) → α a.s.,
√
mRi(m) → 0

a.s. for each i,
√
m (fα(Z̄(m)) − α)/σα ⇒ N(0, 1), and σ̂α(m) → σα a.s.; see Sections 1.3.1 and

1.5.4 of Serfling (1980).

Lemma 4 in the appendix establishes that all of the means µi and covariances σi,j are finite and

that µ8 > 0. In Lemma 5 in the appendix, we prove that fα(µ) = α. Thus, since fα is continuous at

µ and because the strong law of large numbers (SLLN) implies that Z̄(m) → µ a.s., as m → ∞, we

have that fα(Z̄(m)) → α a.s., as m → ∞. Moreover, it follows from the SLLN and the continuous

differentiability of fα at µ that σ̂α(m) → σα a.s. Also, the finiteness of Σ from Lemma 4 implies
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that
√
m
(
Z̄(m) − µ

) ⇒ N8(0,Σ), as m → ∞, where Nd(a,A) is a d-dimensional normal random

vector with mean vector a and covariance matrix A. Thus, since fα has a non-zero differential at

µ, applying the corollary on p. 124 of Serfling (1980) yields
√
m (fα(Z̄(m))− α)/σα ⇒ N (0, 1) , as

m → ∞.

We now show that for i = 1, . . . , 4,
√
mRi(m) → 0 a.s., as m → ∞. Observe that with

probability 1,

√
m R1(m) =

(
2√
m

)(
1
m

m∑
k=1

Z8(k) − 1
m

)−1
Z̄4(m)Z̄5(m)

Z̄8(m)
→ 0 · µ−1

8

µ4µ5

µ8
= 0,

as m → ∞ (since µ8 > 0). Similarly, we can prove that
√
mR3(m) → 0 a.s. and

√
mR4(m) → 0

a.s., as m → ∞.

To show that
√
mR2(m) → 0 a.s., as m → ∞, we first define V (l) = Y12(βl)Y21(βl−1), and note

that

R2(m) =
−2

m(h12 − 1)

h12∑
l=2

V (l) + V (1)

 .

For l ≥ 2, V (l) is only a function of the lth T2-cycle that contains an occurrence of a stopping

time from sequence T1, and so V (l), l = 2, 3, . . ., are i.i.d. Also, for any l, Y12(βl) and Y21(βl−1)

are independent since they are in different T1-cycles. Note that Y12(βl)
D= Z4(β1) and Y21(βl−1)

D=

Z5(β1). Thus,

|E[V (2)] | = |E[Z4(β1)]E[Z5(β1)] | = |E[Z4(1)|Z8(1) = 1]E[Z5(1)|Z8(1) = 1] |

≤
∣∣∣∣ E[Z4(1)]
P{Z8(1) = 1}

E[Z5(1)]
P{Z8(1) = 1}

∣∣∣∣ < ∞,

since P{Z8(1) = 1} = P{T2(0) < T1(1)} > 0. Moreover, h12 → ∞ a.s., as m → ∞, since

P{T2(0) < T1(1)} > 0. Therefore, the strong law of large numbers implies that

1
h12 − 1

h12∑
l=2

V (l) → E[V (2)] a.s., (9)

as m → ∞. Since V (1) = Y12(β1)Y21(βh12),

V (1)
h12 − 1

= Y12(β1)
Y21(βh12)
h12 − 1

→ 0 a.s.,

as m → ∞, because E[Y21(βh12)] < ∞ and h12 → ∞ a.s. (see Example C on p. 12 of Serfling 1980).

Thus,
√
mR2(m) =

( −2√
m

)
1

h12 − 1

h12∑
l=2

V (l) + V (1)

 → 0 a.s.,
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as m → ∞.

4 Time-Average Variance Constant

In Section 5.1 of Calvin and Nakayama (1998), we briefly described how to modify the framework

of Section 3 to estimate the time-average variance σ2
f of the process f(X) for some reward function

f : S → �. We now explain this more fully. To do this, define rt = (1/t)
∫ t
0 f(X(s)) ds and

r = E[Y (f ; 1)]/E[τ(1)], where τ(k) = T1(k)−T1(k− 1) for k ≥ 1. Assuming that E[Y (f ; k)2] < ∞
and E[τ(k)2] < ∞, then t1/2(rt−r)/σf ⇒ N(0, 1), as t → ∞, where σ2

f = (E[Y (f ; 1)2]+r2E[τ(1)2]−
2rE[Y (f ; 1)τ(1)])/E[τ(1)]; see Theorem 2.3 of Shedler (1993). The standard estimator of σ2

f is

σ̂2
f (m) =

∑m
k=1 Y (f ; k)2∑m

k=1 τ(k)
+ r̂(m)2

∑m
k=1 τ(k)

2∑m
k=1 τ(k)

− 2r̂(m)
∑m

k=1 Y (f ; k)τ(k)∑m
k=1 τ(k)

,

where r̂(m) =
∑m

k=1 Y (f ; k)/
∑m

k=1 τ(k).

The permuted estimator of the time-average variance constant is

σ̃2
f (m) =

(
m∑

k=1

τ(k)

)−1
 ∑

k∈J(1;2)

Y (k)2 + r̂(m)2
∑

k∈J(1;2)

τ(k)2 − 2r̂(m)
∑

k∈J(1;2)

Y (k)τ(k)

+
∑

k∈H(1;2)

Y12(k)2 + r̂(m)2
∑

k∈H(1;2)

τ12(k)2 − 2r̂(m)
∑

k∈H(1;2)

Y12(k)τ12(k)

+
∑

k∈H(1;2)

Y21(k)2 + r̂(m)2
∑

k∈H(1;2)

τ21(k)2 − 2r̂(m)
∑

k∈H(1;2)

Y21(k)τ21(k)

+
2

h12 − 1

 ∑
k∈H(1;2)

Y12(k)
∑

j∈H(1;2)

Y21(j) − r̂
∑

k∈H(1;2)

Y12(k)
∑

j∈H(1;2)

τ21(j)

− r̂
∑

k∈H(1;2)

τ12(k)
∑

j∈H(1;2)

Y21(j) + r̂2
∑

k∈H(1;2)

τ12(k)
∑

j∈H(1;2)

τ21(j)


− 2

h12 − 1

 ∑
k∈H(1;2)

Y12(k)Y21(ψ(k)) − r̂
∑

k∈H(1;2)

Y12(k)τ21(ψ(k))

− r̂
∑

k∈H(1;2)

τ12(k)Y21(ψ(k)) + r̂2
∑

k∈H(1;2)

τ12(k)τ21(ψ(k))


+

∑
k∈J(2;1)

Y22(k)2 + r̂(m)2
∑

k∈J(2;1)

τ22(k)2 − 2r̂(m)
∑

k∈J(2;1)

Y22(k)τ22(k)

+ 2(Ȳ12(m) − r̂(m)τ̄12(m) + Ȳ21(m) − r̂(m)τ̄21(m))

 ∑
k∈J(2;1)

Y22(k) − r̂(m)
∑

k∈J(2;1)

τ22(k)


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+
2

1 + h12

 ∑
k∈J(2;1)

Y22(k) − r̂(m)
∑

k∈J(2;1)

τ22(k)

2

− 2
1 + h12

 ∑
k∈J(2;1)

Y22(k)2 + r̂(m)2
∑

k∈J(2;1)

τ22(k)2 − 2r̂(m)
∑

k∈J(2;1)

Y22(k)τ22(k)

 , (10)

where for k ∈ H(1; 2) and for l ∈ J(2; 1),

τ12(k) = T ′
2(k) − T1(k − 1),

τ21(k) = T1(k) − T̃2(k),

τ22(l) = T2(l) − T2(l − 1),

τ̄12(m) =
1
h12

∑
k∈H(1;2)

τ12(k),

τ̄21(m) =
1
h12

∑
k∈H(1;2)

τ21(k).

Now for T1-cycle indices k = 1, 2, . . ., define the variables Z1(k), Z2(k), . . . , Z21(k), as follows.

Define Zi(k) as before for i = 1, 2, . . . , 8. For i > 8, we define

Z9(k) = Y (k),

Z10(k) = τ(k),

Z11(k) = τ(k)2 1{k 
∈ H(1; 2)},

Z12(k) = τ12(k)2 1{k ∈ H(1; 2)},

Z13(k) = τ21(k)2 1{k ∈ H(1; 2)},

Z14(k) = τ12(k) 1{k ∈ H(1; 2)},

Z15(k) = τ21(k) 1{k ∈ H(1; 2)},

Z16(k) = 1{k ∈ H(1; 2)}
∑
l∈Bk

τ22(l),

Z17(k) = 1{k ∈ H(1; 2)}
∑
l∈Bk

τ22(l)2,

Z18(k) = Y (k) τ(k) 1{k 
∈ H(1; 2)},

Z19(k) = Y12(k) τ12(k) 1{k ∈ H(1; 2)},

Z20(k) = Y21(k) τ21(k) 1{k ∈ H(1; 2)},

Z21(k) = 1{k ∈ H(1; 2)}
∑
l∈Bk

Y22(l)τ22(l).
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For T1-cycle indices k = 1, 2, . . ., we define Z ′(k) = (Z1(k), Z2(k), . . . , Z21(k)). Also, let µ′ =

(µ1, µ2, . . . , µ21) = E[Z ′(1)], and let Σ′ = (σi,j : i, j = 1, 2, . . . , 21) be the covariance matrix of Z ′(1),

where σi,j = Cov(Zi(1), Zj(1)). For i, j = 1, 2, . . . , 21, define Z̄i(m) and σ̂i,j(m) as before as the

sample means and sample covariances, respectively. Define Z̄ ′(m) = (Z̄1(m), Z̄2(m), . . . , Z̄21(m))

and Σ̂′(m) = (σ̂i,j(m) : i, j = 1, 2, . . . , 21).

Now define the function fσ2 : �21 → � for z = (z1, z2, . . . , z21) as

fσ2(z) = z−1
10

[
z1 + z2 + z3 +

(
z9

z10

)2

(z11 + z12 + z13) − 2
z9

z10
(z18 + z19 + z20)

+
2
z8

(
z4z5 +

z9

z10

(
−z4z15 − z14z5 +

z9

z10
z14z15

))
+ z7 +

(
z9

z10

)2

z17 − 2
z9

z10
z21

+
2
z8

(
z4 + z5 − z9

z10
(z14 + z15)

)(
z6 − z9

z10
z16

)
+

2
z8

(
z6 − z9

z10
z16

)2
]
.

By using arguments similar to those applied in the proof of Theorem 1, we can establish the

following results for the permuted estimator of σ2
f . (Glynn and Iglehart 1987 prove a central limit

theorem for the standard estimator of σ2
f .)

Theorem 2 Consider estimating the time-average variance constant σ2
f . Assume that E[Y (|f |; k)4] <

∞ and E[τ(k)4] < ∞. Then as m → ∞,

(i) σ̃2
f (m) → σ2

f a.s.;

(ii)
√
m

(
σ̃2

f (m) − σ2
f

)
/σ̂σ(m) ⇒ N(0, 1), where σ̂σ(m) =

(
∇fσ2(Z̄ ′(m))T Σ̂′(m)∇fσ2(Z̄ ′(m))

)1/2
.

5 Expected Cumulative Reward Until Hitting a Set

Suppose we are interested in estimating

η = E

[∫ TF

0
g(X(t)) dt

]
, (11)

where TF = inf{t > 0 : X(t) ∈ F} for some set of states F ⊂ S and g : S → � is some “reward”

function. Thus, η is the expected cumulative reward until hitting F when T1(0) = 0.

A special case of η is the mean time to failure of a reliability system. In this context, one

is interested in computing the expected time to system failure given that the system starts with

all components operational. This corresponds to having X represent the evolution of the system

over time, letting g ≡ 1, and taking the set F to be the set of “failed” states for the system; e.g.,
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see Goyal et al (1992) for more details on the mean time to failure. On the other hand, η is the

expected time until a buffer overflow in a queue with a finite buffer if X is the queue-length process,

F corresponds to states in which a buffer overflows, and g ≡ 1.

It can be shown that

η =
ξ

γ
, (12)

where

ξ = E

[∫ TF∧T1(1)

0
g(X(t)) dt

]
,

and

γ = E [1{TF < T1(1)}] ,

with a ∧ b = min(a, b); e.g., see Goyal et al. (1992). To estimate η, we generate one sample path

�Xm consisting of m T1-cycles, and we use it to estimate ξ and γ.

We examine the estimation of the numerator and denominator in (12) separately. First, if we

want to estimate α = ξ, then the standard estimator of ξ is

ξ̂(m) =
1
m

m∑
k=1

D(k),

where

D(k) = D(g, k) =
∫ T1(k)∧T ′

F (k)

T1(k−1)
g(X(t)) dt,

with T ′
F (k) = inf{t > T1(k − 1) : X(t) ∈ F}. (We will suppress the dependence of D on g in our

notation unless it is needed for clarity.) On the other hand, if we want to estimate α = γ, then the

standard estimator of γ is

γ̂(m) =
1
m

m∑
k=1

I(k),

where

I(k) = 1{T ′
F (k) < T1(k)}.

Thus, the standard estimator of η is

η̂(m) =
ξ̂(m)
γ̂(m)

. (13)

To define our permuted estimator for η, we need more notation. For k ∈ H(1; 2), let

I12(k) = 1{T ′
F (k) < T ′

2(k)},

I22(l) = 1{T (2)
F (l) < T2(l)},

I21(k) = 1{T (1)
F (k) < T1(k)},
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with T ′
2(k) = inf{t > T1(k) : T2(i) = t for some i}, T (2)

F (l) = inf{t > T2(l − 1) : X(t) ∈ F} and

T
(1)
F (k) = inf{t > T̃1(k) : X(t) ∈ F}. Hence, I12(k) (resp., I21(k)) is the indicator of whether

the set F is hit in the initial 1-2 segment (resp., final 2-1 segment) of the T1-cycle with index

k ∈ H(1; 2). Similarly, I22(l) is the indicator whether the set F is hit in the T2-cycle with index

l ∈ J(2; 1). Also, define

k21 = |{k ∈ H(1; 2) : I21(k) = 0}|,

k12 = |{k ∈ H(1; 2) : I12(k) = 0}|,

kc = |{k ∈ H(1; 2) : I12(k) = 0, I21(ψ(k)) = 0}|.

Define

D12(k) =
∫ T ′

F (k)∧T ′
2(k)

T1(k−1)
g(X(t)) dt,

D22(l) =
∫ T

(2)
F (l)∧T2(l)

T2(l−1)
g(X(t)) dt,

D21(k) =
∫ T

(1)
F (k)∧T1(k)

T̃2(k)
g(X(t)) dt.

Finally, let

r =
∑

l∈J(2;1)

I22(l),

d0 =
∑

l∈J(2;1)

D22(l) (1 − I22(l)) ,

d1 =
∑

l∈J(2;1)

D22(l)I22(l).

Then Calvin and Nakayama (1998) derive the following permuted estimators for ξ and γ:

(i) ξ̃(m) = ξ̂(m) if M2( �Xm) < 3, and otherwise

ξ̃(m) =
1
m

 ∑
k∈J(1;2)

D(k) +
∑

k∈H(1;2)

D12(k)

+
1

h12 − 1 + r

k12

∑
j∈H(1;2)

D21(j) −
∑

k∈H(1;2)

(1 − I12(k))D21(ψ(k))


+ k12

(
d0

r + h12
+

d1

r + h12 − 1

))
; (14)
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(ii) γ̃(m) = γ̂(m) if M2( �Xm) < 3, and otherwise

γ̃(m) =
1
m

 ∑
k∈J(1;2)

I(k) + h12 − k12k21 − kc

h12 − 1 + r

 . (15)

It follows from (2) and (3) that if E[D(1)2] < ∞, then for any fixed number m of T1-cycles, the per-

muted estimators ξ̃(m) and γ̃(m) satisfy E[ξ̃(m)] = ξ, E[γ̃(m)] = γ, Var(ξ̃(m)) ≤ Var(ξ̂(m)), and

Var(γ̃(m)) ≤ Var(γ̂(m)), where ξ̂(m) and γ̂(m) are the standard estimators of ξ and γ, respectively.

The permuted estimator for η is then η̃(m) = ξ̃(m)/γ̃(m).

We now want to prove a strong law of large numbers and a central limit theorem for the

permuted estimator η̃(m). As in the previous section, to accomplish this, we need to derive new

expressions for ξ̃(m) and γ̃(m) that will allow us to exploit the regenerative structure of X. To do

this, we need some notation. For k = 1, 2, . . ., define

W1(k) = D(k) 1{k 
∈ H(1; 2)},

W2(k) = D12(k) 1{k ∈ H(1; 2)},

W3(k) = D21(k) 1{k ∈ H(1; 2)},

W4(k) = I(k) 1{k 
∈ H(1; 2)},

W5(k) = 1 − I21(k) 1{k ∈ H(1; 2)},

W6(k) = 1 − I12(k) 1{k ∈ H(1; 2)},

W7(k) =
∑
l∈Bk

I22(l) 1{k ∈ H(1; 2)},

W8(k) =
∑
l∈Bk

D22(l)I22(l) 1{k ∈ H(1; 2)},

W9(k) =
∑
l∈Bk

D22(l)(1 − I22(l)) 1{k ∈ H(1; 2)},

W10(k) = 1{k ∈ H(1; 2)}.

Also, define W (k) = (W1(k),W2(k), . . . ,W10(k)), k = 1, 2, . . ., and note that W (k) is a random

vector defined over the kth T1-cycle. Hence, W (1),W (2), . . . are i.i.d. For i = 1, 2, . . . , 10, define

the sample means W̄i(m) = (1/m)
∑m

k=1 Wi(k), and define W̄ (m) = (W̄1(m), W̄2(m), . . . , W̄10(m)).

Let ν = (ν1, ν2, . . . , ν10) = E[W (1)], and let Ψ = (Ψi,j : i, j = 1, 2, . . . , 10) be the covariance matrix

of W (1), where Ψi,j = Cov(Wi(1),Wj(1)). We prove in Lemma 6 in the appendix that all of the

means and covariances are finite under the assumption that E[D(|g|, 1)2] < ∞.
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It turns out that the asymptotic variance of
√
m(η̃(m) − η) is σ2

η = ∇fη(ν)T Ψ∇fη(ν), where

the function fη : �10 → � is defined as

fη(w1, w2, . . . , w10) =
(
w1 + w2 +

w3w6

w10 + w7
+

w6w9

w7 + w10
+

w6w8

w7 + w10

)(
w4 + w10 − w5w6

w10 + w7

)−1

=
(w1 + w2)(w7 + w10) + w6(w3 + w8 + w9)

(w4 + w10)(w7 + w10) − w5w6
.

To estimate σ2
η from the same sample path �Xm of m T1-cycles used to construct η̃(m), we employ

W̄i(m) as an estimate of νi, i = 1, 2, . . . , 10. Also, we estimate the covariance Ψi,j , i, j = 1, 2, . . . , 10,

by Ψ̂i,j(m) = (1/(m − 1))
∑m

k=1

(
Wi(k) − W̄i(m)

) (
Wj(k) − W̄j(m)

)
, and let Ψ̂(m) = (Ψ̂i,j(m) :

i, j = 1, 2, . . . , 10). Then σ̂2
η(m) = ∇fη(W̄ (m))T Ψ̂(m)∇fη(W̄ (m)) is our estimator of σ2

η.

Theorem 3 Consider estimating η in (11). Assume that E
[
D(|g|, 1)2] < ∞ and P{TF < T1(1)} >

0. Then as m → ∞,

(i) η̃(m) → η a.s.;

(ii)
√
m (η̃(m) − η) /σ̂η(m) ⇒ N(0, 1).

Proof. Observe that

η̃(m) =

(
W̄1(m) + W̄2(m) +

W̄3(m)W̄6(m)
W̄10(m) + W̄7(m) − (1/m)

+
W̄6(m)W̄9(m)

W̄7(m) + W̄10(m)

+
W̄6(m)W̄8(m)

W̄7(m) + W̄10(m) − (1/m)
− 1

m(h12 − 1 + r)

∑
k∈H(1;2)

(1 − I12(k))D21(ψ(k))


×

(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m) − (kc/m

2)
W̄10(m) + W̄7(m) − (1/m)

)−1

.

Thus,

η̃(m) = fη(W̄ (m))U(m) +R5(m) +R6(m) +R7(m), (16)

where

U(m) =

(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m)

W̄10(m) + W̄7(m)

)

×
(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m) − (kc/m

2)
W̄10(m) + W̄7(m) − (1/m)

)−1

,

18



R5(m) =

 −1
m(h12 − 1 + r)

∑
k∈H(1;2)

(1 − I12(k))D21(ψ(k))


×

(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m) − (kc/m

2)
W̄10(m) + W̄7(m) − (1/m)

)−1

,

R6(m) =

(
W̄3(m)W̄6(m)

W̄10(m) + W̄7(m) − (1/m)
− W̄3(m)W̄6(m)
W̄10(m) + W̄7(m)

)

×
(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m) − (kc/m

2)
W̄10(m) + W̄7(m) − (1/m)

)−1

,

R7(m) =

(
W̄6(m)W̄8(m)

W̄7(m) + W̄10(m) − (1/m)
− W̄6(m)W̄8(m)
W̄7(m) + W̄10(m)

)

×
(
W̄4(m) + W̄10(m) − W̄5(m)W̄6(m) − (kc/m

2)
W̄10(m) + W̄7(m) − (1/m)

)−1

.

To establish the theorem, it then suffices to show that as m → ∞, fη(W̄ (m)) → η a.s., σ̂η(m) → ση

a.s.,
√
m (fη(W̄ (m)) − η)/ση ⇒ N(0, 1), U(m) → 1 a.s., and

√
mRi(m) → 0 a.s. for i = 5, 6, 7.

Lemma 6 in the appendix establishes that all of the means νi and covariances Ψi,j are finite. Hence,

applying arguments similar to those used in the proof of Theorem 1, we can establish the current

theorem.

6 Exact Analysis of a Small Model

We now provide an exact analysis of a small model to show that one can obtain strict reductions

in the asymptotic variances by using permuted estimators rather than the standard ones. Also, we

use our results to gain some insights into desirable properties of T2-cycles.

The model is a 2-state discrete-time Markov chain with transition probabilities P (1, 1) = λ,

P (1, 2) = 1 − λ, P (2, 1) = 1 − β, and P (2, 2) = β, with 0 < λ, β < 1. We will examine the effect

of different choices of λ and β. We let the T1-sequence (resp., T2-sequence) correspond to hits to

state 1 (resp., state 2). We take the reward function g ≡ 1, and we focus on α from Section 3,

which is then the second moment of the length of a T1-cycle.

It is straightforward to show that for our small model, the exact theoretical value for σ2
s ≡

E[Y (g; 1)4] − (E[Y (g; 1)])2, which is the asymptotic variance of
√
m(α̂(m) − α), is given by

σ2
s = λ+

(1 − λ)
(1 − β)4

(
β4 − 5β3 + 11β2 + β + 16

)
−
(
λ+ (1 − λ)

(
4 − 3β + β2

(1 − β)2

))2

.
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The exact theoretical value for σ2
α, which is the asymptotic variance associated with the permuted

estimator of α and is defined in (7), is given by

σ2
α = λ+

(1 − λ)
(1 − β)4

(
β4 − 5β3 + 7β2 + β + 16

)
−
(
λ+ (1 − λ)

(
4 − 3β + β2

(1 − β)2

))2

.

The absolute difference in the asymptotic variances is

σ2
s − σ2

α = 4(1 − λ)
β2

(1 − β)4
,

which goes to ∞ as β ↑ 1.

Considering now the relative decrease in the asymptotic variance, we can show that

σ2
s − σ2

α

σ2
s

=
4β2

λ
1−λ(1 − β)4 + (β4 − 5β3 + 11β2 + β + 16) − 1

1−λ (λ(1 − β)2 + (1 − λ) (4 − 3β + β2))2 .

The relative difference is maximized as λ ↓ 0, and

lim
λ↓0

σ2
s − σ2

α

σ2
s

=
4β

β2 − 6β + 25
,

which is strictly increasing in β for 0 < β < 1, and approaches 1/5 as β ↑ 1. Therefore, since the

frequency of T2-cycles increases as β increases, this suggests that one desirable characteristic of

T2-cycles is that they occur frequently.

Although the relative reduction in asymptotic variance for this small example is modest, in the

next section we consider estimators of the time-average variance constant of a larger model, for

which numerical experiments show significant reductions in the asymptotic variance.

7 Empirical Results

We now present some empirical results from estimating the time-average variance constant σ2
f

and constructing confidence intervals for it based on our central limit theorem in Theorem 2. We

consider the discrete-time Ehrenfest urn model, which has transition probabilities P0,1 = Ps,s−1 = 1,

and

Pi,i+1 =
s− i

s
= 1 − Pi,i−1, 0 < i < s.

In our experiments we take s = 8, and define the reward function f(i) = i. The regenerative

sequences T1 and T2 correspond to hitting times to the states v and w, respectively, and so state v
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Average HW Coverage
w v = 0 v = 1 v = 4 v = 0 v = 1 v = 4
0 5.66 * 2.73 1.15 0.779 * 0.860 0.893
1 2.76 2.73 * 1.13 0.808 0.860 * 0.888
2 1.70 1.73 1.10 0.778 0.864 0.890
3 1.28 1.28 1.09 0.736 0.886 0.888
4 1.15 1.14 1.14 * 0.730 0.894 0.892 *
5 1.29 1.23 1.08 0.764 0.899 0.895
6 1.74 1.57 1.09 0.788 0.898 0.899
7 2.72 2.12 1.12 0.822 0.892 0.898
8 4.79 2.67 1.14 0.821 0.866 0.896

Table 1: 50 T1-cycles when v = 0.

is the return state for the regenerative simulation. We ran experiments with three different choices

of v (0, 1, 4). In each experiment, we constructed the standard estimator and the permuted

estimator for each possible choice of w 
= v. For each choice of v and w, we ran 1,000 independent

replications, where in each replication we constructed a 90% confidence interval for σ2
f .

The theoretical value of σ2
f is 14 and is independent of the choice of v. However, the expected

T1-cycle length varies considerably over the different choices of v. The expected T1-cycle length for

v = 0 is a factor of 8 (resp., 70) greater than that for v = 1 (resp., v = 4). Hence, to make the results

somewhat comparable across the different values of v, we changed the number of simulated T1-cycles

for each case so that the total expected number of simulated transitions remains approximately the

same.

Table 1 (resp., Table 2) contains the results for all three choices of v when the number of T1-

cycles for v = 0 is 50 (resp., 200). The tables give the sample average of the half-widths (HW)

of the constructed 90% confidence intervals and the observed coverage over the 1,000 replications.

The entries in the tables corresponding to w = v are the results for the standard estimator, and we

marked these with an asterisk so they can be easily identified.

Note that for v = 0 or 1, the reduction in the average half-width is greatest when w = 4. The

reason for this seems to be two-fold. First, w = 4 has the shortest T2-cycles and so this choice of w

yields many T2-cycles to permute, which agrees with the suggestion in Section 6. Secondly, in the

fixed-sample setting, we see that by (3), the amount of reduction obtained in the (finite-sample)

variance is E
[
Var(h( �X ′

m) | �Xm)
]
, which means that one obtains a large reduction in the (finite-

sample) variance when the value of the sample performance varies a lot over the different permuted
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Average HW Coverage
w v = 0 v = 1 v = 4 v = 0 v = 1 v = 4
0 3.30 * 1.48 0.57 0.824 * 0.878 0.907
1 1.46 1.48 * 0.56 0.865 0.878 * 0.904
2 0.90 0.90 0.55 0.864 0.908 0.901
3 0.65 0.65 0.54 0.848 0.913 0.914
4 0.57 0.56 0.57 * 0.854 0.898 0.917 *
5 0.64 0.61 0.54 0.874 0.906 0.911
6 0.87 0.78 0.55 0.867 0.898 0.910
7 1.38 1.07 0.56 0.858 0.911 0.910
8 2.47 1.38 0.57 0.874 0.893 0.910

Table 2: 200 T1-cycles when v = 0.

paths. This suggests that a similar situation may also hold when considering the asymptotic

variance. When w = 4 in our Ehrenfest model, there is a lot of variability in the paths of the

T2-cycles, and so permuting them leads to quite different overall sample paths.

When v = 0, the reduction in the average half-width is about a factor of 6 for w = 4. When

v = 4, the reduction is relatively small. State 4 is the best return state in the sense of minimizing

the asymptotic variance associated with the standard estimator of σ2
f . Therefore, it appears that

the permuted estimator is a significant improvement over the standard estimator if the standard

estimator is based on a relatively “bad” return state. However, if one is able to choose a near-

optimal return state to begin with, permuting yields a modest improvement. (Unfortunately, there

seem to be no reliable rules for choosing a priori a good return state.) Comparing across the three

values of v, we see that the minimum average half-width over the different choices of w does not

change much across the different values of v, suggesting that it may be possible to compensate for

a bad choice of return state by an appropriate choice of w.

Now we examine the coverages of the 90% confidence intervals. For the shorter run length

(Table 1), there seems to be a slight degradation in the coverage when v = 0 for the choice of w

that minimizes the average half-width (i.e., w = 4). However, for the longer run length (Table 2),

all of the coverages are close to the nominal level. The reason for this may be as follows. The

permuted estimators have smaller asymptotic variance, and so the confidence intervals based on

the permuted estimators are shorter on average than those based on the standard estimator. The

confidence intervals are centered roughly at the same location since the point estimators have the

same mean (see (2)), but since the point estimators are biased when the number m of T1-cycles
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is finite, the larger width of the interval based on the standard estimator somewhat compensates

for the bias. This leads to slightly better coverage for the standard intervals in the small-sample

context. As m → ∞, the bias vanishes, and so asymptotically the relative advantage of the standard

estimator disappears.

8 Appendix

Lemma 4 Assume that E
[
Y (|g|; 1)4] < ∞. Then |µi| < ∞ and |σi,j | < ∞ for all i, j = 1, 2, . . . , 8.

Proof. Assume first that g is non-negative; then so are the Zi(k). Note that

Y (1)2 = Z1(1) + Z2(1) + Z6(1)2 + Z3(1) + 2Z4(1)Z6(1) + 2Z4(1)Z5(1) + 2Z6(1)Z5(1). (17)

Hence, assuming that E[Y (1)4] < ∞ implies that E[Z1(1)2], E[Z2(1)2], E[Z3(1)2], E[Z6(1)4],

and E[Z4(1)2Z5(1)2] are all finite. Note that E[Z8(1)2] = µ8 = P{T2(0) < T1(1)} < ∞. Also,

we must have that µ8 > 0. (If this were not the case, then P{T2(0) > T1(1)} = 1 implies

that P{T2(0) > T1(k)} = 1 for k ≥ 0 by the regenerative property. It then would follow that

P{T2(0) = ∞} = 1, and so T2 would not be a sequence of finite regeneration points, contradicting

our assumption.) Observe that given Z8(1) = 1, Z4(1) and Z5(1) are (conditionally) independent

since (X,T2) is a regenerative process. Thus,

E[Z4(1)2Z5(1)2] = E[Z4(1)2Z5(1)2|Z8(1) = 1]P{Z8(1) = 1}

= E[Z4(1)2|Z8(1) = 1]E[Z5(1)2|Z8(1) = 1]P{Z8(1) = 1} =
E[Z4(1)2]E[Z5(1)2]

P{Z8(1) = 1} , (18)

and so both E[Z4(1)2] and E[Z5(1)2] are finite since µ8 > 0. In addition, E[Z6(1)4] < ∞ implies

that E[Z7(1)2] < ∞ since Z6(1)4 =
(
Z7(1) +

∑
j,l∈B1

j �=l

Y22(j)Y22(l)
)2

. Hence, E[Zi(1)2] < ∞ for

i = 1, 2, . . . , 8, which implies that all of the µi < ∞. Moreover, it follows that E[Zi(1)Zj(1)] ≤(
E[Zi(1)2]E[Zj(1)2]

)1/2
< ∞ from the Cauchy-Schwarz inequality, and so |σi,j | < ∞ for all i and

j. If g is not non-negative, replace g by its absolute value in the previous calculations, and use the

assumption that E
[
Y (|g|; 1)4] < ∞ to get the finiteness of the moments.

Lemma 5 fα(µ) = α.
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Proof. Note that by (17),

α = µ1 + µ2 + E[Z6(1)2] + µ3 + 2E[Z4(1)Z6(1)] + 2E[Z4(1)Z5(1)] + 2E[Z6(1)Z5(1)].

Also, we have that

fα(µ) = µ1 + µ2 + µ3 +
2µ4µ5

µ8
+ µ7 +

2µ6(µ4 + µ5)
µ8

+
2µ2

6

µ8
.

Arguing as in (18) we can prove that E[Z4(1)Z5(1)] = µ4µ5/µ8, E[Z4(1)Z6(1)] = µ4µ6/µ8, and

E[Z5(1)Z6(1)] = µ5µ6/µ8, and so it remains to establish that E[Z6(1)2] = µ7 + 2µ2
6/µ8. By an

equality analogous to (8), this is equivalent to proving that

E

 ∑
j,l∈B1

j �=l

Y22(j)Y22(l)

 =
2µ2

6

µ8
. (19)

Let K = |B1|, and given Z8(1) = 1, K follows a geometric distribution with parameter ρ =

P{T1(1) < T2(1) |Z8(1) = 1}. Also, let φ0 = E[Y22(1) |Z8(1) = 1], and note that given K and

Z8(1) = 1, Y22(j) and Y22(l) are independent for j 
= l with j, l ∈ B1. Then the left-hand side of

(19) satisfies

E

 ∑
j,l∈B1

j �=l

Y22(j)Y22(l)

 = E

E
 ∑

j,l∈B1
j �=l

Y22(j)Y22(l)

∣∣∣∣∣∣∣ K,Z8(1) = 1


∣∣∣∣∣∣∣ Z8(1) = 1

µ8

= E
[
K(K − 1)φ2

0

∣∣∣ Z8(1) = 1
]
µ8 = 2µ8φ

2
0

(1 − ρ)2

ρ2
. (20)

We can similarly show that 2µ2
6/µ8 = 2µ8φ

2
0(1 − ρ)2/ρ2, thereby establishing (19), and hence, we

have proved that fα(µ) = α.

Lemma 6 Assume that E
[
D(|g|, 1)2] < ∞ and P{TF < T1(1)} > 0. Then |νi| < ∞ and |Ψi,j | <

∞ for all i, j = 1, 2, . . . , 10.

Proof. Note that D(1) = W1(1) +W2(1) +A1(1) +A2(1), where

A1(1) = (1 − I12(1))
∑
l∈B1

D22(l)
∏

j∈B1, j<l

(1 − I22(j)),

and

A2(1) = W3(1)W6(1)
∏

l∈B1

(1 − I22(l)).
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Assume first that g is non-negative; then so are the Wi(m). Hence, assuming that E[D(|g|, 1)2] <
∞ implies that E[W1(1)2], E[W2(1)2], E[A1(1)2], and E[A2(1)2] are all finite. Also, note that

E[W4(1)2], E[W5(1)2], E[W6(1)2], and E[W10(1)2] are all trivially finite, and as we argued in the

proof of Lemma 4, we must have that ν10 = P{T2(0) < T1(1)} > 0.

We now prove that E[W8(1)2] < ∞. We previously defined K = |B1|, and given W10(1) = 1, K

follows a geometric distribution with parameter ρ = P{T1(1) < T2(1)|T2(0) < T1(1)}. First, observe

that if ρ = 1, then W8(1) = 0 a.s., and the result trivially holds. Now assume ρ < 1. Consider A1(1),

and note that given W10(1) = 1, the quantities (1− I21(1)) and
∑

l∈B1
D22(l)

∏
j∈B1,j<l(1− I22(j))

are independent. Therefore, applying arguments similar to those used to prove (18), we get that

E
[
A1(1)2

]
= E [1 − I21(1)] φ / ν10, where φ ≡ E

[(∑
l∈B1

D22(l)
∏

j∈B1, j<l(1 − I22(j))
)2
]
. Now

E[A1(1)2] < ∞ implies that φ < ∞. Suppose that B1 = {j1, j2, . . . , jK}, where j1 < j2 < · · · < jK .

Then

φ = E
[
D22(j1)2

∣∣∣K ≥ 1
]
P{K ≥ 1} + E


 ∑

l∈B1, l �=j1

D22(l)
∏

j∈B1, j<l

(1 − I22(j))

2


+ E

D22(j1)

 ∑
l∈B1, l �=j1

D22(l)
∏

j∈B1, j<l

(1 − I22(j))

 .
Moreover, P{K ≥ 1} = P{K ≥ 1|W10(1) = 1}ν10 = (1 − ρ)ν10 > 0 since ν10 > 0 and we assumed

that ρ < 1. Then φ < ∞ implies that E
[
D22(j1)2|K ≥ 1

]
< ∞. Now let Ci = D22(ji)I22(ji),

i = 1, 2, . . ., and it follows that φ2 ≡ E
[
C2

1 |K ≥ 1
]
< ∞ since C2

1 ≤ D22(j1)2. Consequently,

φ1 ≡ E [C1|K ≥ 1] < ∞. Also, given W10(1) = 1, the Ci, i = 1, 2, . . ., are i.i.d. and independent

of K. Hence, arguing as in (20), we get that E
[
W8(1)2

]
=

(
φ2ρ(1 − ρ) + 2φ2

1(1 − ρ)2
)
ν10/ρ

2 < ∞
since φ1 < ∞, φ2 < ∞, 0 < ρ < 1, and ν10 < ∞.

We can similarly establish that E[W3(1)2], E[W7(1)2], and E[W9(1)2] are all finite. Hence,

E[Wi(1)2] < ∞ for i = 1, 2, . . . , 10, which implies that all of the νi < ∞. Also, |Ψi,j | < ∞ for all i

and j, by the Cauchy-Schwarz inequality. If g is not non-negative, replace g by its absolute value

in the previous calculations, and use the assumption that E
[
D(|g|; 1)2] < ∞ to get the finiteness

of the moments.
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