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Abstract Quantiles are frequently used to assess risk in a wide spectrum of applica-
tion areas, such as finance, nuclear engineering, and service industries. This tutorial
discusses Monte Carlo simulation methods for estimating a quantile, also known as a
percentile or value-at-risk, where p of a distribution’s mass lies below its p-quantile.
We describe a general approach that is often followed to construct quantile estimators,
and show how it applies when employing naive Monte Carlo or variance-reduction
techniques. We review some large-sample properties of quantile estimators. We also
describe procedures for building a confidence interval for a quantile, which provides
a measure of the sampling error.

1 Introduction

Numerous application settings have adopted quantiles as a way of measuring risk.
For a fixed constant 0 < p < 1, the p-quantile of a continuous random variable is
a constant ξ such that p of the distribution’s mass lies below ξ . For example, the
median is the 0.5-quantile. In finance, a quantile is called a value-at-risk, and risk
managers commonly employ p-quantiles for p≈ 1 (e.g., p = 0.99 or p = 0.999) to
help determine capital levels needed to be able to cover future large losses with high
probability; e.g., see [33].

Nuclear engineers use 0.95-quantiles in probabilistic safety assessments (PSAs)
of nuclear power plants. PSAs are often performed with Monte Carlo, and the U.S.
Nuclear Regulatory Commission (NRC) further requires that a PSA accounts for the
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Monte Carlo sampling error; e.g., see [50], Section 3.2 of [49], and Section 24.9 of
[51]. This can be accomplished by providing a confidence interval for ξ .

Quantiles also arise as risk measures in service industries. For out-of-hospital
patient care, a 0.9-quantile is commonly employed to assess response times of
emergency vehicles and times to transport patients to hospitals [5]. In addition, [20]
examines the 0.9-quantile of customer waiting times at a call center.

This tutorial discusses various Monte Carlo methods for estimating a quantile.
Section 2 lays out the mathematical setting. In Section 3 we outline a general approach
for quantile estimation via Monte Carlo, and illustrate it for the special case of naive
Monte Carlo (NMC). We examine large-sample properties of quantile estimators in
Section 4. Section 5 shows how the basic procedure in Section 3 can also be used
when employing variance-reduction techniques (VRTs), which can produce quantile
estimators with smaller sampling error than when NMC is applied. We describe
different methods for constructing confidence intervals for ξ in Section 6.

2 Mathematical Framework

Consider the following example, which we will revisit throughout the paper to help
illustrate ideas and notation. The particular stochastic model in the example turns
out to be simple enough that it can actually be solved through a combination of
analytical and numerical methods, making Monte Carlo simulation unnecessary.
But the tractability allows us to compute exact quantiles, which are useful for our
numerical studies in Sections 5.7 and 6.4 comparing different Monte Carlo methods.
Larger, more complicated versions of the model are usually analytically intractable.

Example 1 (Stochastic activity network (SAN)). A contractor is preparing a bid to
work on a project, such as developing a software product, or constructing a building.
She wants to determine a time ξ to use as the bid’s promised completion date so that
there is a high probability of finishing the project by ξ to avoid incurring a penalty.
To try to figure out such a ξ , she builds a stochastic model of the project’s duration.

The project consists of d activities, numbered 1,2, . . . ,d. Certain activities must
be completed before others can start, e.g., building permits must be secured prior to
laying the foundation. Figure 1, which has been previously studied in [47, 29, 13, 15],
presents a directed graph that specifies the precedence constraints of a project with
d = 5 activities. The nodes in the graph represent particular epochs in time, and edges
denote activities. For a given node v, all activities corresponding to edges into v must
be completed before starting any of the activities for edges out of v. Hence, activity 1
must finish before beginning activities 2 and 3. Also, activity 5 can commence only
after activities 3 and 4 are done.

For each j = 1,2, . . . ,d, activity j has a random duration X j, which is the length
of edge j and has marginal cumulative distribution function (CDF) G j, where each
G j is an exponential distribution with mean 1; i.e., G j(x) = P(X j ≤ x) = 1− e−x for
x≥ 0, and G j(x) = 0 for x < 0. We further assume that X1,X2, . . . ,Xd are mutually
independent. The (random) time Y to complete the project is then the length of the
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Fig. 1 A stochastic activity network with d = 5 activities.

longest path from the source, which is the leftmost node in Figure 1, to the sink, the
rightmost node. The graph has r = 3 paths from source to sink,

P1 = {1,2}, P2 = {4,5}, P3 = {1,3,5}; (1)

e.g., path P3 consists of activities 1, 3, and 5. For each k = 1,2, . . . ,r, let Tk =

∑ j∈Pk
X j be the (random) length of path Pk. Thus,

Y = max
k=1,2,...,r

Tk = max(X1 +X2, X4 +X5, X1 +X3 +X5) (2)

represents the project’s completion time, and we denote its CDF by F . ut

More generally, consider a (complicated) stochastic model, and define P and E as
the probability measure and expectation operator, respectively, induced by the model.
Let Y be an ℜ-valued output of the model representing its random performance or
behavior, and define F as the CDF of Y , i.e.,

F(y) = P(Y ≤ y) = E[I(Y ≤ y)] for each y ∈ℜ, (3)

where I(·) denotes the indicator function, which takes value 1 (resp., 0) when its
argument is true (resp., false). For a fixed constant 0 < p < 1, define the p-quantile
ξ of F as the generalized inverse of F ; i.e.,

ξ = F−1(p)≡ inf{y : F(y)≥ p}. (4)

If F is continuous at ξ , then F(ξ ) = p, but F(ξ )≥ p in general.

Example 1 (continued). In her bid for the project, the contractor may specify the
0.95-quantile ξ as the promised completion date. Hence, according to the model, the
project will complete by time ξ with probability p = 0.95. ut

We assume that the complexity of the stochastic model prevents F from being
computed, but we can simulate the model using Monte Carlo to produce an output
Y ∼ F , where the notation ∼ means “is distributed as.” Thus, our goal is to use
Monte Carlo simulation to develop an estimator of ξ and also to provide a confidence
interval for ξ as a measure of the estimator’s statistical error..

A special case of our framework arises when the random variable Y has the form

Y = cY (U1,U2, . . . ,Ud)∼ F (5)
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for a given function cY : [0,1)d →ℜ, and U1,U2, . . . ,Ud are independent and identi-
cally distributed (i.i.d.) unif[0,1), where unif[0,1) denotes a (continuous) uniform
distribution on the interval [0,1). We can think of cY as a computer code that takes
U≡ (U1,U2, . . . ,Ud) as input, transforms it into a random vector having a specified
joint CDF with some (stochastic) dependence structure (independence being a special
case), performs computations using the random vector, and then finally outputs Y .
When Y satisfies (5), we can express its CDF F in (3) as

F(y) = P(cY (U)≤ y) = E[I(cY (U)≤ y)] =
∫

u∈[0,1)d
I(cY (u)≤ y)du

for any constant y ∈ℜ, which we will later exploit in Section 5.3 when considering
a VRT known as Latin hypercube sampling. For smooth integrands, computing a
d-dimensional integral when d is small (say no more than 4 or 5) can be more
efficiently handled through numerical quadrature techniques [14] rather than Monte
Carlo simulation. But when d is large or the integrand is not smooth, Monte Carlo
may be more attractive.

As we will later see in Section 5.4 when considering a VRT known as importance
sampling, it is sometimes more convenient to instead consider Y having the form

Y = c′Y (X1,X2, . . . ,Xd′)∼ F (6)

for a given function c′Y : ℜd′ →ℜ, and X = (X1,X2, . . . ,Xd′) is a random vector with
known joint CDF G from which we can generate observations. The joint CDF G
specifies a dependence structure (independence being a special case) for X, and
the marginal distributions of the components of X may differ. We can see that (5)
is a special case of (6) by taking d′ = d, and assuming that X1,X2, . . . ,Xd′ are i.i.d.
unif[0,1). When Y has the form in (6), the CDF F in (3) satisfies

F(y) = P(c′Y (X)≤ y) = E[I(c′Y (x)≤ y)] =
∫

x∈ℜd′
I(c′Y (x)≤ y)dG(x). (7)

Let G j be the marginal CDF of X j. In the special case when X1,X2, . . . ,Xd′ are
mutually independent under G and each G j has a density g j, we have that dG(x) =
∏

d′
j=1 g j(x j)dx j for x = (x1,x2, . . . ,xd′).

Example 1 (continued). For our SAN model in Figure 1 with Y in (2),

c′Y (X1,X2, . . . ,Xd′) = max(X1 +X2, X4 +X5, X1 +X3 +X5)

is the function c′Y in (6), where d′ = d = 5. To define the function cY in (5) for
this model, let U1,U2, . . . ,Ud be d = 5 i.i.d. unif[0,1) random variables. For each
activity j = 1,2, . . . ,d, we can use the inverse transform method (e.g., Section II.2a
of [4] or Section 2.2.1 of [22]) to convert U j ∼ unif[0,1) into X j ∼ G j by letting
X j = G−1

j (U j) =− ln(1−U j). Hence, for (u1,u2, . . . ,ud) ∈ [0,1)d ,
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cY (u1,u2, . . . ,ud) = max(G−1
1 (u1)+G−1

2 (u2), G−1
4 (u4)+G−1

5 (u5),

G−1
1 (u1)+G−1

3 (u3)+G−1
5 (u5)) (8)

specifies the function cY in (5) to generate Y ∼ F . ut

3 Quantile Point Estimation via Monte Carlo

As seen in (4), the p-quantile ξ is the (generalized) inverse of the true CDF F
evaluated at p. Thus, a common (but not the only) approach for devising a point
estimator for ξ follows a generic recipe.

Step 1. Use a Monte Carlo method to construct F̂n as an estimator of F , where
n denotes the computational budget, typically the number of times the
simulation model (e.g., a computer code as in (5)) is run.

Step 2. Compute ξ̂n = F̂−1
n (p) as an estimator of ξ .

How we accomplish Step 1 depends on the particular Monte Carlo method being
applied. Different methods will yield different CDF estimators, which in turn will
produce different quantile estimators in Step 2.

3.1 Naive Monte Carlo

We next illustrate how to accomplish the two steps when applying naive Monte
Carlo (NMC). Alternatively called crude Monte Carlo, standard simulation, and
simple random sampling, NMC simply employs Monte Carlo without applying any
variance-reduction technique. Note that (3) suggests estimating F(y) by averaging
i.i.d. copies of I(Y ≤ y). To do this, generate Y1,Y2, . . . ,Yn as n i.i.d. copies of Y ∼ F .
We then compute the NMC estimator F̂NMC,n of the CDF F as

F̂NMC,n(y) =
1
n

n

∑
i=1

I(Yi ≤ y), (9)

completing Step 1. For each y, F̂NMC,n(y) is an unbiased estimator of F(y) because

E[F̂NMC,n(y)] =
1
n

n

∑
i=1

E[I(Yi ≤ y)] =
1
n

n

∑
i=1

P(Yi ≤ y) = F(y) (10)

as each Yi ∼ F . Then applying Step 2 yields the NMC quantile estimator

ξ̂NMC,n = F̂−1
NMC,n(p). (11)
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We can compute ξ̂NMC,n in (11) via order statistics. Let Y1:n ≤ Y2:n ≤ ·· · ≤ Yn:n be
the sorted values of the sample Y1,Y2, . . . ,Yn, so Yi:n is the ith smallest value. Then we
have that ξ̂NMC,n = Ydnpe:n, where d·e is the ceiling (or round-up) function. Although
(10) shows that the CDF estimator is unbiased, the p-quantile estimator typically has
bias; e.g., see Proposition 2 of [6].

In the special case of (5), we can obtain n i.i.d. copies of Y ∼ F by generating
n×d i.i.d. unif[0,1) random numbers Ui, j, i = 1,2, . . . ,n, j = 1,2, . . . ,d, which we
arrange in an n×d grid:

U1,1 U1,2 . . . U1,d
U2,1 U2,2 . . . U2,d

...
...

. . .
...

Un,1 Un,2 . . . Un,d

. (12)

Now apply the function cY in (5) to each row to get

Y1 = cY (U1,1, U1,2, . . . , U1,d),
Y2 = cY (U2,1, U2,2, . . . , U2,d),
...

...
...

...
. . .

...
Yn = cY (Un,1, Un,2, . . . , Un,d).

(13)

Because each row i of (12) has d independent unif[0,1) random numbers, we see
that Yi ∼ F by (5). Moreover, the independence of the rows of (12) ensures that
Y1,Y2, . . . ,Yn are also independent.

Example 1 (continued). To apply NMC to our SAN model, we employ cY from (8)
with d = 5 in (13) to obtain Y1,Y2, . . . ,Yn, which are used to compute the NMC CDF
estimator F̂NMC,n in (9) and the NMC p-quantile estimator ξ̂NMC,n in (11). ut

We have considered the NMC p-quantile estimator ξ̂NMC,n in (11) obtained by
inverting the CDF estimator F̂NMC,n in (9), but other NMC quantile estimators have
also been developed. For example, we may replace the step function F̂NMC,n with
a linearly interpolated version, and [30] examines several such variants. Although
these alternative quantile estimators may behave differently when the sample size n
is small, they typically share the same large-sample properties (to be discussed in
Section 4) as (11).

3.2 A General Approach to Construct a CDF Estimator

In addition to NMC, there are other ways of accomplishing Steps 1 and 2 of Section 3
to obtain CDF and quantile estimators. Constructing another CDF estimator often
entails deriving and exploiting an alternative representation for F . To do this, we
may perform Step 1 through the following:

Step 1a. Identify a random variable J(y), whose value depends on y, such that
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E[J(y)] = F(y) for each y ∈ℜ. (14)

Step 1b. Construct the estimator F̂n(y) of F(y) as the sample average of n identically
distributed copies of J(y), possibly with some adjustments.

Note that we built the NMC CDF estimator F̂NMC,n in (9) by following Steps 1a and
1b, with J(y) = I(Y ≤ y), which satisfies (14) by (3).

Section 5 will review other Monte Carlo methods for performing Steps 1 and 2 of
Section 3. Many (but not all) of the approaches handle Step 1 via Steps 1a and 1b.
The n copies of J(y) in Step 1b are often generated independently, but certain Monte
Carlo methods sample them in a dependent manner; e.g., see Section 5.3.

4 Large-Sample Properties of Quantile Estimators

Although ξ̂n is often not a sample average, it still typically obeys a central limit
theorem (CLT) as the sample size n grows large. To establish this, let f be the
derivative (when it exists) of F . Throughout the rest of the paper, whenever examining
large-sample properties, we assume that f (ξ )> 0, which ensures that F(ξ ) = p and
that y = ξ is the unique root of the equation F(y) = p. Under various conditions that
depend on the Monte Carlo method used to construct the CDF estimator F̂n in Step 1
of Section 3, the corresponding p-quantile estimator ξ̂n = F̂−1

n (p) satisfies a CLT

√
n[ξ̂n−ξ ]⇒ N(0,τ2), as n→ ∞, (15)

where⇒ denotes convergence in distribution (e.g., see Section 25 of [9]), N(a,b2)
represents a normal random variable with mean a and variance b2, and the asymptotic
variance τ2 has the form

τ
2 =

ψ2

f 2(ξ )
. (16)

The numerator ψ2 on the right side of (16) is the asymptotic variance in the CLT for
the CDF estimator at ξ :

√
n[F̂n(ξ )− p]⇒ N(0,ψ2), as n→ ∞, (17)

where p = F(ξ ) because f (ξ )> 0. The CLT (17) typically holds (under appropriate
conditions) because F̂n(ξ ) is often a sample average, e.g., as in (9) for NMC.

There are various ways to prove the CLT (15); e.g., see Sections 2.3.3 and 2.5 of
[46] for NMC. A particularly insightful approach exploits a Bahadur representation
[8], which shows for large n, a quantile estimator ξ̂n = F̂−1

n (p) is well approximated
by a linear transformation of its corresponding CDF estimator F̂n at ξ :

ξ̂n ≈ ξ +
p− F̂n(ξ )

f (ξ )
. (18)
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To heuristically justify this, note that F̂n(y)≈ F(y) for each y when n is large, so

F̂n(ξ̂n)− F̂n(ξ )≈ F(ξ̂n)−F(ξ )≈ f (ξ )[ξ̂n−ξ ] (19)

by a first-order Taylor approximation. Also, ξ̂n = F̂−1
n (p) implies F̂n(ξ̂n)≈ p, which

we put into (19) and rearrange to finally get (18).
Bahadur [8] makes rigorous the heuristic argument for the NMC setting of Sec-

tion 3.1. Specifically, if F is twice differentiable at ξ (with f (ξ )> 0), then

ξ̂n = ξ +
p− F̂n(ξ )

f (ξ )
+Rn (20)

for ξ̂n = ξ̂NMC,n from (11), such that with probability 1,

Rn = O(n−3/4(log logn)3/4), as n→ ∞. (21)

(The statement that “with probability 1, An = O(h(n)) as n→ ∞” for some function
h(n) means that there exists an event Ω0 such that P(Ω0) = 1 and for each outcome
ω ∈Ω0, there exists a constant K(ω) such that |An(ω)| ≤ K(ω)h(n) for all n suffi-
ciently large.) (The almost-sure rate at which Rn vanishes in (21) is sharper than what
[8] originally proved; see Section 2.5 of [46] for details.) Assuming only f (ξ )> 0,
[21] proves a weaker result,

√
nRn⇒ 0 as n→ ∞, (22)

which is sufficient for most applications. Note that (21) implies (22), and we call
(20) combined with (21) (resp., (22)) a strong (resp., weak) Bahadur representation.
The paper [13] provides a general framework for establishing a weak Bahadur
representation, which may be verified for different variance-reduction techniques.

A (strong or weak) Bahadur representation ensures that ξ̂n obeys a CLT. To see
why, rearrange (20) and scale by

√
n to get

√
n
[
ξ̂n−ξ

]
=

√
n

f (ξ )

[
p− F̂n(ξ )

]
+
√

nRn. (23)

As F̂n(ξ ) is typically a sample average (e.g., (9)), it satisfies the CLT in (17). The
second term on the right side of (23) vanishes weakly (resp., strongly) by (22) (resp.,
(21)), so Slutsky’s theorem (e.g., Theorem 1.5.4 of [46]) verifies the CLT in (15).

When we apply Steps 1 and 2 in Section 3 to obtain ξ̂n = F̂−1
n (p), (23) clarifies the

reason the asymptotic variance τ2 in the CLT (15) for ξ̂n has the ratio form ψ2/ f 2(ξ )
in (16). The numerator ψ2 arises from the CLT in (17) for the CDF estimator F̂n at
ξ , so ψ2 is determined by the particular Monte Carlo method used to construct F̂n.
For NMC, the CLT (17) uses F̂NMC,n(ξ ) from (9), which averages i.i.d. copies of
I(Y ≤ ξ ), and the numerator in (16) is then

ψ
2
NMC = Var[I(Y ≤ ξ )] = p(1− p), (24)
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with Var the variance operator. But the denominator f 2(ξ ) in (16) is the same for
each method.

5 Variance-Reduction Techniques for Quantile Estimation

Section 3.1 showed how to construct a quantile estimator when employing NMC. We
next illustrate how the general approach of quantile estimation described in Section 3
and Subsection 3.2 can be applied for other Monte Carlo methods using VRTs.

5.1 Control Variates

Suppose that along with the response Y , the simulation model also outputs another
random variable V whose mean µV = E[V ] is known. The method of control variates
(CV) exploits this additional information to produce an estimator with typically
reduced variance compared to its NMC counterpart. Section V.2 of [4] and Section 4.1
of [22] review CV for estimating a mean, and [29, 27, 13] apply this approach to
estimate the CDF F , which is inverted to obtain an estimator of the p-quantile ξ .

When Y has the form in (5), we assume that the control variate V is generated by

V = cV (U1,U2, . . . ,Ud) (25)

for some function cV : [0,1)d →ℜ, where again we require that µV = E[V ] is known.
Because the inputs U1,U2, . . . ,Ud are the same in (25) and (5), V and Y are typically
dependent. As will be later seen in (35), the CV method works best when V is
strongly (positively or negatively) correlated with I(Y ≤ ξ ).

Example 1 (continued). Figure 1 has r = 3 paths from source to sink in (1). Of those,
the length T3 = X1 +X3 +X5 of path P3 has the largest mean. We then choose the
CV as V = I(T3 ≤ ζ ), where ζ is the p-quantile of the CDF G̃3 of T3. As X1,X3,X5

are i.i.d. exponential with mean 1, the CDF G̃3 is an Erlang with shape parameter
3 and scale parameter 1; i.e., G̃3(x) = 1− (1+ x+ x2)e−x for x ≥ 0. We can then
compute ζ = G̃−1

3 (p), and µV = p. Hence,

cV (U1,U2, . . . ,Ud) = I(G−1
1 (U1)+G−1

3 (U3)+G−1
5 (U5)≤ ζ )

is the function cV in (25). ut

To design a CDF estimator when applying CV, we can follow the approach
described in Section 3. For any constant β ∈ℜ, note that

F(y) = E[I(Y ≤ y)+β (V −µV )] (26)

Page:9 job:qtut-r1 macro:svmult.cls date/time:23-Sep-2019/14:28



10 Hui Dong and Marvin K. Nakayama

as E[V ] = µV . Thus, take J(y) = I(Y ≤ y)+β (V − µV ) in Step 1a of Section 3.2,
and Step 1b suggests estimating F(y) by averaging copies of I(Y ≤ y)+β (V −µV ).
Specifically, let (Yi,Vi), i = 1,2, . . . ,n, be i.i.d. copies of (Y,V ), and define

F̂ ′CV,β ,n(y) =
1
n

n

∑
i=1

[I(Yi ≤ y)−β (Vi−µV )] (27)

= F̂NMC,n(y)−β (µ̂V,n−µV ), (28)

where F̂NMC,n(y) is the NMC CDF estimator in (9), and µ̂V,n = (1/n)∑
n
i=1 Vi. For

each y and β , F̂ ′CV,β ,n(y) is an unbiased estimator of F(y) by (26) and (27).
Although the choice of β does not affect the mean of F̂ ′CV,β ,n(y) by (26), it does

have an impact on its variance, which by (27) equals

Var[F̂ ′CV,β ,n(y)] =
1
n

Var
[
I(Y ≤ y)−β (V −µV )

]
=

1
n

(
F(y)[1−F(y)]+β

2Var[V ]−2βCov[I(Y ≤ y),V ]
)
, (29)

where Cov denotes the covariance operator. As (29) is a quadratic function in β , we
can easily find the value β = β ∗y minimizing (29) as

β
∗
y =

Cov[I(Y ≤ y),V ]

Var[V ]
=

E[I(Y ≤ y)V ]−E[I(Y ≤ y)]E[V ]

E[(V −µV )2]
. (30)

The values of Var[V ] and Cov[I(Y ≤ y),V ] may be unknown, so we estimate them
from our data (Yi,Vi), i = 1,2, . . . ,n. We then arrive at an estimator for β ∗y in (30) as

β̂
∗
y,n =

[(1/n)∑
n
i=1 I(Yi ≤ y)Vi]− F̂NMC,n(y)µ̂V,n

(1/n)∑
n
i=1(Vi− µ̂V,n)2 , (31)

which uses F̂NMC,n(y) to estimate E[I(Y ≤ y)] = F(y). Replacing β in (28) with the
estimator β̂ ∗y,n of its optimal value leads to the CV estimator of F(y) as

F̂CV,n(y) = F̂NMC,n(y)− β̂
∗
y,n(µ̂V,n−µV ). (32)

For any constant β , (26) ensures that F̂ ′CV,β ,n(y) in (27) is an unbiased estimator
of F(y) for each y ∈ ℜ, but the estimator F̂CV,n(y) typically no longer enjoys this
property as β̂ ∗y,n and µ̂V,n are dependent. We finally obtain the CV p-quantile estimator

ξ̂CV,n = F̂−1
CV,n(p). (33)

Computing the inverse in (33) appears to be complicated by the fact that the
estimator β̂ ∗y,n in (31) of the optimal β ∗y depends on y. However, [27] derives an
algebraically equivalent representation for F̂CV,n(y) that avoids this complication. It
turns out that we can rewrite the CV CDF estimator in (32) as
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A Tutorial on Quantile Estimation via Monte Carlo 11

F̂CV,n(y) =
n

∑
i=1

WiI(Yi ≤ y) with Wi =
1
n
+

(µ̂V,n−Vi)(µ̂V,n−µV )

∑
n
`=1(V`− µ̂V,n)2 , (34)

which satisfies ∑
n
i=1 Wi = 1. While it is possible for Wi < 0, [27] notes it is unlikely.

Because of (34), we can view F̂CV,n(y) as a weighted average of the I(Yi ≤ y).
The weights Wi reduce to a simple form when the control V = I(Ṽ ≤ ζ ), where

Ṽ is an auxiliary random variable, and ζ is the (known) p-quantile of the CDF of
Ṽ . (This is the setting of Example 1, in which Ṽ = T3.) Let (Yi,Ṽi), i = 1,2, . . . ,n, be
i.i.d. copies of (Y,Ṽ ), and define Vi = I(Ṽi ≤ ζ ). Also, let M = ∑

n
i=1 Vi. Then each

weight becomes Wi = p/M if Vi = 1, and Wi = (1− p)/(n−M) if Vi = 0.
The key point of the representation in (34) is that each Wi does not depend on

the argument y at which the CDF estimator F̂CV,n is evaluated, simplifying the
computation of its inverse. Specifically, let Yi:n be the ith smallest value among
Y1,Y2, . . . ,Yn, and let Wi::n correspond to Yi:n. Then the CV p-quantile estimator in
(33) satisfies ξ̂CV,n = Yip:n, where ip = min{k : ∑

k
i=1 Wi::n ≥ p}.

When 0 < Var[V ] < ∞, the CV p-quantile estimator ξ̂CV,n in (33) satisfies the
CLT in (15), where ψ2 in (16) is given by

ψ
2
CV = p(1− p)− (Cov[I(Y ≤ ξ ),V ])2

Var[V ]
= (1−ρ

2)p(1− p), (35)

and ρ = Cov[I(Y ≤ ξ ),V ]/
√

Var[I(Y ≤ ξ )]Var[V ] is the (Pearson) correlation co-
efficient of I(Y ≤ ξ ) and V ; see [27, 13]. Thus, (35) shows that the more strongly
(negatively or positively) correlated the CV V and I(Y ≤ ξ ) are, the smaller the
asymptotic variance of the CV p-quantile estimator is, by (16). Also, [13] establishes
that ξ̂CV,n satisfies a weak Bahadur representation, as in (20) and (22).

We have developed the CV method when there is a single control V . But the idea
extends to multiple controls V (1),V (2), . . . ,V (m), in which case the CDF estimator
corresponds to a linear-regression estimator on the multiple CVs; see [27] for details.
Also, rather than following the framework in Section 3 of constructing a p-quantile
estimator as ξ̂n = F̂−1

n (p), [44, 29, 27] consider an alternative CV estimator ξ̂ ′CV,n ≡
ξ̂NMC,n−β (ζ̂NMC,n− ζ ), where ζ̂NMC,n is the NMC estimator of the p-quantile ζ

(assumed known) of the CDF of a random variable Ṽ (e.g., Ṽ = T3 in Example 1).

5.2 Stratified Sampling

Stratified sampling (SS) partitions the sample space into a finite number of subsets,
known as strata, and allocates a fixed fraction of the overall sample size to sample
from each stratum. Section 4.3 of [22] provides an overview of SS to estimate a
mean, and [23, 12, 13] apply SS to estimate a quantile.
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12 Hui Dong and Marvin K. Nakayama

One way to partition the sample space for SS, as developed in [23], is as follows.
Let S be an auxiliary random variable that is generated at the same time as the output
Y . When Y has the form in (5), we assume that S is computed as

S = cS(U1,U2, . . . ,Ud) (36)

for some function cS : [0,1)d →ℜ, where U1,U2, . . . ,Ud are the same uniforms used
to generate Y in (5).

We next use S as a stratification variable to partition the sample space of (Y,S)
by splitting the support of S into t ≥ 1 disjoint subsets. Let A be the support of S,
so P(S ∈A ) = 1. We then partition A = ∪t

s=1A〈s〉 for some user-specified integer
t ≥ 1, where A〈s〉∩A〈s′〉 = /0 for s 6= s′. For each s = 1,2, . . . , t, let λ〈s〉 =P(S∈A〈s〉).
The law of total probability implies

F(y) = P(Y ≤ y) =
t

∑
s=1

P(Y ≤ y,S ∈A〈s〉)

=
t

∑
s=1

P(S ∈A〈s〉)P(Y ≤ y | S ∈A〈s〉) =
t

∑
s=1

λ〈s〉F〈s〉(y), (37)

where F〈s〉(y) ≡ P(Y ≤ y | S ∈A〈s〉). In (37), λ = (λ〈s〉 : s = 1,2, . . . , t) is assumed
known, but we need to estimate each F〈s〉(y). We further assume that we have a way of
sampling Y〈s〉 ∼ F〈s〉. A simple (but not necessarily the most efficient) way is through
rejection sampling: generate (Y,S), and accept (resp., reject) Y as an observation
from F〈s〉 if S ∈A〈s〉 (resp., if S 6∈A〈s〉).

To construct our SS estimator of F , we define γ = (γ〈s〉 : s = 1,2, . . . , t) as a vector
of positive constants satisfying ∑

t
s=1 γ〈s〉 = 1. Then for our overall sample size n, we

allocate a portion n〈s〉 ≡ γ〈s〉n to estimate F〈s〉 for stratum index s, where we assume
that each n〈s〉 is integer-valued, so that ∑

t
s=1 n〈s〉 = n. For each s = 1,2, . . . , t, let Y〈s〉,i,

i = 1,2, . . . ,n〈s〉, be i.i.d. observations from F〈s〉, so our estimator of F〈s〉 is given by

F̂〈s〉,γ,n(y) =
1

n〈s〉

n〈s〉

∑
i=1

I(Y〈s〉,i ≤ y). (38)

Replacing each F〈s〉(y) in (37) by its estimator F̂〈s〉,γ,n(y) gives

F̂SS,γ,n(y) =
t

∑
s=1

λ〈s〉F̂〈s〉,γ,n(y) (39)

as the SS estimator of F . Inverting F̂SS,γ,n leads to the SS p-quantile estimator

ξ̂SS,γ,n = F̂−1
SS,γ,n(p). (40)

While (39) and (40) follow the general approach of Steps 1 and 2 of Section 3, the
way we constructed (39) does not exactly fit into the scheme of Steps 1a and 1b of
Section 3.2, although the estimator F̂〈s〉,γ,n(y) in (38) applies the same idea.
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A Tutorial on Quantile Estimation via Monte Carlo 13

We can compute ξ̂SS,γ,n in (40) as follows. Let Dk =Y〈s〉,i for k = ∑
s−1
`=1 n〈`〉+ i, and

let W ′k = λ〈s〉/n〈s〉, which satisfies ∑
n
k=1 W ′k = 1. Next define D1:n ≤D2:n ≤ ·· · ≤Dn:n

as the order statistics of D1,D2, . . . ,Dn, and let W ′i::n be the W ′k associated with Di:n.
Then we have that ξ̂SS,γ,n = Di′p:n for i′p = min{` : ∑

`
i=1 W ′i::n ≥ p}.

Example 1 (continued). Let the stratification variable in (36) be

S = X1 +X3 +X5 = G−1
1 (U1)+G−1

3 (U3)+G−1
5 (U5)≡ cS(U1,U2, . . . ,U5), (41)

the (random) length of the path P3 in (1), which has largest expectation among
all paths in (1). As in Section 5.1, the CDF G̃S of S is then an Erlang with shape
parameter 3 and scale parameter 1. One way of partitioning the support A of S into
t ≥ 1 intervals takes A〈s〉 = [G̃−1

S ((s−1)/t), G̃−1
S (s/t)) for each s = 1,2, . . . , t.

As in [23] we can use a “bin tossing” approach to sample the Y〈s〉,i, s = 1,2, . . . , t,
i = 1,2, . . . ,n〈s〉. In one run, generate U1,U2, . . . ,U5 as i.i.d. unif[0,1) random num-
bers, and compute Y = cY (U1,U2, . . . ,U5) for cY in (8) and S = cS(U1,U2, . . . ,U5)
for cS in (41). If S ∈A〈s〉, then use Y as an observation from the stratum with index
s. Keep independently sampling (U1,U2, . . . ,U5) and computing (Y,S) until each
stratum index s has n〈s〉 observations, discarding any extras in a stratum. ut

The SS p-quantile estimator ξ̂SS,γ,n in (40) satisfies the CLT in (15) with

ψ
2
SS,γ =

t

∑
s=1

λ 2
〈s〉

γ〈s〉
F〈s〉(ξ )[1−F〈s〉(ξ )] (42)

in (16); see [23, 12, 13]. Also, [13] shows that ξ̂CV,n satisfies a weak Bahadur
representation, as in (20) and (22). The value of ψ2

SS,γ depends on how the user
specifies the sampling-allocation parameter γ . Setting γ = λ , known as the pro-
portional allocation, ensures that ψ2

SS,λ ≤ ψ2
NMC, so the proportional allocation

guarantees no greater asymptotic variance than NMC. The optimal value of γ to
minimize ψ2

SS,γ is γ∗ = (γ∗〈s〉 : s = 1,2, . . . , t) with γ∗〈s〉 = κ〈s〉/(∑
t
s′=1 κ〈s′〉), where

κ〈s〉 = λ〈s〉(F〈s〉(ξ )[1−F〈s〉(ξ )])1/2; e.g., see p. 217 of [23] and [12]. Although the
κ〈s〉 are unknown, [12] employs pilot runs to estimate them, which are then used to
estimate γ∗, and then performs additional runs with the estimated γ∗.

5.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) can be thought of as an efficient way of imple-
menting SS in high dimensions. Section 5.4 of [22] provides an overview of LHS to
estimate a mean, and [6, 31, 15, 17, 25, 38] develop LHS for quantile estimation.

To motivate how we apply LHS to estimate ξ , recall that for NMC, (10) shows
that F̂NMC,n(y) in (9) is an unbiased estimator of F(y) for each y. While NMC uses
a sample Y1,Y2, . . . ,Yn that are i.i.d. with CDF F , (10) still holds if we replace the
sample with Y ∗1 ,Y

∗
2 , . . . ,Y

∗
n that are dependent, with each Y ∗i ∼ F . Moreover, as
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14 Hui Dong and Marvin K. Nakayama

Var
[ n

∑
i=1

I(Y ∗i ≤ y)
]
=

n

∑
i=1

Var[I(Y ∗i ≤ y)]+2 ∑
1≤i< j≤n

Cov[I(Y ∗i ≤ y), I(Y ∗j ≤ y)],

if I(Y ∗i ≤ y) and I(Y ∗j ≤ y) are negatively correlated for each i 6= j, then the average
of the I(Y ∗i ≤ y) will have lower variance than the average of the I(Yi ≤ y). We next
show for the setting of (5) how LHS samples the Y ∗i ∼ F in a dependent manner.

Recall that d is the number of uniform inputs to cY in (5). For each j = 1,2, . . . ,d,
let π j = (π j(1),π j(2), . . . ,π j(n)) be a uniform random permutation of (1,2, . . . ,n),
where π j(i) denotes the number in {1,2, . . . ,n} to which i maps. Thus, π j equals
one of the particular n! permutations with probability 1/n!. Let π1,π2, . . . ,πd , be d
mutually independent permutations, and also independent of the n×d grid of i.i.d.
unif[0,1) random numbers Ui, j in (12). Then define

U∗i, j =
Ui, j +π j(i)−1

n
, for i = 1,2, . . . ,n, j = 1,2, . . . ,d. (43)

It is easy to show that each U∗i, j ∼ unif[0,1). Next arrange the U∗i, j in an n×d grid:

U∗1,1 U∗1,2 . . . U∗1,d
U∗2,1 U∗2,2 . . . U∗2,d

...
...

. . .
...

U∗n,1 U∗n,2 . . . U∗n,d

. (44)

Each column j in (44) depends on π j but not on any other permutation, making the d
columns independent because π1,π2, . . . ,πd are. But the rows in (44) are dependent
because for each column j, its entries U∗i, j, i = 1,2, . . . ,n, share the same permutation
π j. Now apply the function cY in (5) to each row of (44) to get

Y ∗1 = cY (U∗1,1, U∗1,2, . . . , U∗1,d),
Y ∗2 = cY (U∗2,1, U∗2,2, . . . , U∗2,d),

...
...

...
. . .

...
Y ∗n = cY (U∗n,1, U∗n,2, . . . , U∗n,d).

(45)

Because each row i of (44) has d i.i.d. unif[0,1) random numbers, we see that Y ∗i ∼ F
by (5). But Y ∗1 ,Y

∗
2 , . . . ,Y

∗
n are dependent because (44) has dependent rows.

Consider any column j = 1,2, . . . ,d, in (44), and an interval Ik,n = [(k−1)/n,k/n)
for any k = 1,2, . . . ,n. By (43), exactly one U∗i, j from column j lies in Ik,n. Thus, each
column j forms a stratified sample of size n of unif[0,1) random numbers, so LHS
simultaneously stratifies each input coordinate j = 1,2, . . . ,d.

We form the LHS estimator of the CDF F as

F̂LHS,n(y) =
1
n

n

∑
i=1

I(Y ∗i ≤ y) (46)

and the LHS p-quantile estimator as
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ξ̂LHS,n = F̂−1
LHS,n(p). (47)

We can compute (47) by ξ̂LHS,n = Y ∗dnpe:n, where Y ∗i:n is the ith smallest value among
Y ∗1 ,Y

∗
2 , . . . ,Y

∗
n in (45). Note that (46) and (47) fit into the framework of Section 3,

where Step 1 is implemented through Steps 1a and 1b of Section 3.2, with J(y) =
I(Y ≤ y). But in contrast to the other methods considered, Step 1b generates n
dependent copies of I(Y ≤ y) as I(Y ∗i ≤ y), i = 1,2, . . . ,n, where each Y ∗i ∼ F .

Example 1 (continued). To apply LHS to our SAN model, we employ cY from (8)
in (45) to obtain Y ∗1 ,Y

∗
2 , . . . ,Y

∗
n , which are then used in (46) and (47) to compute the

LHS CDF estimator F̂LHS,n and the LHS p-quantile estimator ξ̂LHS,n. ut

Under regularity conditions, [6] proves that the LHS p-quantile estimator ξ̂LHS,n
in (47) obeys the CLT (15), and gives the specific form of ψ2 = ψ2

LHS in (16). Also,
[16] shows that ξ̂LHS,n satisfies a weak Bahadur representation, as in (20) and (22).

5.4 Importance Sampling

Importance sampling (IS) is a variance-reduction technique that can be particularly
effective when studying rare events. The basic idea is to change the distributions driv-
ing the stochastic model to cause the rare event of interest to occur more frequently,
and then unbias the outputs by multiplying by a correction factor. Section V.1 and
Chapter VI of [4] and Section 4.6 of [22] provide overviews of IS to estimate a mean
or tail probability.

For IS quantile estimation [24, 23, 48, 13], it is more natural to consider Y having
the form in (6) rather than (5), i.e., Y = c′Y (X) for random vector X ∈ℜd′ with joint
CDF G. Let H be another joint CDF on ℜd′ such that G is absolutely continuous
with respect to H. For example, if G (resp., H) has a joint density function g (resp.,
h), then G is absolutely continuous with respect to H if g(x)> 0 implies h(x)> 0. In
general, let PG and EG (resp., PH and EH ) be the probability measure and expectation
operator when X∼ G (resp., X∼ H). The absolute continuity permits us to apply a
change of measure to express the tail distribution corresponding to (7) as

1−F(y) = PG(Y > y) = EG[I(c′Y (X)> y)] =
∫

x∈ℜd′
I(c′Y (x)> y)dG(x)

=
∫

x∈ℜd′
I(c′Y (x)> y)

dG(x)
dH(x)

dH(x) =
∫

x∈ℜd′
I(c′Y (x)> y)L(x)dH(x)

= EH [I(c′Y (X)> y)L(X)], (48)

where L(x) = dG(x)/dH(x) is the likelihood ratio or Radon-Nikodym deriva-
tive of G with respect to H; see Section 32 of [9]. In the special case when
X = (X1,X2, . . . ,Xd′) has mutually independent components under G (resp., H) with
each marginal CDF G j (resp., H j) of X j having a density function g j (resp., h j),
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the likelihood ratio becomes L(x) = ∏
d′
j=1 g j(x j)/h j(x j). By (48), we can obtain an

unbiased estimator of 1−F(y) by averaging i.i.d. copies of I(c′Y (X)> y)L(X), with
X∼ H. Specifically, let X1,X2, . . . ,Xn be i.i.d., with each Xi ∼ H. Then we get an
IS estimator of F as

F̂IS,n(y) = 1− 1
n

n

∑
i=1

I(c′Y (Xi)> y)L(Xi). (49)

An IS p-quantile estimator is then

ξ̂IS,n = F̂−1
IS,n(p). (50)

Note that (49) and (50) follow the general approach of Steps 1 and 2 of Section 3,
where (49) is obtained through Steps 1a and 1b of Section 3.2, with J(y) = 1−
I(c′Y (X)> y)L(X), which satisfies (14) by (48).

As shown in [24], we can compute ξ̂IS,n in (50) as follows. Let Yi = c′Y (Xi), and
define Yi:n as the ith smallest value among Y1,Y2, . . . ,Yn. Also, let Li::n = L(X j) for
X j corresponding to Yi:n. Then ξ̂IS,n = Yi′p:n for i′p = max{k : ∑

n
i=k Li::n ≤ (1− p)n}.

The key to effective application of IS is choosing an appropriate IS distribution
H for X so that the quantile estimator ξ̂IS,n has small variance. As seen in Section 4,
the asymptotic variance τ2 of the IS p-quantile estimator ξ̂IS,n is closely related to
the asymptotic variance ψ2 = ψ2

IS in the CLT (17) for F̂IS,n(ξ ). Let VarH denote the
variance operator when X∼ H, and as Xi, i = 1,2, . . . ,n, are i.i.d., we have that

VarH [F̂IS,n(ξ )] =
1
n

VarH [I(c′Y (X)> ξ )L(X)]≡ 1
n

ψ
2
IS. (51)

A “good” choice for H is problem specific, and a poorly designed H can actually
increase the variance (or even produce infinite variance). The papers [24, 23, 13]
discuss particular ways of selecting H in various problem settings.

Example 1 (continued). For a SAN as in Figure 1, [13] estimates the p-quantile
when p ≈ 1 via an IS scheme that combines ideas from [34] and [24]. Recall that
Figure 1 has r = 3 paths from source to sink, which are given in (1). When estimating
the SAN tail probability PG(Y > y) for large y, we want to choose H so that the
event {Y > y} occurs more frequently. To do this, [34] specifies H as a mixture
of r CDFs H(1),H(2), . . . ,H(r); i.e., H(x) = ∑

r
k=1 α(k)H(k)(x), where each α(k) is a

nonnegative constant such that ∑
r
k=1 α(k) = 1. Each H(k) keeps all activity durations

as independent exponentials but increases the mean of X j for edges j ∈Pk, making
{Y > y} more likely. (More generally, one could choose H(k) to not only have differ-
ent means for activities j ∈Pk but further to have entirely different distributions.)
Also, H(k) leaves unaltered the CDF of X j′ for each j′ 6∈Pk. Changing the mean
of X j corresponds to exponentially twisting its original CDF G j; see Example 4.6.2
of [22] and Section V.1b of [4] for details on exponential twisting. The exponential
twist requires specifying a twisting parameter θ ∈ℜ, and [13] employs an approach
in [24] to choose a value for θ = θ (k) for each H(k) in the mixture. Also, by adapting
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a heuristic from [34] for estimating a tail probability to instead handle a quantile,
[13] determines the mixing weights α(k), k = 1,2, . . . ,r, by first obtaining an ap-
proximate upper bound for the second moment EH [(I(c′Y (X)> ξ )L(X))2] in terms
of the α(k), and then choosing the α(k) to minimize the approximate upper bound.
Note that the mixture H used for IS does not satisfy the special case mentioned
after (48), so the likelihood ratio L(X) = dG(X)/dH(X) is not simply the product
∏

d′
j=1 g j(X j)/h j(X j); see equation (33) of [13] for details. ut

Glynn [24] develops other estimators of the CDF F using IS, leading to different
IS quantile estimators. Through a simple example, he shows that of the IS p-quantile
estimators he considers, ξ̂IS,n in (50) can be the most effective in reducing variance
when p≈ 1, but another of his IS p-quantile estimators can be better when p≈ 0.

Under a variety of different sets of assumptions (see [24, 1, 13]), the IS p-quantile
estimator ξ̂IS,n in (50) satisfies the CLT in (15), where ψ2 in (16) equals ψ2

IS in (51).
Also, [13] shows that ξ̂CV,n satisfies a weak Bahadur representation, as in (20) and
(22). Moreover, [48] shows another IS p-quantile estimator from [24] obeys a strong
Bahadur representation.

5.5 Conditional Monte Carlo

Conditional Monte Carlo (CMC) reduces variance by analytically integrating out
some of the variability; see Section V.4 of [4] for an overview of CMC to estimate a
mean. We next explain how to employ CMC for estimating a quantile, as developed
in [40, 17, 3, 18], which fits into the general framework given in Section 3.

Let Z be an ℜd̄-valued random vector that is generated along with the output Y .
In the special case when Y has the form in (5), we assume that

Z = cZ(U1,U2, . . . ,Ud) (52)

for a given function cZ : [0,1)d→ℜd̄ . Because (52) and (5) utilize the same unif[0,1)
inputs U1,U2, . . . ,Ud , we see that Z and Y are dependent. In general, by using iterated
expectations (e.g., p. 448 of [9]), we express the CDF F of Y as

F(y) = P(Y ≤ y) = E[P(Y ≤ y | Z)] = E[q(Z,y)], (53)

where the function q : ℜd̄+1→ℜ is defined for each z ∈ℜd̄ as

q(z,y) = P(Y ≤ y | Z = z) = E[I(Y ≤ y) | Z = z]. (54)

We assume that q(z,y) can be computed, analytically or numerically, for each possible
z and y ∈ℜ. By (53), we can obtain an unbiased estimator of F(y) by averaging i.i.d.
copies of q(Z,y). Specifically, let Z1,Z2, . . . ,Zn be i.i.d. replicates of the conditioning
vector Z. We then define the CMC estimator of the CDF F by
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F̂CMC,n(y) =
1
n

n

∑
i=1

q(Zi,y), (55)

which uses copies of Z but not of Y . We finally get the CMC p-quantile estimator

ξ̂CMC,n = F̂−1
CMC,n(p). (56)

Thus, we obtained (55) and (56) by following Steps 1a, 1b, and 2 of Section 3 and
Subsection 3.2, where in Step 1a, we take J(y) = q(Z,y), which satisfies (14) by (53).
Computing the inverse in (56) typically requires employing an iterative root-finding
method, such as the bisection method or Newton’s method (e.g., Chapter 7 of [41]),
incurring some computation cost.

Example 1 (continued). For a SAN, [47] develops a CMC approach for estimating the
CDF F of Y , which we apply as follows. Let the conditioning vector Z be the (random)
durations of the activities on the path P3 = {1,3,5}, so Z = (X1,X3,X5) ∈ℜd̄ with
d̄ = 3. Thus, the function cZ in (52) is given by

cZ(U1,U2, . . . ,U5) = (G−1
1 (U1),G−1

3 (U3),G−1
5 (U5)).

Recall that for each k = 1,2,3, we defined Tk = ∑ j∈Pk
Xk, the (random) length of

path Pk in (1). Since {Y ≤ y}= {T1 ≤ y,T2 ≤ y,T3 ≤ y} by (2), we can compute the
function q(z,y) in (54) for any constant z = (x1,x3,x5) ∈ℜd̄ as

q((x1,x3,x5),y) = P(Y ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X1 +X2 ≤ y, X4 +X5 ≤ y, X1 +X3 +X5 ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X2 ≤ y− x1, X4 ≤ y− x5, x1 + x3 + x5 ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X2 ≤ y− x1)P(X4 ≤ y− x5)P(x1 + x3 + x5 ≤ y)

= (1− e−(y−x1))(1− e−(y−x5)) I(x1 + x3 + x5 ≤ y)

because X1,X2, . . . ,X5 are i.i.d. exponential with mean 1. ut
Applying a variance decomposition (e.g., problem 34.10 of [9]) yields

Var[I(Y ≤ y)] = Var[E[I(Y ≤ y) | Z]]+E[Var[I(Y ≤ y) | Z]]
≥ Var[E[I(Y ≤ y) | Z]] = Var[q(Z,y)]

for each y, where the inequality uses the nonnegativity of conditional variance, and
the last step holds by (54). Hence, for each y, averaging i.i.d. copies of q(Z,y), as is
done in constructing F̂CMC,n(y) in (55), leads to smaller variance than averaging i.i.d.
copies of I(Y ≤ y), as in the estimator F̂NMC,n(y) in (9). We thus conclude that CMC
provides a CDF estimator with lower variance at each point than NMC.

The CMC p-quantile estimator ξ̂CMC,n in (56) obeys the CLT (15) with ψ2 in (16)
as

ψ
2
CMC = Var[q(Z,ξ )]; (57)

see [40, 17, 3, 18]. Also, ξ̂CMC,n has a weak Bahadur representation, as in (20), (22).
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While we have applied CMC by conditioning on a random vector Z, the method
can be more generally applied by instead conditioning on a sigma-field; see [3].

5.6 Other Approaches

LHS in Section 5.3 reduces variance by inducing negative correlation among the
outputs, and [6] examines quantile estimation via other correlation-induction schemes,
including antithetic variates (AV); see also [13]. (Randomized) quasi-Monte Carlo
has been applied for quantile estimation [42, 32, 26]. Other simulation-based methods
for estimating ξ do not follow the approach in Steps 1 and 2 of Section 3. For example,
[45] considers quantile estimation as a root-finding problem, and applies stochastic
approximation to solve it.

We can also combine different variance-reduction techniques to estimate a quantile.
The integrated methods can sometimes (but not always) behave synergistically,
outperforming each approach by itself. Some particularly effective mergers include
combined IS+SS [23, 13], CMC+LHS [17], and SS+CMC+LHS [18].

5.7 Numerical Results of Point Estimators for Quantiles

We now provide numerical results comparing some of the methods discussed in Sec-
tions 3.1 and 5.1–5.6 applied to the SAN model in Example 1. Using 103 independent
replications, we estimated the bias, variance, and mean-square error (MSE) of quan-
tile estimators with sample size n = 640, where we numerically computed (without
simulation) the true values of the p-quantile ξ as approximately ξ = 3.58049 for
p = 0.6 and ξ = 6.66446 for p = 0.95. For each method x, we computed the MSE
improvement factor (IF) of x as the ratio of the MSEs for NMC and x.

Table 1 shows that each VRT reduces the variance and MSE compared to NMC.
Each VRT also produces less bias for p = 0.95, but not always for p = 0.6, especially
for IS. The IS approach (Section 5.4) for the SAN is designed to estimate the p-
quantile when p ≈ 1, and it leads to substantial MSE improvement for p = 0.95.
But for p = 0.6, IS only slightly outperforms NMC. Also, observe that the IF of
the combination CMC+LHS is larger than the product of the IFs of CMC and LHS,
illustrating that their combination can work synergistically together.

6 Confidence Intervals for a Quantile

Example 1 (continued). The contractor understands that her p-quantile estimator ξ̂n
does not exactly equal the true p-quantile ξ due to Monte Carlo’s sampling noise. To
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Table 1 Bias, variance, and mean-square error of p-quantile estimators for p = 0.6 and 0.95, where
a method’s MSE improvement factor (IF) is the ratio of the MSEs of NMC and the method.

p = 0.6 p = 0.95
Bias Variance MSE MSE Bias Variance MSE MSE

Method (×10−3) (×10−3) (×10−3) IF (×10−2) (×10−2) (×10−2) IF

NMC 1.32 7.18 7.18 1.00 −3.00 5.15 5.24 1.00
CV 1.45 3.88 3.89 1.85 0.69 2.15 2.15 2.44
LHS −0.87 2.78 2.78 2.58 −1.74 2.36 2.39 2.19
IS 12.39 6.43 6.58 1.09 1.46 1.01 1.03 5.09
CMC 3.39 5.26 5.27 1.36 0.03 4.01 4.01 1.31
CMC+LHS 0.84 1.32 1.32 5.42 −0.36 1.67 1.67 3.14

account for the statistical error, she also desires a 90% confidence interval Cn for ξ ,
so she can be highly confident that the true value of ξ lies in Cn. ut

We want a confidence interval (CI) Cn for ξ based on a sample size n satisfying

P(ξ ∈ Cn) = 1−α (58)

for a user-specified constant 0 < α < 1, where 1−α is the desired confidence level,
e.g., 1−α = 0.9 for a 90% CI. In a few limited cases, we can design a CI for which
(58) or P(ξ ∈ Cn)≥ 1−α holds for a fixed n. But for most Monte Carlo methods,
we instead have to be satisfied with a large-sample CI Cn for which

P(ξ ∈ Cn)→ 1−α, as n→ ∞. (59)

6.1 Small-Sample CIs

Consider applying NMC as in Section 3.1 with a fixed sample size n. Let Y1,Y2, . . . ,Yn
be an i.i.d. sample from F , which we assume is continuous at ξ , ensuring that P(Yi ≤
ξ ) = p. Then Bn,p ≡ nF̂NMC,n(ξ ) = ∑

n
i=1 I(Yi ≤ ξ ) has a binomial(n, p) distribution

by (9). Recall that Yi:n is the ith smallest value in the sample, so {Yi:n ≤ ξ} =
{Bn,p ≥ i}, which is equivalent to {Yi:n > ξ} = {Bn,p < i}, Thus, for any integers
1≤ i1 < i2 ≤ n, we see that

P(Yi1:n ≤ ξ < Yi2:n) = P(i1 ≤ Bn,p < i2) = 1−P(Bn,p < i1)−P(Bn,p ≥ i2).

If we select i1 and i2 such that P(Bn,p < i1)+P(Bn,p ≥ i2)≤ α , then

Cbin,n ≡ [Yi1:n,Yi2:n) (60)

is a CI for ξ with confidence level at least 1−α . For example, we may pick i1 and i2
so that P(Bn,p < i1)≤ α/2 and P(Bn,p ≥ i2)≤ α/2. We call (60) the binomial CI,
also known as a distribution-free CI; Section 2.6.1 of [46] provides more details.
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This idea unfortunately breaks down when applying a Monte Carlo method other
than NMC because nF̂n(ξ ) no longer has a binomial distribution in general. But [29]
extends the binomial approach to a multinomial for the alternative CV p-quantile
estimator ξ̂ ′CV,n described in the last paragraph of Section 5.1.

6.2 Consistent Estimation of Asymptotic Variance

We can also build a large-sample CI Cn for ξ satisfying (59) by exploiting the CLT
in (15) or the (weak) Bahadur representation in (20) and (22), which both hold for
the Monte Carlo methods we considered in Sections 3 and 5. One approach based
on the CLT (15) requires a consistent estimator τ̂2

n of τ2 from (16); i.e., τ̂2
n ⇒ τ2 as

n→ ∞. Then we can obtain a CI Cn for which (59) holds as

Ccon,n,b = [ξ̂n± zα τ̂n/
√

n], (61)

where zα =Φ−1(1−α/2) and Φ is the N(0,1) CDF; e.g., zα = 1.645 for 1−α = 0.9.
A way to construct a consistent estimator τ̂2

n of τ2 = ψ2/ f 2(ξ ) devises a consistent
estimator ψ̂2

n of the numerator ψ2 and also one for the denominator f 2(ξ ).
To handle ψ2, [13] develops consistent estimators ψ̂2

n when ψ2 equals ψ2
CV in

(35) for CV, ψ2
SS,γ in (42) for SS, and ψ2

IS in (51) for IS, as well as for IS+SS. Also,
[40] provides an estimator for ψ2

CMC in (57), and [16] handles LHS. For NMC, (24)
shows that ψ2

NMC = p(1− p), which does not require estimation.
Several techniques have been devised to consistently estimate f (ξ ) appearing in

the denominator of (16). One approach exploits the fact that

η ≡ 1
f (ξ )

=
d

dp
F−1(p) = lim

δ→0

F−1(p+δ )−F−1(p−δ )

2δ
(62)

by the chain rule of differentiation, which suggests estimating η by a finite difference

η̂n =
F̂−1

n (p+δn)− F̂−1
n (p−δn)

2δn
, (63)

for some user-specified bandwidth δn > 0. For the case of NMC, [10, 11] establish
the consistency of η̂n when δn→ 0 and nδn → ∞ as n→ ∞, and [13, 16] develop
similar results when applying various variance-reduction techniques. Then in (61),
we can use τ̂2

n = ψ̂2
n η̂2

n to consistently estimate τ2. Kernel methods [43, 19, 37] have
also been employed to estimate f (ξ ).
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6.3 Batching, Sectioning, and Other Methods

An issue with the finite-difference estimator in (63) and with kernel methods is that
for a given sample size n, the user must specify an appropriate bandwidth δn, which
can be difficult to do in practice. To avoid this complication, we can instead build
a CI for ξ via a method that does not try to consistently estimate the asymptotic
variance τ2 in (16).

Batching is such an approach; e.g., see p. 491 of [22]. Rather than computing
one p-quantile estimator from a single sample, batching instead generates b ≥ 2
independent samples, each called a batch (or subsample), and builds a p-quantile
estimator from each batch. We then construct a CI from the sample average and
sample variance of the b i.i.d. p-quantile estimators. Specifically, to keep the overall
sample size as n, we generate the b independent batches to each have size m = n/b.
In practice, setting b = 10 is often a reasonable choice. For example, for NMC with
an overall sample Y1,Y2, . . . ,Yn of size n, batch `= 1,2, . . . ,b, comprises observations
Y(`−1)m+i, i = 1,2, . . . ,m. From each batch `= 1,2, . . . ,b, we compute a p-quantile
estimator ξ̂m,`, which is roughly normally distributed when the batch size m = n/b
is large, by the CLT in (15). As the batches are independent, we have that ξ̂m,`,
`= 1,2, . . . ,b, are i.i.d. From their sample average ξ̄n,b = (1/b)∑

b
`=1 ξ̂m,` and sample

variance S2
n,b = (1/(b−1))∑

b
`=1[ξ̂m,`− ξ̄n,b]

2, we obtain the batching CI as

Cbat,n,b = [ξ̄n,b± tb−1,α Sn,b/
√

b], (64)

where tb−1,α = Γ
−1

b−1(1−α/2) with Γb−1 as the CDF of a Student-t random variable
with b− 1 degrees of freedom; e.g., tb−1,α = 1.83 when b = 10 and 1−α = 0.9.
The batching CI Cbat,n,b uses a Student t critical point tb−1,α rather than zα from
a normal, as in (61), because Cbat,n,b has a fixed (small) number b of batches, and
the quantile estimator ξ̂m,` from each batch ` is approximately normally distributed.
(When applying LHS as in Section 5.3, each batch is an LHS sample, as in (45), but
of size m. We then sample the b batches independently; see [16] for details.)

While the batching CI Cbat,n,b in (64) is asymptotically valid in the sense that (59)
holds for any fixed b ≥ 2, it can have poor performance when the overall sample
size n is not large. Specifically, for a generic CI Cn for ξ , define the CI’s coverage
as P(ξ ∈ Cn), which may differ from the nominal confidence level 1−α for any
fixed n even though (59) holds. The issue with the batching CI stems from quantile
estimators being biased in general; e.g., see Proposition 2 of [6] for the case of NMC.
While the bias typically vanishes as the sample size n→∞, the bias can be significant
when n is not large. The bias of the batching point estimator ξ̄n,b is determined by
the batch size m = n/b < n, so ξ̄n,b may be severely contaminated by bias. Hence,
the batching CI Cbat,n,b is centered at the wrong point on average, which can lead to
poor coverage when n is small.

Sectioning can produce a CI with better coverage than batching. Introduced in
Section III.5a of [4] for NMC and extended by [39, 16] to apply when employing
different VRTs, sectioning modifies batching to center its CI at the p-quantile estima-
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tor ξ̂n based on the entire sample size n rather than at the batching point estimator
ξ̄n,b. For example, for NMC, we use ξ̂n = ξ̂NMC,n from (11). We also replace Sn,b in
(64) with S′n,b, where S′2n,b = (1/(b−1))∑

b
`=1[ξ̂m,`− ξ̂n]

2. The sectioning CI is then

Csec,n,b = [ξ̂n± tb−1,α S′n,b/
√

b]. (65)

Because we center Csec,n,b at ξ̂n instead of the typically more-biased ξ̄n,b, the sec-
tioning CI Csec,n,b can have better coverage than the batching CI Cbat,n,b when n is
small. By exploiting a weak Bahadur representation, as in (20) and (22), we can
rigorously justify replacing the batching point estimator ξ̄n,b in (64) with the overall
point estimator ξ̂n and still maintain the asymptotic validity in (59).

For NMC, bootstrap CIs for ξ have been developed in in [36, 7]. Also, [35]
develops bootstrap CI for ξ when applying IS.

6.4 Numerical Results of CIs for Quantiles

Table 2 provides numerical results comparing the methods discussed in Sections 6.1–
6.3 to construct nominal 90% CIs for a p-quantile ξ of the longest path Y in the
SAN model in Example 1 for different values of p. We built the CIs using NMC
with different overall sample sizes n. For the consistent CI in (61), we estimated
η = 1/ f (ξ ) in (62) via the finite difference in (63) with bandwidth δn = 1/

√
n. For a

given CI Cn based on an overall sample size n, we estimated its coverage P(ξ ∈ Cn)
from 104 independent replications. Also, we computed for each method the average
relative half width (ARHW), defined as the average half-width of the CI divided by
the true p-quantile ξ , computed numerically; Section 5.7 gives the values.

Comparing the results for p = 0.6 and p = 0.95, we see that the more extreme
quantile is harder to estimate, which is typically the case. For example, for the same
n, the ARHW for p = 0.95 is larger than for p = 0.6. To see why, recall that the
NMC p-quantile estimator’s asymptotic variance is p(1− p)/ f 2(ξ ) by (16) and
(24). Although the numerator shrinks as p approaches 1, the denominator f 2(ξ )
decreases much faster. Moreover, while each method’s coverage for p = 0.6 is close
to the nominal 0.9 for each n, the consistent CI and the batching CI from (64) for
p = 0.95 exhibit coverages that substantially depart from 0.9 when n is small, with
overcoverage (resp., undercoverage) for the consistent (resp., batching) CI. When n
is large, both methods produce CIs with close to nominal coverage, illustrating their
asymptotic validity. As explained in Section 6.3, the batching CI can suffer from poor
coverage for small n because the batching point estimator can be significantly biased.
In contrast, the binomial CI in (60) and sectioning CI from (65) have coverage close
to 0.9 for all n. It is important to remember that the binomial CI does not apply in
general when applying VRTs, but sectioning does.
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Table 2 Average relative half width (ARHW) and coverage of nominal 90% CIs for the p-quantile
for p = 0.6 and 0.95 with different sample sizes n when applying NMC. Batching and sectioning
use b = n/10 batches.

p = 0.6 p = 0.95
n Method ARHW Coverage ARHW Coverage

400 Binomial 0.053 0.921 0.082 0.932
400 Consistent 0.051 0.893 0.094 0.952
400 Batching 0.054 0.869 0.069 0.666
400 Sectioning 0.055 0.907 0.075 0.888
1600 Binomial 0.026 0.910 0.038 0.914
1600 Consistent 0.025 0.896 0.039 0.916
1600 Batching 0.027 0.893 0.037 0.838
1600 Sectioning 0.028 0.904 0.038 0.904
6400 Binomial 0.013 0.904 0.018 0.905
6400 Consistent 0.013 0.897 0.018 0.899
6400 Batching 0.014 0.898 0.019 0.885
6400 Sectioning 0.014 0.900 0.019 0.903

7 Summary and Concluding Remarks

This tutorial reviewed various Monte Carlo methods for estimating a p-quantile ξ

of the CDF F of a random variable Y . Because ξ = F−1(p), a common approach
for estimating ξ first obtains an estimator F̂n of F , and then inverts F̂n to obtain a p-
quantile estimator ξ̂n = F̂−1

n (p). Sections 3 and 5 applied this approach to construct
quantile estimators based on different Monte Carlo methods. We also discussed
techniques for constructing confidence intervals for ξ . In addition to our paper,
[28] further surveys simulation procedures for estimating ξ , along with another risk
measure E[Y | Y > ξ ], which is known as the conditional value-at-risk, expected
shortfall, or conditional tail expectation, and often used in finance.

We focused on quantile estimation for the setting in which the outputs are i.i.d.,
but there has also been work covering the situation when outputs form a dependent
sequence, as in a time series or stochastic process. For example, see [52, 2] and
references therein.
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