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A B S T R A C T

We develop efficient Monte Carlo methods for estimating the failure probability of a system. An example of the
problem comes from an approach for probabilistic safety assessment of nuclear power plants known as risk-
informed safety-margin characterization, but it also arises in other contexts, e.g., structural reliability,
catastrophe modeling, and finance. We estimate the failure probability using different combinations of
simulation methodologies, including stratified sampling (SS), (replicated) Latin hypercube sampling (LHS),
and conditional Monte Carlo (CMC). We prove theorems establishing that the combination SS+LHS (resp., SS
+CMC+LHS) has smaller asymptotic variance than SS (resp., SS+LHS). We also devise asymptotically valid (as
the overall sample size grows large) upper confidence bounds for the failure probability for the methods
considered. The confidence bounds may be employed to perform an asymptotically valid probabilistic safety
assessment. We present numerical results demonstrating that the combination SS+CMC+LHS can result in
substantial variance reductions compared to stratified sampling alone.

1. Introduction

Consider a stochastic model of the behavior of a system (e.g., a
structure, such as a building or ship). The system's uncertainties may
include random loads and capacities, environmental conditions, mate-
rial properties, etc. The system fails under specified conditions—e.g., a
critical subset of components fails—and the goal is to determine if the
failure probability θ is acceptably small. As the system's complexity
renders computing θ as intractable, we instead apply Monte Carlo
simulation to estimate θ. To account for the sampling error of the
simulation estimates, a confidence interval for θ is also needed.
Running the simulation model may be expensive, so we want to reduce
the sampling error. In this paper, we combine different variance-
reduction techniques (VRTs) to estimate θ.

A motivating example comes from a framework for probabilistic
safety assessments (PSAs) of nuclear power plants (NPPs) known as
risk-informed safety-margin characterization (RISMC), which was
proposed by an international effort of the Nuclear Energy Agency
Committee on the Safety of Nuclear Installations [1]. The purpose of
RISMC is to address recent changes in NPPs. For example, many NPPs
in the current U.S. fleet are aging past their original 40-year operating
licenses, with owners applying for lengthy extensions [2]. Also, for
economic reasons, plants are sometimes run at higher output levels,
known as power uprates [3]. These and other factors can lead to

degradations in safety margins previously deemed acceptable, and
RISMC aims to better understand their impacts.

Current NPP PSAs compare a random load to a fixed capacity. For
example, the U.S. Nuclear Regulatory Commission (NRC) [4, para-
graph 50.46(b)(1)], specifies that the 0.95-quantile of the peak clad-
ding temperature (PCT) during a hypothesized loss-of-coolant accident
(LOCA) must not exceed 2200° F. The NRC permits a plant licensee to
demonstrate its facility's compliance with federal regulations using a
95/95 analysis with Monte Carlo simulation; see Section 24.9 of [5]
and [6]. This entails running a computer code [7] modeling the
postulated event multiple times with randomly generated inputs to
explore a range of uncertainties [8], using the code's outputs to
construct a 95% upper confidence bound (UCB) for the 0.95-quantile
of the PCT, and verifying that the UCB lies below the fixed threshold
2200° F. The UCB accounts for the statistical error of the Monte Carlo
estimate due to sampling variability, and the difference between the
fixed threshold and the UCB provides a type of safety margin.

Several papers have developed Monte Carlo methods for perform-
ing a 95/95 analysis. For example, [9] and [10] apply an approach of
[11] based on order statistics, which is valid when employing simple
random sampling (SRS). However, SRS can produce unusably noisy
estimates of the 0.95-quantile, so [12] incorporates VRTs, including
antithetic variates (AV) and Latin hypercube sampling (LHS), to obtain
more statistically efficient quantile estimators; see Chapter 4 of [13]
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and Chapter V of [14] for overviews of these and other VRTs for
estimating a mean. In addition, [12] provides a UCB for the quantile
using a finite-difference approach of [15] and [16]. Utilizing VRTs in
nuclear PSAs is especially important because each simulation run may
be computationally expensive, e.g., it may require numerically solving
systems of differential equations.

In addition to the condition on the PCT, the NRC further imposes
requirements on other criteria—the core-wide oxidation (CWO<1%)
and maximum local oxidation (MLO<17%)—for a PSA of a hypothe-
sized NPP LOCA; see paragraph 50.46(b) of [4]. (The NRC is currently
considering replacing MLO with another criterion, the integral time at
temperature [17].) The papers [9] and [10] describe approaches to
extend the 95/95 analysis based on an SRS quantile estimator for a
single criterion to handle multiple criteria with fixed capacities.

RISMC differs from a 95/95 analysis in several important ways.
First, RISMC assumes each criterion's capacity is random rather than
fixed. Moreover, instead of examining a quantile, as in a 95/95 study,
RISMC measures a safety margin through the failure probability θ that
any random load exceeds its random capacity, where θ should be
smaller than a given threshold θ0, which may be specified by a
regulator. RISMC also decomposes a postulated event into scenarios
via an event tree [18], as in a probabilistic risk analysis (PRA), with
uncertainties in each scenario, and Monte Carlo is employed to
estimate each scenario's failure probability. To account for the statis-
tical sampling error of the Monte Carlo estimate of the failure
probability θ, one should further provide a UCB (or a two-sided
confidence interval) for θ, and check if the UCB lies below θ0. The
pilot RISMC studies in [3] and [19] consider only a single criterion,
PCT, and assume its capacity follows a triangular distribution. These
papers apply a combination of stratified sampling (SS) and LHS, but
they do not describe how to build a UCB for θ. (Other issues
investigated in [3] and [19] include exploring the impact on θ from
altering the distributions of input random variables and from opera-
tional changes, e.g., power uprates. A RISMC evaluation may further
want to determine the core-damage frequency κ, which can be
estimated by multiplying an estimator of θ with the (known) frequency
of the postulated event.)

Our paper devises Monte Carlo methods to analyze a broad class of
systems (not only for RISMC), with uncertainties encapsulated in a
basic random object. The basic random object can be a random vector,
as in structural reliability, where its entries are called basic variables
[20, Section 1.5], which may be dependent and can represent, e.g.,
random loads, environmental factors, and material properties. But the
basic random object may be more general, e.g., a stochastic process, as
in time-dependent reliability [20, Chapter 6]. For example, the load
and capacity on a system may vary randomly over time, which is
modeled as a stochastic process. We also specify system failure in a
general way, as a given binary-valued function of the basic random
object. An example is a series system, where the basic random object is
a random vector of the loads and capacities for a fixed number q of
(dependent) criteria, and the system fails when any criterion's load
exceeds its capacity, but our framework allows for many other
possibilities.

We consider applying combinations of SS, LHS, and conditional
Monte Carlo (CMC) to estimate θ. We formally prove that SS+LHS
(resp., SS+CMC+LHS) has smaller asymptotic variance than SS (resp.,
SS+LHS). We also use replicated LHS (rLHS) [21] to construct UCBs
for θ, and we prove the UCBs' asymptotic validity (as the total sample
size grows large, with the number of replicates fixed). (Although we
focus on providing UCBs, our methods can be easily modified to
produce a lower confidence bound or two-sided confidence interval.)
The combination of SS, CMC, and LHS can be especially effective in
reducing variance, as we show through numerical experiments.

We also give insight into why SS+CMC+LHS can work so well. As
shown in [22, Section 10.3], LHS substantially reduces variance when
the response whose expectation we are estimating is well approximated

by an additive function of the input random variables. As we are
estimating a probability, the response without CMC is an indicator,
which has a poor additive approximation. Thus, LHS by itself may not
reduce variance much. In contrast, the conditioning of CMC produces a
“smoother” response (in general, no longer binary-valued) with a better
additive fit. Hence, LHS can yield much smaller variance when
combined with CMC; [23] observes similar synergies between CMC
and LHS.

In addition to [3] and [19], other related work includes [24], which
provides UCBs for the single-criterion (i.e., q=1) failure probability
when applying combinations of SS, CMC, and rLHS, but the paper does
not give proofs of the UCBs' asymptotic validity nor for the reduction in
asymptotic variance. The paper [25] estimates the single-criterion
failure probability using SS and CMC, but leaves out LHS. Also, [23]
provides a theoretical analysis of integrated VRTs (CMC, control
variates, and correlation-induction schemes, including LHS and AV)
in a general setting, but it does not include SS, which plays a key role in
the RISMC framework, nor does the paper provide UCBs, as we do
here. The paper [26] combines CMC with AV for estimating the failure
probability in structural reliability, but it does not incorporate SS. As
explained in [23], AV and LHS can be viewed as special cases of
correlation-induction methods, but AV is often outclassed by LHS,
especially in combination with CMC.

The methodologies developed in our current paper not only apply
for nuclear PSAs, but also can be employed in a wide spectrum of other
fields. Civil engineers need to compute the failure probability θ of a
structure (e.g., a building, bridge, or dam) [20]. Insurance companies
work with catastrophe models to determine the likelihood of infra-
structure failures when subjected to hurricanes, floods, and earth-
quakes [27]. The Basel Accords [28] specify capital requirements (i.e.,
capacities) for financial institutions to ensure that they can absorb
reasonable losses (i.e., loads). Other examples arise in the assessment
of safety and reliability of nuclear weapons [29–31] and the disposal of
radioactive waste [32–34].

Compared to SRS, LHS tries to sample more evenly from the
sample space, which can produce less-variable estimators of measures
of central tendency, e.g., the mean. Combining LHS with SS and CMC
can lead to further substantial improvements, as our numerical results
show, but perhaps not enough when estimating rare-event probabil-
ities, smaller than say 10−4. In such cases, other Monte Carlo methods
may be more effective. In [35] and [36], the authors develop parametric
approximations to the failure probability in terms of less-rare events,
which are easier to estimate accurately via Monte Carlo. (In contrast,
rather than devising an approximation, the methods in our paper work
with the exact model.) The paper [37] employs the method of [35] to
estimate the failure probability of a ship hull girder, modeled as a series
system. In [38] the authors consider a method they call subset
simulation, also known as splitting [14, Section VI.9]; the idea is to
contain the rare failure event in a sequence of successively larger, less-
rare events, and the failure probability is estimated as a product of
estimates of conditional probabilities based on successive events. In
[39] the author combines a type of CMC called directional simulation
with importance sampling.

To summarize, the main contributions of the current paper are as
follows:

• We develop combinations of SS, CMC, and LHS to efficiently
estimate a failure probability θ. Our framework allows for a failure
to be defined quite generally as a function of a basic random object,
which may be a random vector or something more general, e.g., a
stochastic process or random field. The combination of the three
VRTs can produce substantial variance reduction, as our numerical
results in Section 7 indicate. We also establish theory (Theorems 1
and 3) and provide insight (Sections 5.1 and 6.1) into why this is so.

• When applying SS+rLHS or SS+CMC+rLHS, we derive UCBs for θ,
which are crucial to account for the statistical error arising from
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sampling variability of the Monte Carlo estimators. We formally
prove the UCBs' asymptotic validity; see Theorems 2 and 4.

The remaining sections unfold as follows. Section 2 develops the
problem's mathematical framework in a general setting, with later
sections adding extra structure as needed. Section 2.1 specializes the
setup to define a system failure in terms of the loads and capacities of a
fixed number of criteria, although later sections mostly do not require
this additional assumption. Section 3 reviews the use of simple random
sampling to estimate and produce a UCB for θ, and Section 4 does the
same for stratified sampling. We combine SS with (replicated) Latin
hypercube sampling in Section 5, and further incorporate conditional
Monte Carlo in Section 6. In particular, Section 6.3 derives the
combination of VRTs for the special setting of Section 2.1 (failure
defined in terms of loads and capacities), exploiting the added
structure. Section 7 presents numerical results from artificial RISMC
experiments, and we give concluding remarks in Section 8. Appendices
contain most of the proofs of the theorems. A (much shorter)
conference paper [40] outlines some of the material from the current
paper restricted to a series system, omitting Theorems 1, 3, and 5 and
all of the proofs; moreover, the present paper contains additional
numerical results. Throughout the paper, all vectors are column
vectors, although we often write them as row vectors to save space.

List of Acronyms and Abbreviations

AHW average half-width AV antithetic variates
CDF cumulative

distribution function
CLT central limit theorem

CMC conditional Monte
Carlo

CV coefficient of variation

CWO core-wide oxidation d.f. degrees of freedom
i.i.d. independent and

identically distributed
KS Kolmogorov-Smirnov

LHS Latin hypercube
sampling

LOCA loss-of-coolant accident

MLE maximum likelihood
estimate

MLO maximum local oxidation

NPP nuclear power plant NRC Nuclear Regulatory
Commission

PCD probability of correct
decision

PCT peak cladding
temperature

PSA probabilistic safety
assessment

RISMC risk-informed safety-
margin characterization

rLHS replicated LHS SCL SS+CMC+LHS
SCrL SS+CMC+rLHS SRS simple random sampling
UCB upper confidence

bound
VRF variance-reduction factor

VRT variance-reduction
technique

2. Mathematical framework

Before developing the general framework, we first motivate the
problem by considering a simple model. The example actually does not
require simulation as it can be solved numerically, but we use it to
illustrate the ideas and notation. We will return to the example in later
sections to introduce concepts for our various Monte Carlo methods.

Example 1. Consider a system with q=1 component, which experiences a
(single) random load (stress or demand) L and has a (single) random
capacity (resistance or strength) C to withstand the load. The system fails if
and only if L C≥ . Let X L C= ( , ) be a random vector taking values in
S R= 2, with R the set of real numbers. Define the failure function
d X I L C( ) = ( ≥ ) for I(·) the indicator function, which equals 1 (resp., 0)
when its argument is true (resp., false). Thus, the system fails if and only if

the failure indicator d X≡ ( ) = 1. Let H be the joint cumulative
distribution function (CDF) of X , denoted by X H∼ , so

xH P L x C x( ) = ( ≤ , ≤ )1 2 for a constant Rx x x= ( , ) ∈1 2
2. (Here L and C

may be dependent, but later in Section 6 we will assume they are
independent in this example.) The failure probability is then

d∫ x xθ E P L C H= [ ] = ( ≥ ) = ( ) d ( ), an integral of dimension q2 = 2,
where E denotes the expectation operator induced by H. Now assume
that H is a mixture (e.g., Section 4.9 of [22]) of s = 40 bivariate normal
CDFs. Specifically, let λs, s s1 ≤ ≤ 0, be known positive constants summing
to 1. For each s, let H s( ) be the joint CDF of μ Σ( , )s s2 , a bivariate normal

with mean vector μ μ μ= ( , )s L s C s, , and covariance matrix RΣ ∈s
2×2 having

diagonal entries σL s,
2 and σC s,

2 , the marginal variances of L and C,

respectively. Then x xH λ H( ) = ∑ ( )s
s

s s=1 ( )
0 for each Rx ∈ 2; i.e., X H∼ s( )

with probability λs. Let F (resp., G) be the marginal CDF of L (resp., C); e.g.,
G is the CDF of λ μ λ σ μ λ μ( ∑ , ( ∑ ( + )) − ( ∑ ) )s

s
s C s s

s
s C s C s s

s
s C s=1 , =1 ,

2
,

2
=1 ,

20 0 0 ,

where a b( , )2 is a normal random variable with mean a and variance b2.
For the general mathematical framework, consider a stochastic

model of the behavior of a system (e.g., a structure, such as a building
or nuclear power plant) over a particular time period, possibly random.
The system has uncertainties, e.g., loads and capacities of the system's
components, environmental factors, material properties, etc., which
may be observed at multiple times. We encapsulate all of the system's
(aleatory and epistemic) uncertainties over the specified time horizon
in a basic random object X , which may be a random vector (Example 1
has RX L C= ( , ) ∈ 2) or a more general random object, such as a
stochastic process or random field. Specifically, let Ω P( , , ) be the
underlying probability space, where Ω is a sample space, is a σ-field
of subsets of Ω, and P is a probability measure on . We assume that
the basic random object X takes values in a (complete, separable)
metric space S( , ), whereS is a set of possible objects x and is a σ-
field of subsets of S [41, Appendix M], so SX Ω: → . In other words,
for each outcome ω Ω∈ , we have that X xω( ) = for some Sx ∈ . Also,
if S ∈ is a subset of S, then X XP S P ω ω S( ∈ ) = ({ : ( ) ∈ }) is the
probability that X lies in S. For example, if S R= d , then
X X X X= ( , , …, )d[1] [2] [ ] is a d-dimensional random vector (d=2 in
Example 1), and the d entries in X are called basic variables in
structural reliability [20, Section 1.5]. In this case, for each outcome
ω Ω∈ , we have X xω X ω X ω X ω( ) = ( ( ), ( ), …, ( )) =d[1] [2] [ ] for some

Rx x x x= ( , , …, ) ∈d
d

1 2 ; also, for the set S x x x= {( , , …, )d1 2
R x y k d∈ : ≤ , = 1, 2, …, } ∈d

k k for a fixed Ry y y( , , …, ) ∈d
d

1 2 , we

have XP S P X y X y X y( ∈ ) = ( ≤ , ≤ , …, ≤ )d
d

[1]
1

[2]
2

[ ] . The probability P
may specify dependencies within the basic random object X , e.g., loads
of different components may be dependent. Section 7.2 describes how
we can use copulas [42] to incorporate dependence.

We allow S to be more general than Rd. The space S( , ) may be
infinite-dimensional, as can occur when uncertainties are modeled
through a stochastic process. For example, over a continuous time
interval t[0, ]0 , a structure may be subjected to random events (e.g.,
earthquakes or storms) arising according to a Poisson process [43,
Section 23], and each event has a random intensity; as the number of
events occurring by t0 is unbounded, the vector X of the event times
and intensities then requires S to have infinite dimension. Also, as in
time-dependent reliability [20, Chapter 6], the system's state (which
may include, e.g., the loads, capacities, environmental conditions)
evolves randomly within a state spaceE (e.g.,E R⊆ d) over continuous
time. In this case, the basic random object is a continuous-time,
E-valued stochastic process X X t t= [ ( ): ≥ 0], where X(t) is the system's
state in E at time t, so S( , ) is an appropriate space of E-valued
functions on [0, ∞) [41, Chapters 2 and 3]. For example, consider a
system with p ≥ 1 components, where each component k p1 ≤ ≤ has
load L t( )k[ ] and capacity C t( )k[ ] at each time t t≤ 0. Then we may define
X X t t t= [ ( ): 0 ≤ ≤ ]0 with E R= p2 and

X t L t L t L t C t C t C t( ) = ( ( ), ( ), …, ( ), ( ), ( ), …, ( )).p p[1] [[2] [ ] [1] [[2] [ ] (1)

Next define a binary-valued failure function d S: → {0, 1} such
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that if X x= with Sx ∈ and d x( ) = 1 (resp., 0), the system fails (resp.,
does not fail) within the given time horizon. Applying d to the basic
random object X yields

dX X≡ ( ) = ( ) (2)

as the failure indicator, which is a Bernoulli random variable that
equals 1 (resp., 0) if the system eventually fails (resp., does not fail).
Computing d and can be quite complicated. For example, in a PSA of
a nuclear power plant, d is based on a detailed computer code [7] that
models the progression of a hypothesized accident, taking as input a
random vector S RX X X X= ( , , …, ) ∈ =d d[1] [2] [ ] representing aleatory
and epistemic uncertainties with a specified joint CDF. The entries of
X , which may determine the timing, location and size of events during
the accident, may be dependent and may have different marginal CDFs.
The computer code can be computationally expensive to run for each
Sx ∈ , as it may numerically solve systems of differential equations.
In structural reliability [20], the failure function d in (2) is often

defined in terms of a limit state function g S R: → , where g X( ) ≤ 0
(resp., >0) denotes that the system fails (resp., does not fail). In this
case, d gX XI( ) = ( ( ) ≤ 0). Example 1 has g L C C L( , ) = − , which is a
safety margin, and d L C I L C( , ) = ( ≥ ). Section 2.1 will provide other
examples illustrating how d may be defined for common types of
systems in terms of multiple loads and capacities.

When the basic random object X is a continuous-time stochastic
process X t t[ ( ): ≥ 0], as in time-dependent reliability analysis, we may
define the failure function d in (2) in many ways. For example, consider X
with X(t) in (1), and let t0 be a fixed time horizon. Then we may define
d X I L t C t k p t t( ) = ( ( ) ≥ ( ) for some 1 ≤ ≤ and some 0 ≤ ≤ )k k[ ] [ ]

0 , so the
system fails if and only if some component's load exceeds its capacity
before the time horizon. For another example, let τ > 0 be a fixed constant,

and set d
⎛
⎝⎜

⎞
⎠⎟∫X I I L t C t t τ k p( ) = ( ( ) ≥ ( )) d ≥ for some 1 ≤ ≤

t k k
0

[ ] [ ]0 , so the

system fails if and only if for some component k, the amount of time its
load exceeds its capacity is at least τ.

We define the system's failure probability (also known as the
unreliability) as

d∫ ∫X Xθ P E P P= ( = 1) = [ ] = ( ) d = ( ) d , (3)

where E is the expectation operator induced by P. The integrals in (3)
have the dimension (possibly infinite) of the space S. In the third
expression of (3), we call the quantity inside the expectation a response
(function), and we want to compute its expectation θ , which is an
unknown constant. To avoid trivialities, we assume that θ0 < < 1.

The system is deemed to be acceptably safe if the failure probability
is sufficiently small, i.e., θ θ< 0 for some given constant θ0. We assume
the stochastic model is too complex to analytically or numerically
compute θ, but it can be simulated on a computer (which may, e.g.,
require discretizing time). Thus, we will develop (Monte Carlo)
simulation methods to estimate θ. The corresponding simulation model
may be a computer code that generates an observation of X according
to P, and eventually outputs using (2). The resulting simulation
estimators have statistical error because of variability in the sampled
observations of X , which we account for by further requiring the
following:

θ γ
γ θ θ

given constants 0 < < 1 and 0 < < 1,
determine with confidence level if < .

0

0 (4)

The constants θ0 and γ may be specified by a regulator. For example, if
θ = 0.050 and γ = 0.95, we want to determine with 95% confidence if
θ < 0.05; when there is only a single criterion with constant capacity,
this is equivalent to a 95/95 requirement.

We can satisfy the requirement (4) through a hypothesis test.
Define the null hypothesis θ θ: ≥0 0 and alternative hypothesis

θ θ: <1 0. We perform a hypothesis test at significance level
α γ= 1 − by first carrying out a total of n simulation runs. We then

use the output data to construct a (statistical) point estimator θ n( ) of θ,
along with a γ-level upper confidence bound (UCB) B(n) for θ; i.e.,
P B n θ γ( ( ) ≥ ) = . (We define the phrase “point estimator” or “point
estimate” in the statistical sense, as a sampling-based estimator or
estimate of a parameter—such as an expectation or probability—whose
true (constant) value is unknown. This is in contrast to the meaning
sometimes adopted in nuclear safety, where a “point estimate” may
denote a single conservative value for a load or capacity, instead of
assuming probability distributions for them, as when incorporating
uncertainties.) The exact form of B(n) depends on the simulation
method applied and how θ n( ) is constructed. But without imposing
unreasonable parametric assumptions (e.g., normally distributed out-
puts), it is typically not possible to construct a UCB B(n) for which
P B n θ γ( ( ) ≥ ) = exactly holds for a fixed sample size n. Instead, we
desire B(n) to be an asymptotic γ-level UCB, satisfying

P B n θ γlim ( ( ) ≥ ) = ,
n→∞ (5)

where B(n) is often derived from a central limit theorem (CLT) for θ n( ).
We then arrive at the following decision rule:

B n θReject if and only if ( ) < ,0 0 (6)

which asymptotically fulfills (4) as n → ∞ when (5) holds. Starting in
Section 3 we consider specific simulation methodologies to construct
asymptotic UCBs achieving (5). (See [44] for a thorough treatment of
asymptotic statistical methods.) While the current paper focuses on
UCBs, the approaches presented can be easily modified to also provide
lower confidence bounds or two-sided confidence intervals. Generating
the basic random object X or computing the failure function d in (2)
may be quite costly, making it important to apply VRTs to reduce the
sample size n necessary to obtain sufficiently accurate results.

2.1. Examples of defining the failure function in terms of loads and
capacities

We now present some common ways of defining the failure function
d in (2). Our examples specify system failure in terms of a fixed number
q ≥ 1 of criteria (or failure modes), where each has a random load and
a random capacity. Specifically, let L L X L L L≡ ( ) = ( , , …, )q[1] [2] [ ] and
C C X C C C≡ ( ) = ( , , …, )q[1] [2] [ ] be random vectors computed from the
basic random object X , with L k[ ] and C k[ ] as the load and capacity,
respectively, for criterion k q= 1, 2, …, . For example, each of the q
criteria may correspond to a component in the system, and a
component fails when its load exceeds its capacity; the system then
fails when specified combinations of components fail. (In Example 1,
there is only q=1 component, so L L L= = [1] and C C C= = [1].) The
load and capacity of a component i may be observed at multiple times
t t t< < ⋯ <i i i m,1 ,2 , i

, and each pair of component i and time ti j, could
correspond to a criterion. A nuclear PSA may have q=3 criteria, and
L[1], L[2], and L[3] represent the loads for criteria PCT, CWO, and MLO,
respectively, during a hypothesized loss-of-coolant accident; see para-
graph 50.46(b) of [4]. The initial RISMC studies [3,19] consider only
q=1 criterion, PCT, and assume a triangular distribution for its
capacity, but we allow for q > 1. Throughout the paper, we permit for
dependence across criteria (e.g., different components have related
loads, or capacities at different times are correlated), and except for
Section 6.3, L and C can be dependent.

When defining the failure function d in (2) in terms of L and C , we
will assume the following.

Assumption A1. There are deterministic functions v S R: → q2 and
d R′: → {0, 1}q2 such that vL C X( , ) = ( ) and d d vx x( ) = ′( ( )) for all
Sx ∈ .
In Assumption A1, the function v computes the load and capacity

vectors L and C from the basic random object X . For example, L may
be a function of random stresses, which are included in X , and C may
be computed from uncertain environmental conditions and material
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properties specified in X . Moreover, A1 further stipulates that the
failure function d computed in terms of X in (2) can be equivalently
expressed as the function d′ of only the loads L and capacities C
because d d v dX X L C( ) = ′( ( )) = ′( , ). Example 1 already has X L C= ( , ),
so in this case, v is simply the identity mapping, and
d dX L C I L C( ) = ′( , ) = ( ≥ ). We now show how to define the failure
function d′ of the q ≥ 1 loads and capacities for some common types of
systems.

Example 2. (Series system; e.g., Section 5.2.3.1 of [20]). Suppose a
system with q criteria fails if and only if at least one criterion's load
exceeds its capacity. Then by the inclusion-exclusion principle, we can
define d′ in A1 as

d

∑ ∑

L C I L C

I L C

′( , ) = (∪ { ≥ })

= (− 1) (∩ { ≥ }).

k
q k k

p

q
p

k k k q
l
p k k

=1
[ ] [ ]

=1

−1

1≤ < <⋯< ≤
=1

[ ] [ ]

p

l l

1 2 (7)

The paper [45] defines failure as in (7) for a nuclear PSA with q=3
criteria (PCT, CWO, MLO) and fixed capacities.

Example 3. (Parallel system; e.g., Section 5.2.3.2 of [20]). Suppose a
system with q criteria fails if and only if each criterion's load exceeds its
capacity. Then the failure function d′ in Assumption A1 is given by

d L C I L C′( , ) = (∩ { ≥ }).k
q k k

=1
[ ] [ ] (8)

Example 4. (K-out-of-N:F system). Suppose a system with qN =
criteria fails if and only if there exist (at least) K criteria
k k k< < ⋯ <1 2 K such that L C≥k k[ ] [ ]l l for all l = 1, 2, …, K. Then we
define the failure function d′ in A1 as

d
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑

L C I L C

p I L C

′( , ) = ∪ ∪ ∩ { ≥ }

= (− 1) − 1
K − 1

(∩ { ≥ }),

p
q

k k k q l
p k k

p

q
p

k k k q
l
p k k

=K 1≤ < <⋯< ≤ =1
[ ] [ ]

=K

−K

1≤ < <⋯< ≤
=1

[ ] [ ]

p
l l

p

l l

1 2

1 2

(9)

where
⎛
⎝⎜

⎞
⎠⎟ m j m j= !/( !( − )!)m

j and the second equality can be shown as in

[46]. A series system (Example 2) is a special case with K = 1. Another
special case is a parallel system (Example 3), which has qK = N = .

Example 5. (Series-parallel system). Suppose the q criteria are
partitioned into v ≥ 1 subsets (or subsystems), where subset
m v= 1, 2, …, , comprises criteria k q q q= , + 1, …, − 1m m m+1 , and
q q q q q= 1 < < ⋯ < < ≡ + 1v v1 2 +1 . Suppose further that the system
fails if and only if for at least one subset m, the load exceeds the
capacity for each of the subset's criteria. Then in Assumption A1 the
failure function d′ is defined as

d
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑

L C I L C

I L C

′( , ) = ∪ ∩ { ≥ }

= (− 1) ∩ ∩ { ≥ } .

m
v

k q
q k k

p

v
p

m m m v
l
p

k q
q k k

=1 =
−1 [ ] [ ]

=1

−1

1≤ < <⋯< ≤
=1 =

−1 [ ] [ ]

m
m

p
ml

ml

+1

1 2

+1

(10)

Some of the q criteria may be the same, i.e., there may exist criteria
k k≠1 2 such that P L L C C( = , = ) = 1k k k k[ ] [ ] [ ] [ ]1 2 1 2 . This allows the same
criterion to be parts of different subsets. A series system (Example 2) is
a special case with v=q subsets, where each subset m contains only
criterion m; i.e., q m=m for each m q= 1, 2, …, + 1. A parallel system
(Example 3) is another special case with only v=1 subset having all q
criteria; i.e., q = 11 and q q= + 12 .

Example 6. (Parallel-series system). Suppose the q criteria are again
partitioned into v subsets as in Example 5. Suppose further that the
system fails if and only if for each subset m v= 1, 2, …, , the load
exceeds the capacity for at least one of the subset's criteria. Then the

failure function d′ in Assumption A1 is defined as

d
⎛
⎝⎜

⎞
⎠⎟

∏ ∑ ∑

L C I L C

I L C

′( , ) = ∩ ∪ { ≥ }

= (−1) (∩ { ≥ }).

m
v

k q
q k k

m

v

p

q q
p

q k k k q
l
p k k

=1 =
−1 [ ] [ ]

=1 =1

−
−1

≤ < <⋯< ≤ −1
=1

[ ] [ ]

m
m

m m

m p m

l l

+1

+1

1 2 +1

(11)

As in Example 5, we allow that some of the q criteria may be the same.
A series system (Example 2) is a special case with v=1 subset having all
q criteria; i.e., q = 11 and q q= + 12 . Another special case is a parallel
system (Example 3), which has v=q subsets, where each subset m
contains only criterion m; i.e., q m=m for each m q= 1, 2, …, + 1.

Let H be the joint CDF of RL C( , ) ∈ q2 ; i.e., L C H( , ) ∼ , and
x y L x C yH P( , ) = ( ≤ , ≤ ) for constant q-vectors x and y. Under

Assumption A1, we can rewrite (3) as d
R

∫ x y x yθ H= ′( , ) d ( , )q2 . We

assume that computing θ is intractable, but there is a simulation model
that produces an observation of X so that vL C X H( , ) = ( ) ∼ . Let F
(resp., G) denote the marginal joint CDF of the random vector L (resp.,
C). The setting of fixed capacities is a special case with degenerate G.
Example 1 has RL C( , ) ∈ q2 with q=1 and H a mixture of bivariate
normals, so F and G are mixtures of univariate normals. In general, we
initially make no assumptions about the joint CDF H; e.g., we do not
require that H is a particular multivariate parametric distribution, such
as Gaussian or lognormal. Also, H may incorporate dependence among
the q2 elements of L C( , ). Later sections impose conditions as needed
when introducing different simulation methodologies, which will
increase statistical efficiency by exploiting the resulting additional
problem structure (e.g., L is independent of C in Section 6.3, but each
vector may still have dependencies).

While the framework of Assumption A1 is quite broad, it does
restrict the definition of failure to be in terms of a finite number of
criteria rather than a possibly infinite-dimensional random object. The
methods we will develop in later sections allow for the more general
definition of failure in (2) and as such will not require A1. However,
incorporating A1 will sometimes enable us to design more efficient
techniques, e.g., as in Section 6.3. Throughout the paper we will clearly
identify when A1 (and other assumptions) are needed.

Assumption A1 may not hold when the basic random object is a
continuous-time stochastic process, as in time-dependent reliability
[20, Chapter 6]. For example, [31] defines a “loss of assured safety” as a
system failure, as we now explain. The system has p components,
where the loads and capacities may change randomly over continuous
time. Let L t( )k[ ] and C t( )k[ ] be the load and capacity, respectively, of
component k at time t, and let X X t t= [ ( ): ≥ 0] be the continuous-time
stochastic process with X(t) from (1). Define the failure time of
component k as T t L t C t= inf { ≥ 0: ( ) ≥ ( )}k k k[ ] [ ] [ ] , which is the first time
the load of component k exceeds its capacity. Then partitioning the p
components into two nonempty sets, Ds (“strong links”) and Dw (“weak
links”), [31] provides several possible ways to define system failure in
terms of the p components’ failure times. One definition is
d X I T T( ) = (sup ≤ inf )k D

k
k D

k
∈

[ ]
∈

[ ]
s w

, so the system fails if and only if all
strong links fail before any weak link fails. Under the assumption that
the p components are mutually independent, [31] provides a repre-
sentation for the failure probability d Xθ E= [ ( )] in terms of the margin-
al CDFs of the component failure times, and examines different ways of
computing θ. The Monte Carlo methods we develop allow for depen-
dence of the components. In its full generality, the model just described
does not satisfy Assumption A1 because the continuous-time stochastic
process X cannot be reduced to a finite number of scalar loads and
capacities (but it still fits in the setting of Section 2). (As noted in the
previous paragraph, the Monte Carlo methods we develop in the later
sections do not require A1.) But we can develop a discrete-time version
over a finite time horizon for which A1 does hold by defining a criterion
for each component at each discrete time step.
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3. Simple random sampling

We first consider estimating θ with simple random sampling, which
is also known as naive simulation, standard simulation, or crude
Monte Carlo. The approach to construct a UCB satisfying (5) when
applying SRS, which does not require Assumption A1 from Section 2.1,
is well known (e.g., Example 3.2.4 of [44]), but we review the details
here as analogous arguments will be employed for the other Monte
Carlo methods in later sections.

Example 1. (Continued). We now explain how to sample
X L C H= ( , ) ∼ , where we recall H is a mixture of the joint CDFs H s( )
of μ Σ( , )s s2 , s s1 ≤ ≤ 0, with known mixing weights λs. First generate
an observation of a discrete random variable A with P A s λ( = ) = s,
s s= 1, 2, …, 0. If A=s, let X μ ZΓ= +s s , where Z Z Z= ( , )1 2 is a (column)
vector of i.i.d. (0, 1) random variables, Γs is a 2×2 matrix satisfying
ΓΓ Σ=s s s

⊤ (e.g., Γs may be a Cholesky factor of Σs [13, pp. 72–74]), and
the superscript ⊤ denotes transpose. Thus, with probability λs, we have
that X H∼ s( ), as required. We then estimate θ E= [ ] by averaging
independent and identically distributed (i.i.d.) copies of
d X I L C= ( ) = ( ≥ ).
More generally, to implement SRS, first generate a sample of n i.i.d.

copies X i, i n= 1, 2, …, , of the basic random object X in (2), and set
d X= ( )i i . Then the SRS point estimator of θ in (3) is

θ n n( ) = (1/ ) ∑i
n

iSRS =1 , which is unbiased; i.e., E θ n θ[ ( )] =SRS . The SRS
point estimator averages i.i.d. copies of a bounded response, so

[ ]n
σ n

θ n θ n
( )

( ) − ⇒ (0, 1) as → ∞,
SRS

SRS
(12)

by the ordinary CLT [43, Theorem 27.1], where⇒ denotes convergence
in distribution (i.e., at each continuity point of the limit's CDF, the CDF
of the left side of (12) converges to the limit's CDF [43, Chapter 5]), and
σ n θ n θ n( ) = ( )[1 − ( )]SRS

2
SRS SRS consistently estimates σ θ θ= [1 − ]SRS

2 ; i.e,
σ n σ( ) ⇒SRS

2
SRS
2 as n → ∞. Because the normal limit in (12) has a

continuous distribution, the portmanteau theorem (e.g., Theorem
29.1 of [43]) ensures that

⎛
⎝⎜

⎞
⎠⎟P n

σ n
θ n θ x P x n

( )
[ ( ) − ] ≥ → ( (0, 1) ≥ ) as → ∞

SRS
SRS

(13)

for each real-valued constant x. Let zγ be the γ-level upper one-sided
critical point of a (0, 1) random variable, which satisfies
P z P z γ( (0, 1) ≤ ) = ( (0, 1) ≥ − ) =γ γ , e.g., z = 1.6450.95 . Hence,

B n θ n z
σ n

n
( ) ≡ ( ) +

( )
γSRS SRS

SRS
(14)

is an asymptotic γ-level UCB satisfying (5) because P B n θ( ( ) ≥ )SRS
P n θ n θ σ n z P z γ= ( [ ( ) − ]/ ( ) ≥ − ) → ( (0, 1) ≥ − ) =γ γSRS SRS as n → ∞

by (13) with x z= − γ . Computing B n( )SRS uses only the observed
simulation outputs and known constants, and does not require any
unknown parameters. A simple modification of the well-known sign
test (e.g., Example 3.2.4 of [44]), this approach has been specialized to
multi-criteria nuclear PSAs with fixed capacities in Section 4.2 of [47].

We can easily modify the UCB B n( )SRS to obtain an asymptotic
γ-level lower confidence bound for θ by changing the plus in (14) to a
minus. An asymptotic γ-level two-sided confidence interval for θ is
simply θ n z σ n n( ( ) ± ( )/ )γSRS 1−(1− )/2 SRS . For the UCBs in the rest of the
paper, we can similarly modify them to obtain lower confidence bounds
and two-sided confidence intervals, so we omit the details.

If the failure function d is defined as in Assumption A1 in terms of a
function d′ of q loads and capacities, we apply SRS with sample size n
by letting vL C X( , ) = ( )i i i , i n= 1, 2, …, , using v from A1, where
L L L L= ( , , …, )i i i i

q[1] [2] [ ] , C C C C= ( , , …, )i i i i
q[1] [2] [ ] , and X i is the ith i.i.d.

copy of the basic random object X , as before. Then estimator θ n( )SRS
averages the d L C= ′( , )i i i , i n1 ≤ ≤ .

In a RISMC study of a postulated NPP event (e.g., a LOCA), it is
typically assumed that a failure, as in (7), results in damage to the core.

One is then sometimes also interested in estimating the core-damage
frequency κ νθ≡ , where ν is the (known) frequency of the postulated
event. When applying SRS, we can then estimate κ by
κ n νθ n( ) = ( )SRS SRS , and an asymptotic γ-level UCB for κ is
κ n z νσ n n( ) + ( )/γSRS SRS . For the other Monte Carlo methods considered
in the rest of the paper, we can similarly estimate and construct
confidence bounds for κ; we omit the details.

4. Stratified sampling

A key aspect of the RISMC approach is decomposing the sample
space of a hypothesized event into s ≥ 10 scenarios through an event
tree [18]. For example, Fig. 1 depicts an event tree from [3] with s = 40
scenarios of a postulated station blackout. The intermediate events
E E E, ,1 2 3 determine how the accident progresses; e.g., the lower (resp.,
upper) branch of E2 is the event that a safety relief valve is stuck open
(resp., properly closes). The branching probabilities of the intermediate
events are assumed known, as shown in the figure, from, e.g., previous
risk studies or historical data. Following a path from left to right
through the event tree leads to a scenario s s= 1, 2, …, 0, and the
probability λs of scenario s occurring is computed by multiplying the
branching probabilities of the intermediate events along the path; e.g.,
scenario 4 occurs with probability λ = 0.99938 × 0.00194 . But the failure
probability θ s( ) of each scenario s is unknown, and must be estimated
via some form of simulation.

Example 1. (Continued). In Fig. 1, let A be a discrete random variable
denoting which scenario s occurs, so P A s λ( = ) = s, s s1 ≤ ≤ 0, where
the λs are known. When A=s, assume that X L C= ( , ) has the μ Σ( , )s s2
CDF H s( ), so we can set X equal to a random vector X H∼s s( ) ( ). Thus, as
before, the unconditional CDF H of X is a mixture of CDFs H s( ),

s s1 ≤ ≤ 0, with mixing weights λs. Also, X L C= ( , )s s s( ) ( ) ( ) has the
conditional distribution of X L C= ( , ) given A=s. Let Fs( ) (resp., G s( ))
be the conditional marginal CDF of L s( ) (resp., C s( )); e.g., G s( ) is the

μ σ( , )C s C s, ,
2 CDF. Given scenario s occurs, the failure indicator

d X I L C= ( ) = ( ≥ )s s s s( ) ( ) ( ) ( ) has the conditional distribution of in
(2), and the (conditional) failure probability is then

d
R

∫ x xθ E P P L C H= [ ] = ( = 1) = ( ≥ ) = ( ) d ( )s s s s s s( ) ( ) ( ) ( ) ( ) ( )2 . We can

then estimate θ s( ) by averaging i.i.d. copies of
d X I L C= ( ) = ( ≥ )s s s s( ) ( ) ( ) ( ) .

The event-tree framework is well suited for estimating θ via
stratified sampling, with each scenario corresponding to a stratum.
In general, SS partitions the sample space into s ≥ 10 strata, where each
stratum has a known probability of occurring; see Section 4.3 of [13]
for an overview of SS. This is done through a stratification variable A,
which is a random variable A Ω R: → defined on the same probability
space Ω P( , , ) as the basic random object X . Partition the support R of
A into s0 subsets R R R, , …, s1 2 0

, with R R= ∪s
s

s=1
0 and R R∩ = ∅s s′ for

s s≠ ′. We call each Rs a stratum, and its index s a scenario. Let
λ λ s s= ( : = 1, 2, …, )s 0 , where each stratum probability λ P A R= ( ∈ )s s
is assumed known and positive. (We could have defined A to be a more
general random object, but for simplicity we only consider A as just a
random variable.) In Example 1 the stratification variable A is the
randomly chosen scenario, its support R = {1, 2, 3, 4} decomposes into
strata R s= { }s for s = 1, 2, 3, 4, and, e.g., λ = 0.99938 × 0.00194 . Let

Scenario

1

3

4

2

Initiating
Event E E E

SBO 0.99938

6.2E-4

1.9E-3

0.9981
0.919

8.1E-2

1 2 3

Intermediate Events

Fig. 1. An event tree for a hypothesized station blackout (SBO).

A. Alban et al. Reliability Engineering and System Safety 165 (2017) 376–394

381



X s( ) be an S-valued random object having the conditional distribution
of the basic random object X in (2) given A R∈ s. Assume that for each
scenario s, we can generate observations of X s( ), e.g., via a computer
code with random inputs. Then for the failure function d in (2), let

d X= ( ),s s( ) ( ) (15)

which has the conditional distribution of the failure indicator in (2)
given A R∈ s. The failure probability in (3) satisfies

∑ ∑θ P A R P A R λ θ= ( ∈ ) ( = 1 ∈ ) =
s

s

s s
s

s

s s
=1 =1

( )

0 0

(16)

by the law of total probability, where

θ P E= ( = 1) = [ ]s s s( ) ( ) ( ) (17)

is the (conditional) failure probability for scenario s. In (16), each λs is
known but θ s( ) is not, and we use some form of simulation to estimate
each θ s( ), which are combined as in (16) to obtain an estimate of θ . (A
RISMC study may also be interested in the value of each θ s( ).)

Specifically, we implement SS with overall sample size n by letting
n η n=s s be the sample size allocated to scenario s, where ηs,
s s= 1, 2, …, 0, are user-specified positive constants satisfying

η∑ = 1s
s

s=1
0 . We call η η s s= ( : = 1, 2, …, )s 0 the SS allocation. For

simplicity, we assume that ns is an integer; otherwise, let n η n= ⌊ ⌋s s ,
where ⌊·⌋ denotes the floor function. For each scenario s s= 1, 2, …, 0,
let X s i( ), , i n= 1, 2, …, s, be a sample of ns i.i.d. copies of X s( ) in (15), and
let d X= ( )s i s i( ), ( ), for d in (2). Then we estimate the expectation θ s( ) of
the response s( ) by

∑θ n
n

( ) = 1
s η

s i

n

s i( ),SS,
=1

( ),

s

(18)

where the subscript SS denotes stratified sampling with simple random
sampling applied within each stratum. Then

∑θ n λ θ n( ) = ( )η
s

s

s s ηSS,
=1

( ),SS,

0

(19)

is the SS estimator of θ λ θ= ∑s
s

s s=1 ( )
0 . For each scenario s s= 1, 2, …, 0,

the estimator θ n( )s η( ),SS, satisfies a CLT

[ ]n
σ n η

θ n θ n
( )

( ) − ⇒ (0, 1) as → ∞,
s η s

s η s
( ),SS,

( ),SS, ( )
(20)

where σ n θ n θ n( ) ≡ ( )[1 − ( )]s η s η s η( ),SS,
2

( ),SS, ( ),SS, consistently estimates

σ θ θ≡ Var[ ] = [1 − ].s s s s( ),SS
2

( ) ( ) ( ) (21)

(The extra factor ηs appears on the left side of (20) because the scaling

is n but the estimator θ n( )s η( ),SS, is based on a sample size of n η n=s s .)
Assuming that the s0 scenarios for SS are simulated independently, we
then have that (20) jointly holds for s s= 1, 2, …, 0, by Problem 29.2 of
[43], so the SS estimator θ n( )ηSS, of the overall failure probability θ
satisfies the CLT n θ n θ σ n[ ( ) − ]/ ( ) ⇒ (0, 1)η ηSS, SS, as n → ∞, where

σ n λ σ n η( ) ≡ ∑ ( )/η s
s

s s η sSS,
2

=1
2

( ),SS,
20 consistently estimates

∑σ
λ σ

η
≡ ;η

s

s
s s

s
SS,
2

=1

2
( ),SS
20

(22)

e.g., see p. 215 of [13]. Finally, an asymptotic γ-level UCB for θ when
using SS is

B n θ n z
σ n

n
( ) = ( ) +

( )
,η η γ

η
SS, SS,

SS,

(23)

which satisfies (5) (without requiring Assumption A1). If there is only
s = 10 scenario, then SS reduces to SRS.

When the SS allocation η is chosen so that η λ= , which is called the
proportional allocation, it is well known (e.g., p. 217 of [13]) that SS
guarantees a variance reduction compared to SRS; i.e., σ σ≤λSS,

2
SRS
2 . The

optimal choice of η to minimize σ ηSS,
2 is η η s s* = ( *: = 1, 2, …, )s 0 with

η λ σ λ σ* = ( )/ ∑
′

( ′ ′ )s s s s
s

s s( ),SS =1 ( ),SS
0 . Note that η* depends on the unknown

σ s( ),SS in (21), making it impossible to directly implement the optimal
allocation. But one could instead apply a two-stage procedure: the first
stage estimates the σ s( ),SS, which are used to estimate η*, and the second
stage then collects additional observations from the scenarios using the
estimated optimal allocation.

When Assumption A1 holds (i.e., failure is defined in terms of q
loads and capacities), for the function v in A1, let vL C X( , ) = ( )s s s( ) ( ) ( ) ,
which has the conditional distribution of L C( , ) given A R∈ s, where
L L L L= ( , , …, )s s s s

q
( ) ( )

[1]
( )
[2]

( )
[ ] and C C C C= ( , , …, )s s s s

q
( ) ( )

[1]
( )
[2]

( )
[ ] . Let H s( ) denote

the joint CDF of L C( , )s s( ) ( ) in scenario s, and let Fs( ) (resp., G s( )) be the
marginal CDF of the load vector L s( ) (resp., capacity vector C s( )). Then
the failure indicator s( ) in (15) becomes

d L C= ′( , )s s s( ) ( ) ( ) (24)

for failure function d′ in A1. To construct the SS estimator in (18) of θ s( ),
we use the same i.i.d. observations X s i( ), i n1 ≤ ≤ s, of X s( ) from before.

Then set vL C X H( , ) = ( ) ∼s i s i s i s( ), ( ), ( ), ( ), where L L L L= ( , , …, )s i s i s i s i
q

( ), ( ),
[1]

( ),
[2]

( ),
[ ]

(resp., C C C C= ( , , …, )s i s i s i s i
q

( ), ( ),
[1]

( ),
[2]

( ),
[ ] ) is an observation of the q loads

L L L( , , …, )q[1] [2] [ ] (resp., capacities C C C( , , …, )q[1] [2] [ ] ) given A R∈ s.
The estimator θ n( )s η( ),SS, in (18) of θ E= [ ]s s( ) ( ) averages

d L C= ′( , )s i s i s i( ), ( ), ( ), , i n1 ≤ ≤ s, which are i.i.d.

5. Combined SS and Latin hypercube sampling

We now consider combining SS with Latin hypercube sampling to
estimate θ . Originally proposed by [48], LHS can be thought of as an
efficient way to simultaneously stratify multiple input coordinates, and
it reduces variance by producing negatively correlated outputs (under
certain regularity conditions). The LHS estimator of the mean of a
bounded response function satisfies a CLT [49], and [50] extends this
to the setting when the response has a finite absolute third moment.
Due to its ease of implementation and broad applicability, LHS is
widely used in practice; e.g., citing over 300 references, [51] surveys
LHS works, with an emphasis on nuclear engineering.

Applying LHS requires additional problem structure. Let [0, 1]
denote a uniform distribution on [0, 1], and we will assume that the
basic random object can be generated using a fixed number of i.i.d.

[0, 1] random numbers.

Example 1. (Continued). Let U1 and U2 be i.i.d. [0, 1]. We can then
generate X μ Σ∼ ( , )s s s( ) 2 through a function w s( ) of the ds=2 uniforms
that operates as follows. First build vector Z Z Z= ( , )1 2 with
Z Φ U= ( )i i

−1 , where Φ is the (0, 1) CDF. Then w U U( , )s( ) 1 2 returns

X μ ZΓ= +s s s( ) , which lies in the set S R= 2, where ΓΓ Σ=s s s
⊤ .

More generally, we impose the following condition, where =
denotes equality in distribution.

Assumption A2. For each scenario s s= 1, 2, …, 0, there is a
deterministic function w S: [0, 1] →s

d
( )

s such that if U U U, , …, d1 2 s
are

ds i.i.d. [0, 1] random variables, then

w XU U U( , , …, ) = .s d s( ) 1 2 ( )s (25)

In other words, the function w s( ) takes a fixed number ds of
i.i.d. [0, 1] random numbers as inputs, and transforms them into
an observation of the basic random object SX ∈s( ) having the correct
distribution for scenario s. Consider the special case when
X X X X= ( , , …, )s s s s

d
( ) ( )

[1]
( )
[2]

( )
[ ]s is a random vector with independent (but

not necessarily identically distributed) entries, where each X s
j

( )
[ ] has

marginal CDF Q s j( ), . Then we set w U U U Q( , , …, ) = (s d s( ) 1 2 ( ),1
−1

s

U Q U Q U( ), ( ), …, ( ))s s d d1 ( ),2
−1

2 ( ),
−1

s s
, assuming Q s j( ),

−1 can be computed.

Assumption A2 also permits the random vector X X X( , , …, )s s s
d

( )
[1]

( )
[2]

( )
[ ]s

(or a more general basic random object X s( )) to have a dependence
structure, and Section 7.2 shows how copulas [42] can be used to
model the dependence. While the framework of Assumption A2 is quite
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general, it precludes applying variate-generation methods such as
acceptance-rejection (e.g., Section II.2b of [14]), in which the number
of uniforms used to generate X s( ) is random and unbounded. Also, A2
does not allow the spaceS in which X s( ) lives to be infinite dimensional,
as is the case for some stochastic processes; see Section 2.

Before describing how to employ LHS under Assumption A2 (but
without requiring A1), we first explain the case of applying SRS within
each scenario s to obtain ns i.i.d. failure indicators. Arrange
i.i.d. [0, 1] random numbers Us i j( ), , , i n1 ≤ ≤ s, j d1 ≤ ≤ s, in an
n d×s s grid, and apply the composition d w( (·))s( ) of (15) and (25) to
each row:

d w

d w

d w

U U U
U U U

U U U

= ( ( , , …, )),
= ( ( , , …, )),

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
= ( ( , , …, )),

s s s s s d

s s s s s d

s n s s n s n s n d

( ),1 ( ) ( ),1,1 ( ),1,2 ( ),1,

( ),2 ( ) ( ),2,1 ( ),2,2 ( ),2,

( ), ( ) ( ), ,1 ( ), ,2 ( ), ,

s

s

s s s s s (26)

where for each i n= 1, 2, …, s, we have that s i( ), is the failure indicator
for the ith run of scenario s. Because each row i n= 1, 2, …, s, of (26)
has ds i.i.d. [0, 1] random numbers, s i( ), has the correct distribution
by (15) and (25). Also, as the rows of uniforms in (26) are independent,
we have that s i( ), , i n= 1, 2, …, s, are i.i.d. We can then use them to

construct the estimator θ n( )s η( ),SS, in (18). Moreover, assuming the grids
in (26) across scenarios s s= 1, 2, …, 0, are independent, we then apply
(19) to obtain the asymptotic UCB in (23).

We now explain how to implement LHS under the framework of
Assumption A2 (without requiring A1) to obtain a dependent sample of
ns failure indicators. For each scenario s s= 1, 2, …, 0, and each input
coordinate j d= 1, 2, …, s, in (25), let π π π= ( (1), (2), …,s j s j s j( ), ( ), ( ),
π n( ))s j s( ), be a random permutation of n(1, 2, …, )s ; i.e., each of the n !s
permutations of n(1, 2, …, )s is equally likely, and π i( )s j( ), is the number
to which i is mapped in permutation π s j( ), . Also, let π s j( ), , j d= 1, 2, …, s,
be independent random permutations, independent of the i.i.d. Us i j( ), , in
(26). Then let

V
π i U

n
=

( ) − 1 +
,s i j

s j s i j

s
( ), ,

( ), ( ), ,

(27)

which is easily shown to be [0, 1]. Next arrange Vs i j( ), , , i n1 ≤ ≤ s,
j d1 ≤ ≤ s, into an n d×s s array, which we call an LHS grid (of

uniforms), and apply the composition d w( (·))s( ) of (15) and (25) to
each row to get

d w

d w

d w

V V V
V V V

V V V

= ( ( , , …, )),
= ( ( , , …, )),

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
= ( ( , , …, )).

s s s s s d

s s s s s d

s n s s n s n s n d

( ),1 ( ) ( ),1,1 ( ),1,2 ( ),1,

( ),2 ( ) ( ),2,1 ( ),2,2 ( ),2,

( ), ( ) ( ), ,1 ( ), ,2 ( ), ,

s

s

s s s s s (28)

It is straightforward to show that V V V, , …,s i s i s i d( ), ,1 ( ), ,2 ( ), , s
in each row

i of (28) are ds i.i.d. [0, 1] random numbers, so the failure indicator

s i( ), has the correct distribution for scenario s by (15) and (25). But all
entries in each column j of theVs i j( ), , in (28) share the same permutation
π s j( ), , so the ns responses s i( ), , i n= 1, 2, …, s, in (28) are dependent.

Each column j d= 1, 2, …, s, of the Vs i j( ), , in (28) forms a stratified
sample of size ns of the unit interval partitioned into ns subintervals,
each of length n1/ s. Specifically, for each column j, there is exactly one
value Vs i j( ), , in the stratum a n a n[( − 1)/ , / )s s for each a n= 1, 2, …, s, as
can be easily seen through (27).

Let SS+LHS denote stratified sampling with LHS used within each
scenario. (If SS has only s = 10 scenario, then SS+LHS reduces to LHS.)
For s i( ), , i n= 1, 2, …, s, from (28), the SS+LHS estimator of θ s( ) in (17)
is

∑θ n
n

( ) = 1 ,s η
s i

n

s i( ),SS+LHS,
=1

( ),

s

(29)

which averages dependent terms but is still unbiased because of the

linearity of expectation and each =s i s( ), ( ). The SS+LHS estimator of
the overall failure probability θ λ θ= ∑s

s
s s=1 ( )

0 is

θ n λ θ n( ) = ∑ ( )η s
s

s s ηSS+LHS, =1 ( ),SS+LHS,
0 .

As the response s i( ), in (29) is bounded, the LHS CLT of [49]

implies the estimator θ n( )s η( ),SS+LHS, of θ s( ) satisfies

[ ]n
σ η

θ n θ n
/

( ) − ⇒ (0, 1) as → ∞
s s

s η s
( ),SS+LHS

( ),SS+LHS, ( )
(30)

for each scenario s, where we will give an expression for the asymptotic
variance constant σ s( ),SS+LHS

2 in Section 5.1. We assume the s0 scenarios
for SS are simulated independently, so (30) jointly holds for
s s= 1, 2, …, 0, by Problem 29.2 of [43]. Hence, the overall SS+LHS
estimator of θ obeys the CLT n θ n θ σ[ ( ) − ]/ ⇒ (0, 1)η ηSS+LHS, SS+LHS, as
n → ∞, where the asymptotic variance is

∑σ
λ σ

η
= .η

s

s
s s

s
SS+LHS,
2

=1

2
( ),SS+LHS
20

(31)

If Assumption A1 (i.e., failure is defined in terms of q loads and
capacities) holds in addition to A2, then we can sample the load and
capacity vectors for scenario s through a deterministic function
w R′ : [0, 1] →s

d q
( )

2s defined as

w v w L CU U U U U U H′ ( , , …, ) ≡ ( ( , , …, )) = ( , ) ∼s d s d s s s( ) 1 2 ( ) 1 2 ( ) ( ) ( )s s (32)

wtih U U U, , …, d1 2 s
as i.i.d. [0, 1] random variables, where v is from

A1, w s( ) is from A2, and we recall that H s( ) is the joint CDF of L C( , )s s( ) ( ) .
In other words, the functionw′s( ) takes ds i.i.d. [0, 1] random numbers
as inputs, and transforms them into an observation of the load and
capacity vectors having the correct joint CDF H s( ). Specifically, w′s( )
accomplishes this by first usingw s( ) to generate the basic random object
X s( ), and then feeds X s( ) into v to obtain L C( , )s s( ) ( ) . (In Example 1,
because X L C= ( , )s s s( ) ( ) ( ) , the function v is the identity mapping, so
w w= ′s s( ) ( ).) Then for the failure function d′ in A1, we can generate the
failure indicator in (15) and (24) as

d w d w d L CU U U U U U= ( ( , , …, )) = ′( ′ ( , , …, )) = ′( , ).s s d s d s s( ) ( ) 1 2 ( ) 1 2 ( ) ( )s s

(33)

Also, we compute each s i( ), in (28) as
d w V V V= ′( ′ ( , , …, ))s i s s i s i s i d( ), ( ) ( ), ,1 ( ), ,2 ( ), , s

to obtain the estimator in (29).

5.1. Analyzing the effect of LHS

We now give an expression for σ s( ),SS+LHS
2 in (30) and (31) under

Assumption A2 (without A1). Let U U U U= ( , , …, )d1 2 s
be a vector of ds

i.i.d. [0, 1] variables. The failure indicator in (15) satisfies

d d wX U U= ( ) = ( ( )) ≡ ( )s s s s( ) ( ) ( ) ( ) (34)

by (25), where we write U( )s( ) to emphasize the dependence of s( ) on
U . Next use an analysis-of-variance (ANOVA) decomposition as in [52]
to approximate the response function in (34) for scenario s by an
additive function of the uniform inputs:

∑U Uθ ϕ U( ) = + ( ) + ϵ ( ),s s
j

d

s j j s( ) ( )
=1

( ), ( )

s

(35)

where the residual Uϵ ( )s( ) is defined so the equality in (35) holds, and
ϕ U E U U U U θ( ) = [ ( , , …, ) ] −s j j s d j s( ), ( ) 1 2 ( )s

is a function of only the jth
uniform input Uj as the other coordinates have been integrated out by
the conditional expectation. Then for σ s( ),SS

2 defined in (21), [52] and
[49] show that the asymptotic variance in (30) satisfies

⎡
⎣⎢

⎤
⎦⎥∑Uσ σ ϕ U= Var[ϵ ( )] = − Var ( ) .s s s

j

d

s j j( ),SS+LHS
2

( ) ( ),SS
2

=1
( ),

s

(36)

Thus, σ σ≤s s( ),SS+LHS
2

( ),SS
2 for each scenario s, so LHS removes the

variability of the additive part of the response U( )s( ) . The next result,
which then directly follows from putting (36) in (31) and comparing to
(22), establishes that after combining across all scenarios, the asymp-
totic variance for SS+LHS is no larger than that for SS.
Theorem 1. Under Assumption A2, when both SS and SS+LHS use
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the same stratification allocation η, we have that σ σ≤η ηSS+LHS,
2

SS,
2 , with

⎡
⎣⎢

⎤
⎦⎥σ σ λ η ϕ U− = ∑ ( / ) ∑ Var ( ) ≥ 0η η s

s
s s j

d
s j jSS,

2
SS+LHS,
2

=1
2

=1 ( ),
s0 .

In general, LHS can produce substantial variance reduction when
the response whose expectation we are estimating is nearly an additive
function of the input variables. To see why, we now adapt the
explanation in [22, Section 10.3] to our setting, where the response
for each scenario s is the indicator function on the left side of (35).
Putting the additive representation (35) in (29) when the uniform
inputs are now from the LHS grid of Vs i j( ), , in (28) leads to

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑

∑ ∑ ∑

V

V

θ n
n

θ ϕ V

θ
n

ϕ V
n

( ) = 1 + ( ) + ϵ ( )

= + 1 ( ) + 1 ϵ ( ),

s η
s i

n

s
j

d

s j s i j s s i

s
j

d

s i

n

s j s i j
s i

n

s s i

( ),SS+LHS,
=1

( )
=1

( ), ( ), , ( ) ( ),

( )
=1 =1

( ), ( ), ,
=1

( ) ( ),

s s

s s s

(37)

where V V V V= ( , , …, )s i s i s i s i d( ), ( ), ,1 ( ), ,2 ( ), , s
is from the ith row of (28). Recall

that for each input coordinate j d= 1, 2, …, s, the jth column of the
LHS grid of inputs in (28) forms a stratified sample from the unit
interval partitioned into ns subintervals, each of length n1/ s. Thus, for
each input coordinate j in the middle term on the right side of (37), the
average n ϕ V(1/ ) ∑ ( )s i

n
s j s i j=1 ( ), ( ), ,

s corresponds to a (random) Reimann

approximation to the one-dimensional integral ∫α ϕ u u≡ ( ) ds j s j( ), 0

1
( ), .

When each conditional expectation ϕ (·)s j( ), is smooth enough, a
Reimann approximation of the one-dimensional integral α s j( ), based
on ns points converges much more quickly than the standard Monte
Carlo rate of n1/ s as n → ∞s . The last term in (37) has error decreasing
at rate n1/ s , which thus dominates the error of the middle term in
(37). Hence, if the additive approximation in (35) is good in the sense
that the residual has small variance, then LHS can do much better than
SRS for each scenario. Finally, combining across scenarios leads to SS
+LHS having substantially lower variance than SS when the response
function for each scenario is nearly additive.

But the response function U( )s( ) in (35) is an indicator, so the
additive approximation in (35) may be a poor fit. Hence, SS+LHS may
not reduce variance much compared to SS. In Section 6 we consider
further applying conditional Monte Carlo, which produces a smoother
response function. This can lead to a better additive fit and correspond-
ingly smaller asymptotic variance when applying LHS.

5.2. Combined SS and replicated LHS to construct UCB

While it is possible (e.g., see [49]) to consistently estimate the
asymptotic variance σ s( ),SS+LHS

2 in (36) to construct a UCB for θ, we
instead now apply replicated LHS [21]. Here we generate b ≥ 2
independent LHS samples, e.g., b=10, where each of the b LHS
samples are as in (28), but with size m η n b= /s s (i.e., ms rows) instead
of ns, and n is the overall sample size across all scenarios and
replications. We assume for simplicity that each ms is integer-valued;
otherwise, let m η n b= ⌊ / ⌋s s .

We now give the details of estimating θ by combining SS with rLHS,
denoted by SS+rLHS, where we use rLHS within each scenario, and
rLHS samples across scenarios are independent. For each scenario
s s= 1, 2, …, 0, and each replication r b= 1, 2, …, , let
π π π π m= ( (1), (2), …, ( ))s j

r
s j
r

s j
r

s j
r

s( ),
〈 〉

( ),
〈 〉

( ),
〈 〉

( ),
〈 〉 be a random permutation of

m(1, 2, …, )s for input coordinate j d= 1, 2, …, s. Also, let π s j
r

( ),
〈 〉 ,

j d1 ≤ ≤ s, r b1 ≤ ≤ , s s1 ≤ ≤ 0, be independent random permutations.
Then independently of the permutations, define m d×s s i.i.d. [0, 1]
random numbersU s i j

r
( ), ,
〈 〉 , i m1 ≤ ≤ s, j d1 ≤ ≤ s, as in the array in (26) but

with only ms rows instead of ns, where the b grids of i.i.d. uniforms for
r b= 1, 2, …, , are also independent. For each scenario s s= 1, 2, …, 0,
and each replication r b= 1, 2, …, , let V π i U m= [ ( ) − 1 + ]/s i j

r
s j
r

s i j
r

s( ), ,
〈 〉

( ),
〈 〉

( ), ,
〈 〉 ,

i m1 ≤ ≤ s, j d1 ≤ ≤ s, which we arrange in an m d×s s LHS grid, and
apply the composition d w( (·))s( ) of (15) and (25) to each row to obtain
ms identically distributed but dependent copies of s( ):

d w

d w

d w

V V V

V V V

V V V

= ( ( , , …, )),

= ( ( , , …, )),
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

= ( ( , , …, )).

s
r

s s
r

s
r

s d
r

s
r

s s
r

s
r

s d
r

s m
r

s s m
r

s m
r

s m d
r

( ),1
〈 〉

( ) ( ),1,1
〈 〉

( ),1,2
〈 〉

( ),1,
〈 〉

( ),2
〈 〉

( ) ( ),2,1
〈 〉

( ),2,2
〈 〉

( ),2,
〈 〉

( ),
〈 〉

( ) ( ), ,1
〈 〉

( ), ,2
〈 〉

( ), ,
〈 〉

s

s

s s s s s (38)

The estimator of the failure probability θ s( ) in (17) for scenario s
from replication r is

∑θ n
m

( ) = 1 ,s
r

s i

m

s
r

( )
〈 〉

=1
( ),1
〈 〉

s

(39)

and the estimator of the overall failure probability θ in (16) from
replication r is

∑θ n λ θ n( ) = ( ).
r

s

s

s s
r〈 〉

=1
( )
〈 〉0

(40)

The final SS+rLHS estimator of θ across all b replications is

∑θ n
b

θ n( ) = 1 ( ).η b
r

b
r

SS+rLHS, ,
=1

〈 〉

(41)

To derive a UCB for θ when employing SS+rLHS with overall

sample size n, compute the sample variance of θ n( )
r( )

, r b1 ≤ ≤ , as
⎡
⎣⎢

⎤
⎦⎥S n θ n θ n( ) = ∑ ( ) − ( )b b r

b r
η b

2 1
− 1 =1

〈 〉
SS+rLHS, ,

2

. Let τb γ−1, be the upper one-

sided γ-level critical point of a Student-t random variable Tb−1 with
b − 1 degrees of freedom (d.f.); i.e., γ P T τ= ( ≤ )=b b γ−1 −1,
P T τ( ≥ − )b b γ−1 −1, by the symmetry of the Tb−1 density function. For
example, τ = 1.8339,0.95 . The next result, whose proof is in Appendix A,
includes rLHS as the special case when s = 10 , which can provide a UCB
for θ s( ) for a single scenario s.

Theorem 2. Under Assumption A2, an SS+rLHS asymptotic γ-level
UCB for θ is B n θ n τ S n b( ) = ( ) + ( )/η b η b b γ bSS+rLHS, , SS+rLHS, , −1, , i.e.,

P B n θ γlim ( ( ) ≥ ) =n η b→∞ SS+rLHS, , as in (5) for any fixed b ≥ 2 and SS
allocation η.

If Assumption A1 from Section 2.1 also holds (i.e., failure defined in
terms of q loads and capacities), (38) has d w V= ′( ′ ( ,s i

r
s s i

r
( ),
〈 〉

( ) ( ), ,1
〈 〉

V V, …, ))s i
r

s i d
r

( ), ,2
〈 〉

( ), ,
〈 〉

s
, i m1 ≤ ≤ s, with functions d′ and w′s( ) as in

Assumption A1 and (32), respectively.

6. Combined SS, conditional Monte Carlo, and LHS

Conditional Monte Carlo (also known as conditional expectation or
conditioning) reduces variance by analytically integrating out some of
the variability; see Section V.4 of [14] for an overview of CMC.

Example 1. (Continued). Recall that because the basic random object
in scenario s is X L C= ( , )s s s( ) ( ) ( ) , the function w s( ) in (25) generating X s( )
is the same as the functionw′s( ) in (32) producing the load and capacity.
Now further suppose that w w= ′s s( ) ( ) uses two other functions
l R: [0, 1] →s( ) and c R: [0, 1] →s( ) to generate the load L s( ) and
capacity C s( ), respectively, in X μ Σ∼ ( , )s s s( ) 2 . Specifically, for U1 and
U2 as ds=2 i.i.d. [0, 1] random numbers, we assume that
w l cU U U U( , ) = ( ( ), ( ))s s s( ) 1 2 ( ) 1 ( ) 2 , where

l

c

U μ σ Φ U L F

U μ σ Φ U C G

( ) = + ( ) = ∼ and

( ) = + ( ) = ∼

s L s L s s s

s C s C s s s

( ) 1 , ,
−1

1 ( ) ( )

( ) 2 , ,
−1

2 ( ) ( ) (42)

are the load and capacity, respectively. Note that l s( ) takes as input
d′ = 1s uniform U1, and c s( ) has the other d d− ′ = 1s s uniform U2 as input.
As l s( ) and c s( ) use different inputs, which are independent, the load

L μ σ∼ ( , )s L s L s( ) , ,
2 is independent of the capacity C μ σ∼ ( , )s C s C s( ) , ,

2 . By
taking iterated expectations (e.g., p. 448 of [43]) of the failure indicator

I L C= ( ≥ )s s s( ) ( ) ( ) , the failure probability in (17) for scenario s satisfies

θ E E E L E L= [ ] = [ [ | ]] = [ ( )],s s s s s s( ) ( ) ( ) ( ) ( ) ( ) (43)
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L E L P C L L G Lwhere ( ) = [ | ] = ( ≤ | ) = ( )s s s s s s s s s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (44)

by the independence of L s( ) and C s( ). Therefore, (43) implies that
sampling identically distributed copies of L( )s s( ) ( ) will produce an
unbiased estimator of θ s( ). This is the key idea of CMC (when combined
with SS). The advantage of this approach becomes apparent from a
variance decomposition (e.g., p. 456 of [43]):

E L E L

E L L

Var[ ] = Var[ [ | ]] + [Var[ | ]

≥ Var[ [ | ]] = Var[ ( )].
s s s s s

s s s s

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (45)

Thus, sampling L( )s s( ) ( ) rather than s( ) yields a variance reduction. But
applying the combination SS+CMC here critically relies on being able
to generate and compute L( )s s( ) ( ) , which is a function of only L s( ) as C s( )
has been integrated out by the conditional expectation in (44). Because
G s( ) is the μ σ( , )C s C s, ,

2 CDF, we can use (42) to compute (44) as

L Φ L μ σ Φ σ Φ U μ μ σ( ) = ([ − ]/ ) = ([ ( ) + − ]/ )s s s C s C s L s L s C s C s( ) ( ) ( ) , , ,
−1

1 , , , , which
is a function of L s( ) (or U1) but not C s( ) (nor U2). In contrast to the
failure indicator I L C= ( ≥ )s s s( ) ( ) ( ) , the response L( )s s( ) ( ) is not binary-
valued but rather lies in the interval (0, 1) because it is a conditional
probability.

Returning to the general problem, we now explain how to combine
CMC with SS to estimate θ E= [ ]s s( ) ( ) in (17) for each scenario
s s= 1, 2, …, 0. (Later we will add LHS.) Let M s( ) be an S′-valued
conditioning random object for CMC defined on the same probability
space as X s( ), where S( ′, ′) is a metric space, so each simulation run
generates M s( ) along with X s( ); Example 1 has M L=s s( ) ( ) and S R′ = .
Substituting M s( ) for L s( ) in (43) then results in

M Mθ E E E E= [ ] = [ [ | ]] = [ ( )],s s s s s s( ) ( ) ( ) ( ) ( ) ( ) (46)

where the SS+CMC response function generalizing (44) is the condi-
tional expectation (probability)

dM M M X ME P P( ) = [ | ] = ( = 1| ) = ( ( ) = 1| )s s s s s s s s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (47)

for d in (2). By (46), SS+CMC produces an unbiased estimator of θ s( ) by
averaging identically distributed copies of M( )s s( ) ( ) , rather than copies
of s( ) as when applying only SS. The response s( ) in (17) when not
applying conditioning is binary, but in general the SS+CMC response

M( )s s( ) ( ) in (47) is not binary but rather lies in [0, 1] because it is a

conditional probability. As σ = Var[ ]s s( ),SS
2

( ) by (21), replacing L s( ) with
M s( ) in (45) leads to

M Mσ E σVar[ ( )] = − [Var[ ]] ≤ .s s s s s s( ) ( ) ( ),SS
2

( ) ( ) ( ),SS
2

(48)

Thus, estimating θ s( ) by averaging identically distributed copies of the
SS+CMC response M( )s s( ) ( ) from (47) rather than the SS response s( )
shows that SS+CMC yields a variance reduction compared to SS for
each scenario s.

Applying CMC crucially relies on being able to generate and
compute the conditional expectation M( )s s( ) ( ) in (47), which depends
on the particular forms of the basic random object X s( ), the failure
function d in (2), and the conditioning random object M s( ). Section 6.3
will show how to compute M( )s s( ) ( ) for a generalization of Example 1
with q ≥ 1 loads and capacities when M L=s s( ) ( ), the vector of loads.
Other CMC work also assumes the basic random object is a vector of
basic variables. [26] conditions on various subsets of the basic
variables, assumed to be mutually independent, and combines CMC
with antithetic variates. When the basic variables are i.i.d. standard
normals, [39] expresses the normal vector in polar coordinates and
conditions on the angle, so the conditional expectation integrates out
the radius, which is independent of the angle. CMC also applies for
stochastic processes; e.g., to analyze a highly reliable system modeled
as a continuous-time Markov chain, [53] conditions on its embedded
discrete-time chain, and the conditional expectation replaces the
exponential holding time in each state visited with its conditional
mean.

To implement SS+CMC (which reduces to CMC when SS has only
s = 10 scenario), for each scenario s s= 1, 2, …, 0, we generate M s i( ), ,

i n1 ≤ ≤ s, as a sample of ns i.i.d. copies of M s( ). The SS+CMC estimator
of the failure probability θ s( ) for scenario s is then

Mθ n n( ) = (1/ ) ∑ ( )s η s i
ns

s s i( ),SS+CMC, =1 ( ) ( ), , and θ n λ θ n( ) = ∑ ( )η s
s

s s ηSS+CMC, =1
0

( ),SS+CMC,

is the SS+CMC estimator of the overall failure probability θ in (16).
To build a UCB for θ, let σ n n( ) = (1/( − 1)) ∑s s i

n
( ),SS+CMC
2

=1
s

M θ n[ ( ) − ( )]s s i s η( ) ( ), ( ),SS+CMC,
2 be a consistent estimator of

Mσ = Var[ ( )]s s s( ),SS+CMC
2

( ) ( ) , so σ n λ σ n η( ) = ∑ ( )/η s
s

s s sSS+CMC,
2

=1
2

( ),SS+CMC
20

consistently estimates σ λ σ η= ∑ /η s
s

s s sSS+CMC,
2

=1
2

( ),SS+CMC
20 . Recalling zγ

satisfies P z γ( (0, 1) ≤ ) =γ , we obtain an SS+CMC asymptotic γ-level
UCB for θ as B n θ n z σ n n( ) = ( ) + ( )/η η γ ηSS+CMC, SS+CMC, SS+CMC, ; i.e.,

P B n θ γlim ( ( ) ≥ ) =n η→∞ SS+CMC, as in (5) for any SS allocation η. The
SS+CMC UCB requires neither Assumption A1 nor A2.

We now impose Assumption A2 so we can add LHS to SS+CMC. By
the first equality in (33), (46) becomes

d w d w Mθ E E U U U E E U U U= [ ] = [ ( ( , , …, ))] = [ [ ( ( , , …, )) | ]].s s s d s d s( ) ( ) ( ) 1 2 ( ) 1 2 ( )s s

(49)

We assume the conditioning random object M s( ) satisfies the following:

Assumption A3. For M s( ) an S′-valued conditioning random object,

there exist functions w S S* : [0, 1] → × ′s
d

( )
s and m S: [0, 1] → ′s

d
( )

′s with

d d1 ≤ ′ ≤s s such that for w S: [0, 1] →s
d

( )
s in (25) and U U U, , …, d1 2 s

i.i.d. [0, 1],

w w mX M U U U U U U U U U( , ) = * ( , , …, ) = ( ( , , …, ), ( , , …, )).s s s d s d s d( ) ( ) ( ) 1 2 ( ) 1 2 ( ) 1 2 ′s s s

(50)

In other words, the function w*s( ) uses the same ds i.i.d. uniforms to
generate both theS-valued basic random object X s( ) and theS′-valued
conditioning random object M s( ), so they are dependent. Moreover,
while w s( ) employs all ds uniforms to output X s( ), function m s( ) builds
M s( ) from just the first d d′ ≤s s of them, which may require relabeling the
inputs. Example 1 considers q=1 criterion with

S RX L C= ( , ) ∈ =s s s( ) ( ) ( )
2, so X s( ) is a random vector. The

conditioning random object in Example 1 is M L=s s( ) ( ), which is a
random variable lying inS R′ = and is generated by functionm l=s s( ) ( )
in (42) from just d′ = 1s uniform U1 out of the ds=2 uniforms that w s( )
uses to produce X s( ); the other uniform U2 is used by function c s( ) in (42)
to sample C s( ). As in Example 1, the spacesS′ andS in A3 can differ in
general, so M s( ) and X s( ) may be different types of random objects, e.g.,
random vectors of unequal dimensions.

We next develop the estimator of θ when applying SS+CMC+LHS
(abbreviated SCL). (If SS has only s = 10 scenario, then SCL reduces to
CMC+LHS.) By (46), the average of identically distributed copies of

M( )s s( ) ( ) , which is also the SS+CMC+LHS response, will be an unbiased
estimator of θ s( ) in (17). Thus, we first generate an LHS grid of uniforms
Vs i j( ), , (with dependent rows) as in (28) for each scenario s s= 1, 2, …, 0,
but with d′s columns instead of ds because computing (47) requires only
the conditioning random object M s( ) in (50), which uses d′s uniforms
rather than ds that d X= ( )s s( ) ( ) does in (25). Then apply the function
m s( ) in (50) to each of the ns rows of the LHS grid to obtain ns
dependent but identically distributed copies mM V= ( ,s i s s i( ), ( ) ( ), ,1
V V, …, )s i s i d( ), ,2 ( ), , ′s , i n1 ≤ ≤ s, of the conditioning random object M s( ).
Next compute an (unbiased) estimator of θ s( ) as

∑ Mθ n
n

( ) = 1 ( ),s η
s i

n

s s i( ),SCL,
=1

( ) ( ),

s

(51)

which is the average of dependent copies of non-binary values, in
general. The SS+CMC+LHS estimator of the overall failure probability
θ λ θ= ∑s

s
s s=1 ( )

0 is θ n λ θ n( ) = ∑ ( )η s
s

s s ηSCL, =1 ( ),SCL,
0 .

As the response function M( )s s( ) ( ) in (47) inherits the boundedness

of the binary-valued s( ), the estimator θ n( )s η( ),SCL, of θ s( ) for each
scenario s satisfies the LHS CLT of [49] when Assumptions A2 and
A3 hold:

n
σ η

θ n θ n
/

[ ( ) − ] ⇒ (0, 1) as → ∞,
s s

s η s
( ),SCL

( ),SCL, ( )
(52)
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where we will give an expression for the asymptotic variance constant
σ s( ),SCL

2 in Section 6.1. We assume the s0 scenarios for SS are simulated
independently, so the overall SS+CMC+LHS estimator of θ satisfies the
CLT n θ n θ σ[ ( ) − ]/ ⇒ (0, 1)η ηSCL, SCL, as n → ∞, where the asymptotic
variance is

∑σ
λ σ

η
= .η

s

s
s s

s
SCL,
2

=1

2
( ),SCL
20

(53)

6.1. Analyzing the effect of CMC on LHS

Recall that when not applying CMC, (36) shows that for each
scenario s, LHS removes the variability of the additive part of the SS
indicator response in (35). When we further incorporate CMC,
generating the conditioning random object M s( ) in (50) requires a
vector U U U U′ = ( , , …, )d1 2 ′s of d′s i.i.d. [0, 1] random numbers. To
analyze the SS+CMC+LHS response M( )s s( ) ( ) in (47) for estimating θ s( ),
we emphasize the dependence of M s( ) on the vector U′ and approximate
the response as an additive function of the uniform inputs U′ based on
an ANOVA decomposition:

∑ ( )M U M U Uθ E U θ( ( ′)) = + [ ( ( ′)) ] − + ϵ ( ′),s s s
j

d

s s j s s( ) ( ) ( )
=1

′

( ) ( ) ( ) ( )

s

(54)

where the residual Uϵ ( ′)s( ) is defined so that the above equality holds.
Then as shown in [52] and [49], we have that the asymptotic variance
in (52) satisfies Uσ = Var[ϵ ( ′)]s s( ),SCL

2
( ) . The following result, proven in

Appendix B, establishes that the asymptotic variance σ ηSCL,
2 in (53) for

SS+CMC+LHS is no greater than σ ηSS+LHS,
2 in (31) for SS+LHS.

Theorem 3. Under Assumptions A2 and A3, when both SCL and SS
+LHS use the same stratification allocation η, we have that
σ σ≤η ηSCL,

2
SS+LHS,
2 , where, for U U Uϵ ( , , …, )s d( ) 1 2 s

defined in (35),

[ ]∑ M

σ σ

λ
η

E U U U U U U

−

= Var[ ϵ ( , , …, )| ( , , …, )] ≥ 0.

η η

s

s
s

s
s d s d

SS+LHS,
2

SCL,
2

=1

2

( ) 1 2 ( ) 1 2 ′s s

0

(55)

The key point here is that the conditioning in (47) leads to
M U( ( ′))s s( ) ( ) in (54) being a “smoother” response function than the

indicator U( )s( ) in (34). As a consequence, the additive approximation
(54) can be a better fit than that in (35). This can result in SS+CMC
+LHS having much lower asymptotic variance than SS+LHS, as we will
see in the numerical results of Section 7. The idea of smoothing a
response function through conditioning has also been fruitfully applied
in other contexts, such as gradient estimation [54].

6.2. Combined SS+CMC+rLHS to construct UCB

We now provide details of the combined SS+CMC+rLHS approach
to construct a UCB for θ under Assumptions A2 and A3. For each
scenario s s= 1, 2, …, 0, and each replication r b= 1, 2, …, , with b ≥ 2,
letV s i j

r
( ), ,
〈 〉 , i m1 ≤ ≤ s, j d1 ≤ ≤ ′s , be an m d× ′s s LHS grid of uniforms (with

dependent rows) as in (38), but with d′s columns instead of ds. LHS
grids across the s0 scenarios and b replications are independent. Then
apply function m s( ) from (50) to each row of the LHS grid to get ms

dependent but identically distributed copies of the conditioning ran-
dom object:

m

m

m

M

M

M

V V V

V V V

V V V

= ( , , …, ),

= ( , , …, ),
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

= ( , , …, ).

s
r

s s
r

s
r

s d
r

s
r

s s
r

s
r

s d
r

s m
r

s s m
r

s m
r

s m d
r

( ),1
〈 〉

( ) ( ),1,1
〈 〉

( ),1,2
〈 〉

( ),1, ′
〈 〉

( ),2
〈 〉

( ) ( ),2,1
〈 〉

( ),2,2
〈 〉

( ),2, ′
〈 〉

( ),
〈 〉

( ) ( ), ,1
〈 〉

( ), ,2
〈 〉

( ), , ′
〈 〉

s

s

s s s s s (56)

For the rth replicated LHS for scenario s, define the estimator of the
failure probability θ s( ) in (46) as

∑ Mθ n
m

( ) = 1 ( )∼
s
r

s i

m

s s i
r

( )
〈 〉

=1
( ) ( ),

〈 〉
s

(57)

for the response function s( ) in (47). Compared to the SS+rLHS

estimator without CMC in (39), the SS+CMC+rLHS estimator θ n( )∼
s
r

( )
〈 〉

replaces the indicator in (39) with its conditional expectation s( ). The
estimator of the overall failure probability θ in (16) from replication r is

θ n λ θ n( ) = ∑ ( )∼ ∼r
s
s

s s
r〈 〉

=1 ( )
〈 〉0 . The final estimator of θ across all b replications

is θ n b θ n( ) = (1/ ) ∑ ( )∼
η b r

b r
SCrL, , =1

〈 〉
. Also, compute the sample variance of

θ n( )∼ r( )
, r b1 ≤ ≤ , as

⎡
⎣⎢

⎤
⎦⎥S n θ n θ n( ) = ∑ ( ) − ( )∼∼

b b r
b r

η b
2 1

− 1 =1
〈 〉

SCrL, ,

2

. The next

result, proven in Appendix C, provides an asymptotically valid SS+CMC
+rLHS UCB, which reduces to a UCB for CMC+rLHS when SS has only
s = 10 scenario.

Theorem 4. Under Assumptions A2 and A3, an SS+CMC+rLHS
asymptotic γ-level UCB for θ is B n θ n τ( ) = ( ) +η b η b b γSCrL, , SCrL, , −1,

S n b( )/ ,∼
b i.e., P B n θ γlim ( ( ) ≥ ) =n η b→∞ SCrL, , as in (5) for any fixed

b ≥ 2 and SS allocation η.

6.3. SS+CMC+LHS for failures defined in terms of loads and
capacities, with loads independent of capacities

As noted in Section 6, the key to applying CMC is being able to
sample and compute the response M( )s s( ) ( ) in (47), which depends on
how we define the basic random object X s( ), failure function d, and
conditioning random object M s( ). We now show how to do this for a
generalization of Example 1 when Assumption A1 holds (i.e., failure is
defined as a function d′ of q ≥ 1 loads and capacities) and M s( ) is the
load vector. We first augment Assumptions A2 and A3.

Assumption A4. For each scenario s s1 ≤ ≤ 0, the conditioning
random object in Assumption A3 is M L=s s( ) ( ). The function

w R′ : [0, 1] →s
d q

( )
2s in (32) used to generate the q loads L s( ) and

capacities C s( ) decomposes into functions l R: [0, 1] →s
d q

( )
s L,

generating loads and c R: [0, 1] →s
d q

( )
s C, generating capacities such

that d d d+ =s L s C s, , and

w l c
⎛
⎝⎜

⎞
⎠⎟u u u u u u u u u

u u u

′ ( , , …, ) = ( , , …, ), ( , , …, )

for ( , , …, ) ∈ [0, 1] .

s d s d s d d d d

d
d

( ) 1 2 ( ) 1 2 ( ) +1 +2 +

1 2

s s L s L s L s L s C

s
s

, , , , ,

Thus, Assumption A3 has m l=s s( ) ( ), so d d′ =s s L, , S R′ = q, and

w S R* : [0, 1] → ×s
d q

( )
s in (50) satisfies w u u u* ( , , …, )=s d( ) 1 2 s

w lu u u u u u( ( , , …, ), ( , , …, ))s d s d( ) 1 2 ( ) 1 2s s L,
for u u u( , , …, ) ∈ [0, 1]d

d
1 2 s

s

and w s( ) in (25).
Assumption A4 specifies the conditioning random object M s( ) in A3

to be the vector L s( ) of the q ≥ 1 criteria's loads. In the setting of A1,
(33) specializes A2 to compute the failure indicator s( ) in terms of L s( )
and C s( ) output by the function w′s( ) in (32). Now A4 further stipulates
thatw′s( ) decomposes into functions l s( ) and c s( ) operating on disjoint sets
of inputs, where l s( ) outputs the loads and c s( ) the capacities. (Example 1
has q=1 and in (42), function l s( ) has input U1 and c s( ) takes input U2.)
Thus, if U U U U, …, , , …,d d d d1 +1 +s L s L s L s C, , , ,

are ds i.i.d. [0, 1] random
variables, then

l

c

L

C

U U U F

U U U G

= ( , , …, ) ∼ and

= ( , , …, ) ∼ ,

s s d s

s s d d d d s

( ) ( ) 1 2 ( )

( ) ( ) +1 +2 + ( )

s L

s L s L s L s C

,

, , , , (58)

where L L L L= ( , , …, )s s s s
q

( ) ( )
[1]

( )
[2]

( )
[ ] and C C C C= ( , , …, )s s s s

q
( ) ( )

[1]
( )
[2]

( )
[ ] , and we

recall that Fs( ) and G s( ) were defined at the end of Section 4 as the
marginal CDFs of the load and capacity vectors, respectively, for
scenario s. Consequently, as the two functions l s( ) and c s( ) use disjoint
sets of i.i.d. arguments, the following holds:

Proposition 1. Assumption A4 implies L s( ) is independent of C s( ).
Proposition 1 ensures that L s( ) is independent of C s( ), but each vector
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may still have a dependence structure for its own q entries. Without A4,
Assumption A2 and w′s( ) in (32) allow L s( ) and C s( ) to be dependent.

In structural reliability, loads are sometimes (but not always)
assumed to be independent of capacities [20, Chapter 1]. In many
NPP PSAs, loads are determined by the way in which a hypothesized
accident evolves, whereas the capacities depend on the material
properties and manufacturing variability of the components. Hence,
it may be reasonable to model loads as independent of capacities, as is
assumed in the initial RISMC studies with a single criterion in [3] and
[19]. Moreover, [3] and [19] take the capacity distribution G s( ) to be the
same for all scenarios s, although our development here does not
require this.

We next further refine how a failure is defined.

Assumption A5. The failure function d R′: → {0, 1}q2 in Assumption
A1 has the form

d ∑ ∑L C a a I L C′( , ) = + (∩ { ≥ }),
p

q

k k k q

k k k
l
p k k[0]

=1 1≤ < <⋯< ≤

[ , ,…, ]
=1

[ ] [ ]

p

p l l

1 2

1 2

(59)

where a[0] and each a k k k[ , ,…, ]p1 2 are constant coefficients.
Assumption A5 requires that the failure function d′ is a linear function of
the indicators that the load exceeds capacity for each criterion in each
nonempty subset of criteria. In Section 2.1, Examples 2–6, which define
failure in terms of q loads and capacities, all satisfy Assumption A5. In
Example 2 (series system), (7) equals d′ in (59) with a = 0[0] and
a = (−1)k k k p[ , ,…, ] −1p1 2 for each p q1 ≤ ≤ . In Example 3 (parallel system),
(8) corresponds to (59) with a = 0[0] , a = 1q[1,2,…, ] , and all other
a = 0k k k[ , ,…, ]p1 2 . In Example 4 (K-out-of-N:F system), (9) fits into (59)
with a a= = 0k k k[0] [ , ,…, ]p1 2 for each p1 ≤ < K, and
a = (−1) ( )k k k p p[ , ,…, ] −K − 1

K − 1
p1 2 for each p qK ≤ ≤ . In Example 5

(series-parallel system), (10) matches (59) with
a = (−1)q q q q q q q q q p[ , +1,…, −1, , +1,…, −1,…, , +1,…, −1] −1m m m m m m mp mp mp1 1 1+1 2 2 2+1 +1 for
each p v1 ≤ ≤ , and all other coefficients a = 0[·] . In Example 6, we can
show that d′ in (11) has the form in (59) by expanding the product in
(11) and repeatedly using the fact that
I L C I L C I L C L C( ≥ ) ( ≥ ) = ({ ≥ } ∩ { ≥ })k k k k k k k k[ ] [ ] [ ′] [ ′] [ ] [ ] [ ′] [ ′] .

We now exploit the added structure ensured by our assumptions to
obtain another representation for the response M( )s s( ) ( ) in (47), which
will be computable after imposing one final condition (A6) below. By
Assumption A4 the conditioning random object in (47) is M L=s s( ) ( ),
which Proposition 1 guarantees is independent of C s( ). Assumptions A1
and A5 specify that d L C= ′( , )s s s( ) ( ) ( ) by (24) for d′ in (59), whose
linearity implies that (47) becomes

d

∑ ∑

L L C L

L

E

a a E I L C

( ) = [ ′( , )| ]

= + [ (∩ { ≥ }) ].

s s s s s

p

q

k k k q

k k k
l
p

s
k

s
k

s

( ) ( ) ( ) ( ) ( )

[0]

=1 1≤ < <⋯< ≤

[ , ,…, ]
=1 ( )

[ ]
( )
[ ]

( )
p

p l l

1 2

1 2

(60)

Now let G s
k k k

( )
[ , ,…, ]p1 2 be the marginal joint CDF of the capacities

C C C( , , …, )s
k

s
k

s
k

( )
[ ]

( )
[ ]

( )
[ ]p1 2 for scenario s s= 1, 2, …, 0; i.e.,

G x x x P C x C x C x( , , …, ) = ( ≤ , ≤ , …, ≤ )s
k k k

p s
k

s
k

s
k

p( )
[ , ,…, ]

1 2 ( )
[ ]

1 ( )
[ ]

2 ( )
[ ]p p1 2 1 2 (61)

for any constants x x x, , …, p1 2 . (In the special case when capacities

across criteria are independent, (61) simplifies to G x∏ ( )l
p

s
k

l=1 ( )
[ ]l , but we

do not require this.) Then, analogously to how we obtained (44) in the
special case when q=1 in Example 1, we can rewrite the conditional
expectation in the right side of (60) as

L LE I L C P C L

G L L L

[ (∩ { ≥ }) ] = (∩ { ≤ } )

= ( , , …, )

l
p

s
k

s
k

s l
p

s
k

s
k

s

s
k k k

s
k

s
k

s
k

=1 ( )
[ ]

( )
[ ]

( ) =1 ( )
[ ]

( )
[ ]

( )

( )
[ , ,…, ]

( )
[ ]

( )
[ ]

( )
[ ]

l l l l

p p1 2 1 2 (62)

because L s( ) is independent of C s( ) by Proposition 1. We next require the
following to ensure (62) is computable.

Assumption A6. The marginal capacity CDF G s
k k k

( )
[ , ,…, ]p1 2 can be

computed analytically or numerically for each
k k k q1 ≤ < < ⋯ < ≤p1 2 such that a ≠ 0k k k[ , ,…, ]p1 2 in (59), each
p q1 ≤ ≤ , and each scenario s s= 1, 2, …, 0.
Finally putting (62) into (60) yields the following.

Theorem 5. If Assumptions A1–A6 hold, then the SS+CMC+LHS
response function in (47) is computable as

∑ ∑L a a G L L L( ) = + ( , , …, ).s s
p

q

k k kp q

k k kp
s
k k kp

s
k

s
k

s
kp

( ) ( )
[0]

=1 1≤ 1< 2<⋯< ≤

[ 1, 2,…, ]
( )
[ 1, 2,…, ]

( )
[ 1]

( )
[ 2]

( )
[ ]

(63)

To compute the estimator in (51), we simply replace M( )s s i( ) ( ), with
L( )s s i( ) ( ), using (63), where lL V V V= ( , , … )s i s s i s i s i d( ), ( ) ( ), ,1 ( ), ,2 ( ), , s L,

with Vs i j( ), ,
from the LHS grid of uniforms in (28) but with ds L, columns instead of
ds, and function l s( ) is from Assumption A4 and (58). Similarly, we

compute the estimator in (57) by replacing M( )s s i
r

( ) ( ),
〈 〉 with L( )s s i

r
( ) ( ),

〈 〉

using (63) with lL V V V= ( , , … )s i
r

s s i
r

s i
r

s i d
r

( ),
〈 〉

( ) ( ), ,1
〈 〉

( ), ,2
〈 〉

( ), ,
〈 〉

s L,
, where each V s i j

r
( ), ,
〈 〉 is

from the LHS grid of uniforms in (56) with d d′ =s s L, columns.

The number of terms in (63) with nonzero coefficient a k k k[ , ,…, ]p1 2 can
grow exponentially in the number q of criteria. For example, a series
system (Example 2 in Section 2.1) uses d′ in (7), so (63) has 2 − 1q

nonzero summands; this can practically limit the number of criteria
that can be considered. In contrast, a parallel system (Example 3) has
d′ in (8), so (63) has only one nonzero summand; thus, as long as
G s

q
( )
[1,2,…, ] can be computed efficiently, we are not restricted to small q. If

the number of summands in (63) is overwhelming, we may instead
obtain an estimator of an approximation to θ s( ) by truncating the first
sum in (63) at some upper index q q′ < ; see [20, Section 5.6.2] for
related ideas.

7. Numerical experiments

We next explore the effectiveness of the VRTs considered in this
paper through numerical experiments with synthetic RISMC problems,
which satisfy Assumptions A1–A6 so that the setting of Section 6.3
holds. Although particular aspects of the models we consider are
motivated by previous work on nuclear PSAs, including [10,3,19], we
acknowledge that our models are artificial. The purpose of our
experiments is not to carry out an actual nuclear PSA, but rather to
provide a proof of concept that our Monte Carlo methods can produce
substantial variance reductions.

In an actual RISMC analysis of a hypothesized NPP accident, as in
[3] and [19], a nuclear-specific computer code models the progression
of the event, and each code run produces observations of the q criteria's
loads and capacities. While [3] and [19] consider only q=1 criterion
(PCT), our four synthetic models have q=3 criteria: PCT, CWO, and
MLO (see Section 1). The results in Section 7.4 use the failure function
d′ in Assumption A5 for the series system (7), so the system fails when
any criterion's load exceeds its capacity, but Section 7.5 also considers
a parallel system, with d′ in (8). Our Models 1–4 differ in the choice of
PCT load distributions and the dependence structures among the
output variables from each simulation run. We base our models on
the event tree in Fig. 1, originally from [3], with s = 40 scenarios, where
the probability λs of each scenario s1 ≤ ≤ 4 occurring is given by
λ = 0.99938 × 0.9981 × 0.9191 , λ = 0.000622 , λ = 0.99938 × 0.99813
×0.081 , and λ = 0.99938 × 0.00194 . The basic random object for
scenario s in (15) is X L C= ( , )s s s( ) ( ) ( ) . We next describe the marginals
(Section 7.1) and dependence structure (Section 7.2) for the loads
L L L( , , )s s s

[1]
( )
[2]

( )
[3] and capacities C C C( , , )s s s

[1]
( )
[2]

( )
[3] , and how w′s( ) in A4

generates them (Section 7.3).

7.1. Marginal distributions for loads and for capacities

Let F F F, ,s s s( )
[1]

( )
[2]

( )
[3] be the marginal CDFs of the loads for PCT, CWO,

MLO, respectively, in scenario s. To select the marginal CDFs, we
extracted data from Figures 1 and 10 of [10], which are scatter plots of
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these criteria's load data (sample sizes ≈180) output from a computer
code of a hypothesized LOCA. Based on the shape of the histogram of
each criterion's load data, we chose a lognormal for the marginal CDF
of the PCT load, and marginal Weibull distributions for both CWO and
MLO loads.

For Models 1 and 2, the lognormal PCT load CDF F s( )
[1] for scenario

s = 1, 2, 3, 4, corresponds to exponentiating a normal random variable
with mean μ s= 7.35 + 0.01s( )

[1] and standard deviation

σ s= 0.14 + 0.01s( )
[1] , where the parameter values for scenario s=1 are

the maximum likelihood estimates (MLEs; Section 7.1 of [44]) from
the PCT load data of [10]. To assess the appropriateness of our choice
F s( )

[1] for scenario s=1, we applied the Kolmogorov-Smirnov (KS) and
chi-square goodness-of-fit tests (e.g., Section 5.7 of [44]) with the data
from [10], which yielded p-values of 0.45 and 0.39, respectively; thus,
at significance level 0.05, we do not reject the CDF F s( )

[1] for scenario s=1.
For Models 3 and 4, we changed the parameters of the PCT load's
lognormal CDF for scenario s to μ s= 7.4 + 0.1s( )

[1] and

σ s= 0.01 + 0.01s( )
[1] , which are used in [24].

For Models 1–4, the CWO load for scenario s has marginal Weibull

CDF F x x α( ) = 1 − exp { − ( / ) }s s
β

( )
[2]

( )
[2] s( )

[2]
for x ≥ 0, where

α s= 0.010 + 0.005s( )
[2] and β s= 0.90 + 0.02s( )

[2] are the scale and shape
parameters, respectively. For scenario s=1, the parameter values are
the MLEs from the CWO data in [10], and the KS and chi-square tests
do not reject this choice of CDF (p-values 0.22 and 0.61, respectively).

For the MLO load, its marginal Weibull CDF F s( )
[3] for scenario s in

Models 1–4 has parameters α s= 0.35 + 0.3s( )
[3] and β s= 0.82 + 0.03s( )

[3] .
The parameter values for scenario s=1 are the MLEs from the MLO
load data in [10], and our CDF choice for s=1 is not rejected by the KS
and chi-square tests (p-values 0.82 and 0.08, respectively).

Although the load CDFs depend on the scenario s, we assume that
the capacity CDFs remain the same for all s, as is the case in [3] and
[19], so G G=s

k k
( )
[ ] [ ] for each criterion k = 1, 2, 3.

As in [3,19], we take the PCT capacity C[1] to have a triangular CDF
G[1] with support a b[ , ] = [1800, 2600][1] [1] and mode c = 2200[1] . The
mode c[1] is the fixed limit prescribed by the NRC [4] for the PCT
criterion, and the support parameters are symmetric and separated
from the mode by approximately 20%.

For the CWO and MLO capacities C[2] and C[3], respectively, we also
assume marginal triangular distributions with parameters following a
similar approach as the one used for PCT capacity. Because the NRC
specifies a 1% fixed limit for CWO (see Section 1), we set the CWO
capacity CDF G[2] as triangular with support a b[ , ] = [0.8, 1.2][2] [2] and
mode c = 1[2] . Finally, the NRC fixed limit for MLO is 17%, so the MLO
capacity CDF G[3] has support a b[ , ] = [13.6, 20.4][3] [3] and mode
c = 17[3] .

7.2. Specifying dependence structures through copulas

So far we have discussed the marginal CDFs of loads and capacities,
but we further need to specify their joint distributions Fs( ) and G. In an
actual NPP PSA with a computer code, each code run produces a vector
of the loads for PCT, CWO, and MLO, so the q=3 criteria's loads have a
particular stochastic dependence. For example, if the PCT load is
unusually high in one run, then the same is likely true for the CWO and
MLO. But as our numerical experiments do not use such a computer
code, we require a mechanism to generate observations of the load
vector with a reasonable dependence structure. Moreover, the criteria's
capacities in a run should also be statistically dependent. But as
Assumption A4 implies by Proposition 1, we have that loads are
stochastically independent of the capacities.

We specify the dependence among the loads and among the
capacities via copulas [42]. While (Pearson) correlation measures only
linear dependence, a copula fully characterizes the dependence struc-
ture for given marginal CDFs. To define a copula, we start with a
random vector W W W W= ( , , …, )q[1] [2] [ ] in which each marginal is

[0, 1], where there may be dependence among the entries in W .
Then a copula K: [0, 1] → [0, 1]q is the joint CDF of W ; i.e.,

K w w w P W w W w W w

w w w

( , , …, ) = ( ≤ , ≤ , …, ≤ ),

for ( , , …, ) ∈ [0, 1] .
q

q
q

w q
q

1 2
[1]

1
[2]

2
[ ]

1 (64)

Now suppose we want to generate a load or capacity vector, generically
denoted byY Y Y Y= ( , , …, )q[1] [2] [ ] , with joint CDF F0, where eachY i[ ] has a
marginal CDF Fi as specified in Section 7.1. By Sklar's theorem [55,
Theorem 5.3], there exists a copula K such that
F y y y K F y F y F y( , , …, ) = ( ( ), ( ), …, ( ))q q q0 1 2 1 1 2 2 and K w w w( , , …, )q1 2

F F w F w F w= ( ( ), ( ), …, ( ));q q0 1
−1

1 2
−1

2
−1 K is unique when each marginal Fi is

continuous. Thus, any joint CDF has a copula, and we may combine a
copula and marginal CDFs to construct a joint CDF. Hence, to generate Y
using W K∼ in (64), where K is the copula of F0, note that because each
W ∼ [0, 1]i[ ] , we simply set

Y F W F i= ( ) ∼ , for each .i
i

i
i

[ ] −1 [ ] (65)

If the marginals Fi have been specified (e.g., as in Section 7.1), the
next issue is how to construct a copula K (appropriate for the problem)
and to sample W K∼ . One approach begins with a CDF H0 on Rq

having continuous marginals Hi. For a random vector
J J J J H= ( , , …, ) ∼q[1] [2] [ ]

0, let

W W W W W H J= ( , , …, ) with each = ( ) ∼ [0, 1].q i
i

i[1] [2] [ ] [ ] [ ] (66)

In general, W W W, , …, q[1] [2] [ ] are dependent, and their joint CDF is the
copula K in (64) induced by H0. Our experiments use two different
copulas. Models 1 and 3 employ a Gaussian copula [55, pp. 190–191],
in which H0 is a multivariate normal CDF. Models 2 and 4 use a
Student-t copula [56], where H0 is a multivariate Student-t CDF.

To define a Gaussian copula, let H0 be the 0 Σ( , )q normal CDF

with mean vector 0 and covariance matrix Σ i j qΣ = ( : , = 1, 2, …, )i j[ , ] ,
where each Σ = 1i i[ , ] . Thus, each marginal is H Φ=i , the standard (i.e.,
mean 0 and variance 1) univariate normal CDF, and Σ is also the
(Pearson linear) correlation matrix. Now let
Z 0Z Z Z Σ= ( , , …, ) ∼ ( , )q

q
[1] [2] [ ] .

We can generate the (column) vector Z by multiplying a q q×
matrix Γ satisfying Σ ΓΓ= ⊤ (e.g., Γ is a Cholesky factor of Σ) with a q-
vector D of i.i.d. standard normals:

Z DΓ= . (67)

Then let W be as in (66) with J Z= and each H Φ=i . The Gaussian
copula K with input (Pearson linear) correlation matrix Σ is finally
given by (64), and W K∼ .

For a Student-t copula, let χν
2 be a univariate chi-squared random

variable with ν ≥ 1 degrees of freedom, independent of the Z 0 Σ∼ ( , )q
in (67). We then obtain a multivariate Student-t random vector with ν
d.f. as

J Z ν χ= / .ν
2

(68)

Let W be as in (66) with each H Υ=i ν, the univariate Student-t CDF
with ν d.f., and then (64) defines the Student-t copula K with ν d.f. and
input dispersion matrix Σ, which is the (Pearson linear) correlation
matrix of the normal Z used to build J in (68). If ν > 2, then the
covariance matrix of J is J ν ν ΣCov[ ] = ( /( − 2)) , and the Student-t
vector J in (68) also has (Pearson linear) correlation matrix Σ. But
when ν ≤ 2, each J i[ ] has infinite variance, so the Pearson correlation of
J is undefined.

A key difference between the Gaussian and Student-t copulas lies in
their tail dependence, as we now explain for dimension q=2. Suppose
that Y Y Y= ( , )[1] [2] is a bivariate output random vector with copula K
and marginal CDFs F1 and F2. Now define
υ P Y F p Y F p= lim ( > ( )| > ( ))p→1

[2]
2
−1 [1]

1
−1 as the limiting conditional

probability that the second entry of Y exceeds its p-quantile given that
the first is larger than its p-quantile. If the marginals F1 and F2 are
continuous, then (65) implies that the value of υ depends only on the
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copula K and not on F1 and F2. A Gaussian copula has υ = 0, whereas
υ > 0 for a Student-t copula. Hence, a Gaussian copula has asymptotic
independence in the tails, but a Student-t copula tends to produce joint
extreme events. For more details, see Section 3.2 of [56].

As Section 7.1 already specified marginal CDFs for the loads and
capacities, our next task is to pick a copula K so that the generated
(load or capacity) vectorY Y Y Y= ( , …, )q[1] [2] [ ] has a desired dependence
structure. For example, we may want a particular tail dependence υ for
Y . We may also want Y to have a target (Pearson linear) correlation
matrix ρ ρ i j q= ( : , = 1, 2, …, )i j[ , ] , where ρ Y Y= Cov[ , ]/i j i j[ , ] [ ] [ ]

Y Y(Var[ ]Var[ ]) ,i j[ ] [ ] 1/2 which depends on both K and the marginals. If
we have selected a copula family (e.g., Gaussian), it still remains to
specify its parameters (e.g., the input correlation matrix Σ of a
Gaussian copula) to achieve the target ρ, assuming it is indeed
attainable (Theorem 5.25 of [55]). There usually is no closed-form
formula for ρ in terms of the copula parameters, and we can instead use
a sampling-based search procedure, e.g., [57], to identify the copula
parameters to obtain the target ρ.

Another possible dependence measure to specify for Y is rank
correlation, which has different variants [55, Section 5.2.2]. The
(population) Spearman rank correlation of Y F∼i

i
[ ] and Y F∼j

j
[ ] is

defined as ρ F Y F Y F Y F Y= Cov[ ( ), ( )]/(Var[ ( )]Var[ ( )])i j
i

i
j

j
i

i
j

j
S
[ , ] [ ] [ ] [ ] [ ] 1/2. The

Kendall (tau) rank correlation of Y i[ ] and Y j[ ] is

ρ E Y Y Y Y= [sgn(( − )( − ))]∼ ∼
τ

i j i i j j[ , ] [ ] [ ] [ ] [ ]
, where Y Y( , )∼ ∼i j[ ] [ ]

is an independent

copy of Y Y( , )i j[ ] [ ] , and xsgn( ) = 1 (resp., −1 and 0) if x > 0 (resp., x < 0
and x=0). When the marginal CDFs Fi are continuous (which we will
assume for the rest of the paragraph), both rank correlations of Y
depend only on the copula and not on the Fi [55, Proposition 5.29], in
contrast to the (Pearson linear) correlation ρ i j[ , ], which depends on
both. For a Gaussian copula, the Spearman and Kendall rank correla-
tions relate to the input Pearson correlation Σ i j[ , ] of the Gaussian copula
by ρ π Σ= (6/ )arcsin( /2)i j i j

S
[ , ] [ , ] and ρ π Σ= (2/ )arcsin( )τ

i j i j[ , ] [ , ] ; see [55,
Theorem 5.36]. Thus, if we want to generate Y with a Gaussian copula
to have a specified Spearman or Kendall rank correlation, we choose
the input correlation matrix Σ of the normal Z in (67) to have entries
Σ πρ= 2sin( /6)i j i j[ , ]

S
[ , ] or Σ πρ= sin( /2)i j

τ
i j[ , ] [ , ] , respectively; then use (66)

with J Z= and H Φ=i , and buildY via (65). For a Gaussian copula, the
difference between the Spearman rank correlation and the input
Pearson correlation is quite small [55, p. 216]: ρ Σ| − | ≤ 0.0181i j i j

S
[ , ] [ , ] .

This fact is implicitly exploited by [58], which essentially employs a
Gaussian copula to generate a sample with a specified sample
Spearman rank correlation. As [55, Example 5.54] notes, if we instead
want to generate vector Y with a Student-t copula, we can similarly
calibrate the copula's input dispersion matrix Σ so that Y has a target
Kendall rank correlation, as follows. For a Student-t copula, the
Kendall rank correlation is again ρ π Σ= (2/ )arcsin( )τ

i j i j[ , ] [ , ] . Hence, to

achieve a target Kendall value ρτ
i j[ , ], assign the copula's dispersion

matrix Σ to have entries Σ πρ= sin( /2)i j
τ

i j[ , ] [ , ] ; apply (66) with H Υ=i ν, and
use (65) to obtain Y . The Spearman rank correlation for a Student-t
copula is not known in closed form.

In our experiments, we chose the input (correlation or dispersion)
matrix Σ of the Gaussian or Student-t copula so that the generated
output random vector Y in (65) has an appropriate (Pearson) correla-
tion matrix ρ. When Y is the load vector, which has size q=3, we
calibrated Σ i jΣ Σ= = ( : , = 1, 2, 3)L L

i j[ , ] so as to match an estimated
(Pearson) correlation matrix ρ ρ i j= ( : , = 1, 2, 3)L L

i j[ , ] with ρ = 0.85L
[1,2] ,

ρ = 0.87L
[1,3] , and ρ = 0.83L

[2,3] , which [10] computed from a sample of
the (PCT, CWO, MLO) load vectors produced from multiple runs of a
nuclear-specific computer code. Applying the search algorithm of [57]
with the MLEs of the parameters of the specified marginal load CDFs
(see Section 7.1), we found Σ = 0.92L

[1,2] , Σ = 0.96L
[1,3] , and Σ = 0.86L

[2,3]

for the Gaussian copula to yield the target load correlations ρL (to two
decimal places of accuracy). We used these input correlations for the
loads across every scenario for Models 1 and 3. The Student-t copula in
Models 2 and 4 have ν = 3 d.f. in (68), and we identified the input

dispersions as Σ = 0.92L
[1,2] , Σ = 0.96L

[1,3] , and Σ = 0.85L
[2,3] , which are

used across every scenario for the loads. For the input matrix Σ Σ= C of
the capacity (Gaussian and Student-t) copulas, we let
Σ Σ Σ= = = 0.85C C C

[1,2] [1,3] [2,3] for all models and scenarios.

7.3. Generating loads and capacities

We now combine the marginals chosen in Section 7.1 with copulas
from Section 7.2 to specify the functions w′s( ), l s( ), and c s( ) generating the
load and capacity vectors for scenario s in Assumption A4 and (58). In
general, to evaluate a d-dimensional integral, Monte Carlo methods
become attractive alternatives to numerical quadrature when d is high,
so we artificially increase the number d d d= +s s L s C, , of input variables
of function w′s( ) in Assumption A4. We first explain how to generate an
observation of the load vector for scenario s using a Gaussian copula
with the input correlation matrix ΣL specified in Section 7.2. We define
the load function l s( ) in (58) to have d d d d= + +s L s L s L s L, ,

[1]
,
[2]

,
[3] i.i.d. [0, 1]

inputs U U U, , …, d1 2 s L,
, with each d = 10s L

k
,
[ ] , and let D D D D= ( , , )L L L L

[1] [2] [3]

with D Φ U d= ∑ ( )/L j
d

j s L
[1]

=1
−1

,
[1]s L,

[1]
, D Φ U d= ∑ ( )/L j d

d d
j s L

[2]
= +1

+ −1
,
[2]

s L

s L s L

,
[1]

,
[1]

,
[2]

, and

D Φ U d= ∑ ( )/L j d d

d d d
j s L

[3]
= + +1

+ + −1
,
[3]

s L s L

s L s L s L

,
[1]

,
[2]

,
[1]

,
[2]

,
[3]

. Thus, the entries of DL are i.i.d.

standard normal. Then, as in (67), define the vector
Z Z Z Z= ( , , )L L L L

[1] [2] [3] as Z DΓ=L L L, where ΓL is a Cholesky factor of ΣL.
Letting J Z= L, we obtain W W W W W= = ( , , )L L L L

[1] [2] [3] as in (66), with
each H Φ=i . By (65), the load vector

L L L L F W F W F W F= ( , , ) = (( ) ( ), ( ) ( ), ( ) ( )) ∼s s s s s L s L s L s( ) ( )
[1]

( )
[2]

( )
[3]

( )
[1] −1 [1]

( )
[2] −1 [2]

( )
[3] −1 [3]

( )

(69)

has a Gaussian copula with input correlation matrix ΣL, and each L s
k

( )
[ ]

has marginal CDF F s
k

( )
[ ] given in Section 7.1.

We apply similar ideas to define the function c s( ) in (58) to get an
observation of the capacity vector for scenario s when employing the
Gaussian copula with input correlation matrix ΣC specified in Section
7.2. We use d d d d= + +s C s C s C s C, ,

[1]
,
[2]

,
[3] i.i.d. [0, 1] inputs

U U, …,d d d+1 +s L s L s C, , ,
, with each d = 1s C

k
,
[ ] , to obtain normal vector

Z Z Z Z= ( , , )C C C C
[1] [2] [3] as Z DΓ=C C C, where Γ Γ Σ=C C C

⊤ and
D Φ U Φ U Φ U= ( ( ), ( ), ( ))C d d d

−1
+1

−1
+2

−1
+3s L s L s L, , ,

. Letting J Z= C , we obtain

W W W W W= = ( , , )C C C C
[1] [2] [3] as in (66), with each H Φ=i . By (65), the

capacity vector

C C C C G W G W G W G= ( , , ) = (( ) ( ), ( ) ( ), ( ) ( )) ∼s C C C( )
[1] [2] [3] [1] −1 [1] [2] −1 [2] [3] −1 [3]

(70)

has Gaussian copula with input correlation matrix ΣC , and each
C G∼k k[ ] [ ] from Section 7.1. As U U( , …, )d1 s L,

and U U( , …, )d d d+1 +s L s L s C, , ,
are independent as in Assumption A4, L s( ) and C s( ) are also (Proposition
1). Note that w′s( ) in A4 uses d d d= + = 33s s L s C, , i.i.d. uniforms to
generate X L C= ( , )s s s( ) ( ) ( ) when employing Gaussian copulas.

When instead assuming Student-t copulas, we make the following
changes to the load and capacity functions l s( ) and c s( ). We now let

d d d d= + + + 1s L s L s L s L, ,
[1]

,
[2]

,
[3] and d d d d= + + + 1s C s C s C s C, ,

[1]
,
[2]

,
[3] , with each

d = 10s L
k
,
[ ] and d = 1s C

k
,
[ ] as before. We set χ Ψ U= ( )ν L ν d,

2 −1
s L,

and

χ Ψ U= ( )ν C ν d d,
2 −1

+s L s C, ,
, where Ψν is the CDF of a univariate chi-squared

random variable with ν = 3 d.f. Then let J Z ν χ= /L ν L,
2 with ZL as

before, and apply (66) with each H Υ=i ν to get W W= L. Finally, (69)
yields a load vector having a Student-t copula with ν = 3 d.f. and the
input dispersion matrix ΣL specified in Section 7.2. For the capacities,

we instead use J Z ν χ= /C ν C,
2 (with ZC as before) in (66) to get W W= C

and apply (70). Thus, w′s( ) in A4 takes d d d= + = 35s s L s C, , uniforms to
produce L s( ) and C s( ) with Student-t cields a load vector having a
Studentopulas.

Our experiments use the series-system failure function d′ from (7)
in Assumption A5, so (59) has a = 0[0] and each a = (−1)k k k p[ , ,…, ] −1p1 2 . To
ensure the tractability of the response function (63) when CMC is
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applied, Assumption A6 requires that we can compute the marginal
CDF G k k k[ , ,…, ]p1 2 in (61) for each subcollection C C C, , …,k k k[ ] [ ] [ ]p1 2 of

p1 ≤ ≤ 3 criteria's capacities, which we next show holds for both
copulas. When p=1, we have a univariate CDF G k[ ], which is trivial to
evaluate as each G k[ ] is triangular. For p=2 with the PCT and CWO
capacities C[1] and C[2], note that (70) implies that their marginal joint
CDF satisfies

G x x P C x C x P G W x G W x

P W G x W G x

P H J G x H J G x

P J H G x J H G x

( , ) = ( ≤ , ≤ ) = (( ) ( ) ≤ , ( ) ( ) ≤ )

= ( ≤ ( ), ≤ ( ))

= ( ( ) ≤ ( ), ( ) ≤ ( ))

= ( ≤ ( ( )), ≤ ( ( )))

C C

C C

[1,2]
1 2

[1]
1

[2]
2

[1] −1 [1]
1

[2] −1 [2]
2

[1] [1]
1

[2] [2]
2

1
[1] [1]

1 2
[2] [2]

2
[1]

1
−1 [1]

1
[2]

2
−1 [2]

2

(71)

by (66). When the capacities are based on a Gaussian (resp., Student-t)
copula, the vector J used in (66) and (71) is multivariate normal (resp.,
multivariate Student-t) and each Hi is a standard univariate normal
(resp., univariate Student-t) CDF, so (71) is a multivariate normal
(resp., multivariate Student-t) CDF evaluation, which can be handled
numerically. Similarly, we can numerically compute the other marginal
joint CDFs G[1,3], G[2,3], and G[1,2,3] in Assumption A6. These computa-
tions are somewhat involved, but in an actual RISMC analysis, the
computer code l s( ) in (58) generating loads typically takes substantially
more time, making the overhead of CMC negligible.

7.4. Discussion of Monte Carlo results

We ran Monte Carlo experiments with our four models, whose
differences are summarized in Table 1. Because of the analytical
tractability of our models (which would not be the case for a real
NPP analysis), we are able to numerically evaluate various multi-
dimensional integrals to determine the true failure probability θ in (3)
and (16). The last column of Table 1 shows that for our models, the
value of θ does not vary much for the different copulas, but we will see
below that the performances of the Monte Carlo methods are affected,
sometimes substantially, by the change in the dependence structure.
(Section 7.5 will give results for another model demonstrating sig-
nificant differences in θ as we change the copula.)

Tables 2–4 present results from our Monte Carlo experiments with
Models 1, 3, and 4, respectively. We omit the results for Model 2 as
they are very similar to those for Model 1. Our experiments construct
upper confidence bounds B(n) satisfying (5) using four different
combinations of simulation methods: SS (see Section 4), SS+CMC
(developed in [25]), SS+rLHS (Section 5.2), and SS+CMC+rLHS
(Section 6.2). Table 3 includes Model 3's results for only SS+rLHS
and SS+CMC+rLHS, which also appear in [40], as the other methods’
results do not differ significantly from those for Model 4. We varied the
total sample size n = 4 × 100v for v = 1, 2, 3, 4. For each n and each
Monte Carlo method, we ran 104 independent experiments. The
stratification allocation has η = 0.25s for each scenario s = 1, 2, 3, 4.
For rLHS, we used b=10 independent replicates of LHS samples within
a scenario, so for each scenario s, each replicate has size m η n b= /s s .
Methods that do not require replications to create an upper confidence
bound are denoted with b=1. For the safety requirement (4), we set
θ = 0.050 and γ = 0.95. As seen in Table 1, all four models have θ θ< 0,
although our experiments do not use this knowledge.

In Tables 2–4, the column labeled “95% AHW” presents the average

half-width across the 104 experiments, where the half-width is the
difference between the 95% UCB and the point estimate of θ. For a UCB
B(n) and overall sample size n, the coverage is the probability
P B n θ( ( ) ≥ ). As noted throughout the paper, each method's UCB
satisfies (5), so the coverage converges to the nominal level γ = 0.95
as n → ∞. But for a fixed n, the coverage may differ from γ. We
estimate the coverage as the fraction of the 104 experiments in which
B n θ( ) ≥ , and one gauge of the convergence of a method is how far its
coverage is from γ. The probability of correct decision (PCD) is
estimated as the fraction of the 104 experiments that the decision rule
in (6) correctly determined that θ θ< 0. The column “CV” gives the
coefficient of variation of the point estimate of θ, computed as the

Table 1
Summary of model differences.

Model PCT load CDF parameters Copula θ

1 Based on data from [10] Gaussian 0.0254630
2 Based on data from [10] Student-t with ν = 3 d.f. 0.0254639
3 Taken from [24] Gaussian 0.0464784
4 Taken from [24] Student-t with ν = 3 d.f. 0.0464774

Table 2
Results for Model 1 (θ = 0.0254630).

Method n b 95% AHW Coverage PCD CV VRF SS/x

SS 400 1 2.16E−02 0.900 0.578 5.51E−01 1.00
1600 1 1.14E−02 0.908 0.929 2.74E−01 1.00
6400 1 5.68E−03 0.928 1.000 1.38E−01 1.00
25,600 1 2.82E−03 0.936 1.000 6.90E−02 1.00

SS+CMC 400 1 1.40E−02 0.846 0.785 3.51E−01 2.45
1600 1 7.31E−03 0.904 0.998 1.78E−01 2.37
6400 1 3.64E−03 0.931 1.000 8.78E−02 2.45
25,600 1 1.82E−03 0.937 1.000 4.44E−02 2.41

SS+rLHS 400 10 2.26E−02 0.923 0.567 5.13E−01 1.15
1600 10 1.14E−02 0.923 0.940 2.52E−01 1.18
6400 10 5.69E−03 0.936 1.000 1.26E−01 1.20
25,600 10 2.84E−03 0.944 1.000 6.27E−02 1.21

SS+CMC
+rLHS

400 10 1.36E−02 0.871 0.820 3.09E−01 3.17

1600 10 6.77E−03 0.928 0.999 1.48E−01 3.42
6400 10 3.32E−03 0.936 1.000 7.38E−02 3.47
25,600 10 1.64E−03 0.941 1.000 3.67E−02 3.55

Table 3
LHS results for Model 3 (θ = 0.0464784).

Method n b 95% AHW Coverage PCD CV VRF SS/x

SS+rLHS 400 10 7.40E−03 0.777 0.616 1.15E−01 1.39
1600 10 4.43E−03 0.793 0.395 5.59E−02 1.48
6400 10 2.20E−03 0.921 0.801 2.67E−02 1.67
25,600 10 1.08E−03 0.936 1.000 1.30E−02 1.73

SS+CMC
+rLHS

400 10 8.59E−04 0.933 1.000 1.06E−02 161.39

1600 10 3.45E−04 0.942 1.000 4.15E−03 268.13
6400 10 1.62E−04 0.940 1.000 2.00E−03 299.20
25,600 10 7.91E−05 0.942 1.000 9.79E−04 307.71

Table 4
Results for Model 4 (θ = 0.0464744).

Method n b 95% AHW Coverage PCD CV VRF SS/x

SS 400 1 9.25E−03 0.864 0.345 1.38E−01 1.00
1600 1 5.08E−03 0.879 0.394 6.89E−02 1.00
6400 1 2.59E−03 0.919 0.695 3.45E−02 1.00
25,600 1 1.31E−03 0.934 0.992 1.73E−02 1.00

SS+CMC 400 1 2.56E−03 0.946 0.725 3.39E−02 16.63
1600 1 1.30E−03 0.954 0.997 1.66E−02 17.11
6400 1 6.37E−04 0.947 1.000 8.44E−03 16.70
25,600 1 3.21E−04 0.951 1.000 4.25E−03 16.68

SS+rLHS 400 10 7.82E−03 0.798 0.581 1.16E−01 1.41
1600 10 4.55E−03 0.793 0.404 5.79E−02 1.42
6400 10 2.34E−03 0.911 0.756 2.87E−02 1.45
25,600 10 1.19E−03 0.934 0.996 1.45E−02 1.44

SS+CMC
+rLHS

400 10 1.25E−03 0.947 0.998 1.48E−02 87.41

1600 10 5.63E−04 0.947 1.000 6.79E−03 102.71
6400 10 2.78E−04 0.949 1.000 3.34E−03 106.44
25,600 10 1.36E−04 0.948 1.000 1.67E−03 108.48
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sample standard deviation of the point estimate of θ across the 104

experiments divided by the numerically-computed value of θ in
Table 1. For each particular method x, the last column presents the
variance-reduction factor (VRF), which for a given overall sample size
n is the ratio of the sample variances for the base case of SS and for
method x. The VRF gives the factor by which the overall sample size for
method x can be reduced compared to SS to achieve about the same
AHW. For example, in Table 4, SS+CMC has VRF ≈ 16, and its AHW
for n=400 (resp., 1600) is about the same as the SS AHW for n=6400
(resp., 25,600).

Tables 2–4 clearly show that each method's performance depends
on the model. For example, for small n in Model 1 (and 2, not shown),
the coverages for the methods with CMC are lower than those for the
corresponding approaches without CMC, but the opposite is true for
Models 3 and 4. Also, each method exhibits variations across models in
the sample size n at which convergence appears to have been roughly
achieved (as defined by coverage being within 5% of the nominal level
γ = 0.95). For example, SS+rLHS appears to approximately converge by
n=400 for Model 1; in contrast, Model 3 requires n=6400. However, by
n=6400, the methods SS and SS+rLHS seem to have nearly converged
for all models, whereas SS+CMC and SS+CMC+rLHS appear to need
n=1600.

But even with the performance differences across models for each
method, Tables 2–4 also illustrate some universal trends. For all
models, each combined VRT has VRF > 1, so we see the effectiveness
of combining methods. This agrees with the asymptotic theory estab-
lished in Theorems 1 and 3 for SS+LHS and SS+CMC+LHS, respec-
tively. In particular, the combination of SS+CMC+rLHS provides the
most variance reduction for each model, with VRFs of about 300 and
100 for Models 3 (Table 3) and 4 (Table 4), respectively. The VRFs for
SS+CMC+rLHS are more modest (about 3.5) for Models 1 (Table 2)
and Table 2 (not shown). Thus, the effectiveness of the method depends
on the marginal distributions (compare Models 1 and 3) and the copula
(Models 3 and 4).

For all four models, the VRF for SS+CMC+rLHS exceeds the
product of the VRFs for SS+CMC and SS+rLHS, illustrating the
synergistic effect of integrating LHS with CMC. As explained in
Section 5.1, LHS can be particularly effective when the response is a
nearly additive function of the input random variables. Without CMC,
the response function (35) is an indicator, for which an additive
approximation can be a poor fit, so LHS by itself may not reduce
variance by much. But incorporating CMC leads to a smoother
response function (47) through the integration performed for the
conditional expectation, so its additive fit (54) can be much better; as
Section 6.1 notes, LHS can then produce substantially more variance
reduction, as Tables 2–4 show.

Another benefit of reduced variance becomes evident when exam-
ining the PCD. Many application domains critically rely on a high
probability of correctly deciding if the safety requirement θ θ< 0 in (4)
holds. But it can be difficult to achieve high PCD when θ is close to θ0,
as in Models 3 and 4 where θ ≈ 0.0465 and θ = 0.050 . In general it is
easier for the decision rule (6) to make a correct determination when
the point estimator of θ has small statistical error. Because the error
asymptotically decreases at rate n−1/2 by virtue of the relevant CLT, the
PCD converges to 1 as n → ∞, as seen throughout Tables 2–4 for each
method, so we can ensure high PCD by having a large sample size. But
this may not always be feasible, e.g., when a simulation run is
extremely time-consuming. Instead, we can also achieve higher PCD
for a fixed n by applying VRTs that reduce the error. For example,
Table 4 shows that for n=400, method SS has PCD = 0.345, whereas SS
+CMC+rLHS has PCD = 0.998. Thus, the much smaller variance for SS
+CMC+rLHS results in a substantially higher chance of making a
correct decision for the same sample size.

7.5. Additional numerical results

While Table 1 displays little difference in the exact values of θ for
the Gaussian and Student-t copulas, this is not always the case, as we
will see later. But first, we explain why the two copulas lead to
essentially the same values for θ for Models 1 and 2 and for Models
3 and 4. For each criterion k = 1, 2, 3, let θ λ P L C= ∑ ( ≥ )k

s
s

s s
k

s
k[ ]

=1 ( )
[ ]

( )
[ ]0 be

the marginal failure probability for criterion k by itself. Models 1–4 all
have that θ = 2.13E−15[2] and θ = 2.73E−6[3] . For criterion k=1 (PCT),
Models 1 and 2 (resp., 3 and 4) have θ = 0.0255[1] (resp., θ = 0.0465[1] ),
which overwhelm θ[2] and θ[3]. Thus, the overall failure probability θ is
mainly determined by PCT, so the particular dependence structure
among the criteria has little impact.

To demonstrate that differing copulas can yield substantial changes
in θ, we altered the parameters of the load distributions. For each
scenario s, the lognormal CDF parameters for criterion k=1 are instead
μ s= 7.33 + 0.1s( )

[1] and σ s= 0.01 + 0.01s( )
[1] ; the Weibull parameters for

criterion k=2 (CWO) are α s= 0.22 + 0.005s( )
[2] and β s= 0.90 + 0.02s( )

[2] ;
and the Weibull parameters for criterion k=3 (MLO) are
α s= 3.1 + 0.3s( )

[3] and β s= 0.82 + 0.03s( )
[3] . For the loads, we slightly

changed the input correlations to Σ = 0.93L
[1,2] , Σ = 0.96L

[1,3] , and
Σ = 0.84L

[2,3] for the Gaussian copula, and the input dispersions to
Σ = 0.94L

[1,2] , Σ = 0.97L
[1,3] , and Σ = 0.83L

[2,3] for the Student-t copula, in
both cases producing load target correlations ρ = 0.83L

[1,2] , ρ = 0.84L
[1,3] ,

and ρ = 0.81L
[2,3] . The capacities' marginal distributions and copulas are

the same as in Models 1–4. With these parameters we now have that
θ = 0.0201[1] , θ = 0.0201[2] , and θ = 0.0208[3] , so no single criterion's
marginal failure probability dominates the others, in contrast to what
occurs for Models 1–4.

Table 5 presents the values of θ, computed numerically, for the
Gaussian and Student-t copulas. Now we see a distinct difference, with
θ decreasing by about 5% when changing the copula from Gaussian to
Student-t for system failure defined as for a series system.

We can observe an even greater difference in θ between the copulas
by changing the definition of a failure from that for a series system in
(7) to instead be for a parallel system, as in (8). As seen in the bottom
of Table 5, now θ increases by about 19% when changing the copula
from Gaussian to Student-t. To explain the larger change when failure
is defined by (8) instead of (7), note that the marginal failure
probabilities θ k[ ] are fairly small (≈0.02), so the tail dependence plays
an important role in determining θ. As we discussed in the paragraph
after (68) in Section 7.2, the two copulas give rise to very different
dependence behaviors in the tails. Because the Student-t copula
asymptotically has non-zero tail dependence, if one criterion is
violated, then there is a reasonable chance that the others are as well,
leading to higher θ when failure is defined for a parallel system. In
contrast, the asymptotic tail independence of the Gaussian copula does
not produce such joint behavior, so θ is notably smaller.

8. Concluding remarks

We combined variance-reduction techniques to estimate a failure

Table 5
Values of θ for another set of distribution parameters for the loads with different copulas
and different definitions for failure.

Copula Failure definition θ

Gaussian Series system, Eq. (7) 0.0493
Student-t Series system, Eq. (7) 0.0470
Gaussian Parallel system, Eq. (8) 6.83E−4
Student-t Parallel system, Eq. (8) 8.11E−4
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probability. We developed the methods in a general setting, where a
failure is defined in terms of a basic random object, which may be a
random vector or a more general random object, e.g., a stochastic
process. We also specialized our approaches to the setting in which a
failure is specified as a function of loads and capacities of q criteria
(e.g., as in the RISMC problem for a nuclear PSA), and we exploited the
added structure to obtain readily implementable techniques. The
combination SS+CMC+LHS can be especially effective, substantially
reducing variance compared to SS, SS+CMC, and SS+LHS, as shown in
the numerical experiments in Section 7. To account for the statistical
error of our Monte Carlo estimators, we further devised upper
confidence bounds for θ, and we proved the asymptotic validity (as
the total sample size n → ∞) of the UCBs when applying SS+rLHS and
SS+CMC+rLHS in Theorems 2 and 4, respectively.

Theorem 1 (resp., 3) further established that SS+LHS (resp., SS
+CMC+LHS) has smaller asymptotic variance than SS (resp., SS+LHS).
We also provided analysis (Sections 5.1 and 6.1) giving insight into why
combining CMC with LHS can be so powerful (e.g., Table 3 shows SS
+CMC+rLHS reduces variance by about a factor of 300 compared to
SS). It is known (e.g., Section 10.3 of [22]) that LHS can tremendously
reduce variance when the response function whose mean is being
estimated is well approximated by an additive function of the input
random numbers. But when estimating a probability without applying
CMC, the response is an indicator function, and the additive approx-
imation to it can be a poor fit. Incorporating CMC smooths the
response function through a conditional expectation (so the response
is no longer necessarily binary-valued), which can lead to a better
additive fit and consequently lower variance when combining CMC
with LHS. In our development of SS+CMC+LHS in Section 6.3, where
failure is defined in terms of loads and capacities of q criteria,
Assumption A4 implied that the load vector is independent of the
capacity vector (Proposition 1), which holds in many applications. (If it
does not for a particular problem, SS+CMC+LHS can still be applied
but it then requires working instead with the response function (47)
which may be less tractable than (63).) Our methods can be applied to
high-dimensional problems; e.g., the models in Section 7 used ds=33
and 35 input uniforms for each scenario s. We should note, however,

that the models in Section 7 are synthetic examples, although they are
loosely based on data from actual nuclear computer codes [10,3,19].
While SS+CMC+LHS is guaranteed to outperform SS+LHS in terms of
asymptotic variance, it would be interesting to see how much our
techniques reduce variance when using actual nuclear computer codes.
As noted in Section 1, LHS is most appropriate for estimating measures
of central tendency, e.g., a mean, so adding LHS to SS+CMC may not
be effective in sufficiently reducing variance when estimating rare-
event probabilities, smaller than say 10−4. In such cases, other Monte
Carlo methods, such as importance sampling or splitting [14, Chapter
VI], may be needed.

Developing appropriate stochastic models for multivariate capaci-
ties also deserves further investigation. The marginal distributions and
pairwise (Pearson linear) correlations do not fully specify the entire
dependence structure, and there can be infinitely many joint distribu-
tions fitting that limited information. On the other hand, replacing
correlations with a copula does completely determine the joint
distribution for given continuous marginals. In our numerical experi-
ments, we assumed that each criterion's (PCT, CWO, and MLO)
capacity has a marginal triangular distribution, with the joint depen-
dence structure defined by a Gaussian or Student-t copula. We chose
marginal triangular capacity distributions because [3,19] use this when
considering only a single criterion, PCT. As our numerical results
indicate, the value of the failure probability θ and the performance of
our developed methodologies depend on the particular stochastic
structure specified, so it is critical to build accurate models.
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Appendix A. Proof of Theorem 2

Note that P B n θ P b θ n θ S n τ( ( ) ≥ ) = ( [ ( ) − ]/ ( ) ≥ − ),η b η b b b γSS+rLHS, , SS+rLHS, , −1, so it suffices to show that

[ ] [ ]b θ n θ
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T
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( )
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b
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SS+rLHS, , SS+rLHS, ,
−1

(A.1)

as n → ∞ for fixed b ≥ 2, where we recall that Tb−1 is a Student-t random variable with b − 1 d.f. To accomplish this, we will start by analyzing θ n( )s
r

( )
〈 〉

in (39) and build up to θ n( )η bSS+rLHS, , and Sb(n) through (40) and (41).

The estimator θ n( )s
r

( )
〈 〉

in (39) of θ s( ) from replication r has bounded response functions s i
r

( ),
〈 〉 defined in (38) and (25), so the estimator satisfies the

LHS CLT of [49]:
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as n → ∞ because m η n b= / → ∞s s , where an expression for σ s( ),SS+LHS
2 is given in (36). The mutual independence of θ n( )s
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〈 〉

, r b1 ≤ ≤ , s s1 ≤ ≤ 0,
ensures the joint convergence
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as n → ∞ by Problem 29.2 of [43], where N s
r

( )
〈 〉, r b1 ≤ ≤ , s s1 ≤ ≤ 0, are independent σ b η(0, / )s s( ),SS+LHS

2 random variables. Thus, for each replication

r b= 1, 2, …, , we have that (16) and (40) imply θ n( )
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as n → ∞ by (A.3) and the continuous-mapping theorem (e.g., Theorem 29.2 of [43]), where the asymptotic variance
ψ λ σ b η bσ= ∑ / =s

s
s s s η

2
=1

2
( ),SS+LHS
2

SS+LHS,
20 by (31) and the independence of N s

r
( )
〈 〉, s s1 ≤ ≤ 0. Moreover, N r〈 〉, r b1 ≤ ≤ , are i.i.d. Hence, (41) and (A.4)

ensure that for the numerator in the middle term of (A.1), we have
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Now we consider the square of the denominator of the middle term in (A.1):
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as n → ∞ by (A.3), (A.4), and the continuous-mapping theorem, where χb−1
2 is a chi-squared random variable with b − 1 d.f., which is independent of

N∑r
b r
=1

〈 〉 in (A.5). Putting (A.5) and (A.6) into the middle term of (A.1) and using (A.3) yields

b θ n θ S n ψ ψ χ b χ b T[ ( ) − ]/ ( ) ⇒ (0, 1)/ /( − 1) = (0, 1)/ /( − 1) =η b b b b bSS+rLHS, ,
2

−1
2

−1
2

−1 as n → ∞ by the continuous-mapping theorem and the
independence of the limit's numerator and denominator. Thus, (A.1) holds, so the portmanteau theorem ensures
P B n θ P b θ n θ S n τ P T τ γ( ( ) ≥ ) = ( [ ( ) − ]/ ( ) ≥ − ) → ( ≥ − ) =η b η b b b γ b b γSS+rLHS, , SS+rLHS, , −1, −1 −1, as n → ∞ by the continuity and symmetry of the
Student-t distribution, completing the proof.

Appendix B. Proof of Theorem 3

As in Assumption A3, letU U U U′ = ( , , …, )d1 2 ′s be a subvector of vectorU U U U= ( , , …, )d1 2 s
of i.i.d. uniforms. It can be shown that the conditions

of Theorem 5ii of [23] hold under our Assumptions A2 and A3. Thus, as established in Eq. (77) of the proof of Theorem 5ii of [23], the asymptotic
variance σ s( ),SCL

2 in (52) for scenario s satisfies
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by a variance decomposition and (36). Hence, putting (B.1) into (53) yields
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by (31), establishing the equality in (55). The inequality in (55) holds as the conditional variances in (55) are nonnegative, implying that
σ σ≤η ηSCL,

2
SS+LHS,
2 .

Appendix C. Proof of Theorem 4

We can prove Theorem 4 employing the same basic arguments applied to show Theorem 2. The only difference is that we now use the estimator
(57) of θ s( ) from each replication r instead of the SS+rLHS estimator without CMC in (39). By (47), the response function s( ) in (57) is bounded, so
the analogue of the CLT in (A.2) also holds for each r, and the rest of the proof of Theorem 2 goes through.
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