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We develop a class of techniques for analyzing the output of simulations of a semi-regenerative
process. Called the semi-regenerative method, the approach is a generalization of the regenera-
tive method, and it can increase efficiency. We consider the estimation of various performance
measures, including steady-state means, expected cumulative reward until hitting a set of states,
derivatives of steady-state means, and time-average variance constants. We also discuss impor-
tance sampling and a bias-reduction technique. In each case, we develop two estimators: one
based on a simulation of a single sample path, and the other a type of stratified estimator in
which trajectories are generated in an i.i.d. manner. We establish a central limit theorem for each
estimator, so confidence intervals can be constructed.
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1. INTRODUCTION

A stochastic process is regenerative if, loosely speaking, there exists an infinite
sequence of random times, known as regeneration points, at which the process
probabilistically restarts. For example, for a positive-recurrent irreducible Markov
chain on a discrete state space S, the successive hitting times to a fixed state form
one possible regeneration sequence. A sample path of a regenerative process can be
divided into independent and identically distributed (i.i.d.) cycles based on the se-
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2 · James M. Calvin et al.

quence of regeneration points. The regenerative method (RM) of simulation output
analysis [Crane and Iglehart 1975] uses this structure to construct asymptotically
valid confidence intervals for the steady-state mean of a regenerative process.

There are several settings in which exploiting regenerative structure and applying
the RM lead to improvements over other methods. For example, the only known
estimator of the time-average variance constant with convergence rate t−1/2, where
t is the run length of the simulation, is based on the RM [Henderson and Glynn
2001]. (The time-average variance constant is the variance constant appearing in
the central limit theorem for the time average of a process.) Several bias-reduction
techniques rely on regenerative structure [Meketon and Heidelberger 1982; Glynn
1994]. Also, it is known that the variance of likelihood ratio derivative estimators
(resp., importance-sampling estimators) grows linearly (resp., exponentially) in the
length of observations [Reiman and Weiss 1989; Glynn 1990; 1995], so breaking up
a sample path into regenerative cycles can be beneficial.

For many regenerative processes there is more than one choice of regeneration
sequence to use for the RM. For example, for a Markov chain, returns to any fixed
state constitute regenerations. In such settings it would be useful to have methods
that exploit multiple regeneration sequences.

In this paper we present a general approach for taking advantage of multiple re-
generation sequences. We call it the “semi-regenerative method” (SRM) because of
its relationship to the theory of semi-regenerative stochastic processes (Section 10.6
of [Çinlar 1975]). We develop the SRM in the context of Markov chains on a dis-
crete state space S, with the goal of obtaining estimators that have smaller variance
than their regenerative counterparts.

The basic idea of the SRM is to fix a set of states A ⊂ S, and we define a trajectory
as a sample path beginning in a state in A until the first return to A. Then we
derive a new representation for the performance measure of interest in terms of
expectations of functionals of trajectories. The semi-regenerative estimator results
by replacing each expectation with a simulation-based estimator of it.

We develop the SRM for several different classes of performance measures, and
in each case, we define two estimators. One is based on simulating a single (long)
sample path, which we then divide into trajectories. The other uses a type of
stratification, in which trajectory “segments” are sampled in an i.i.d. manner. We
establish central limit theorems for each of our semi-regenerative estimators, thus
enabling one to construct asymptotically valid confidence intervals.

Other methods for simulating processes with multiple regeneration sequences
have been proposed in the literature, including the almost regenerative method
(ARM) [Gunther and Wolff 1980], A-segments [Zhang and Ho 1992], semi-stationary
processes [Alexopoulos and Shultes 1998], and permuted regenerative estimators
[Calvin and Nakayama 1998; 2000b; 2000a]. The other methods, which all result in
estimators that differ from semi-regenerative estimators, are based on simulating
a single sample path. In addition to our semi-regenerative estimators based on a
single sample path, we also consider stratified estimators, which have no analogues
with the other methods.

Gunther and Wolff [1980] developed the ARM only for estimating the steady-state
mean reward. It fixes two disjoint sets of states, U and V , and divides a sample

ACM Journal Name, Vol. V, No. N, Month 20YY.



The semi-regenerative method of simulation output analysis · 3

path into almost regenerative cycles that begin and end with transitions from the
set U to the set V . To relate this to the semi-regenerative estimator, let V = A and
U = S\A, and note that the SRM allows for trajectories consisting of one transition
from A back to A, whereas this cannot be an almost regenerative cycle. (Similarly,
the approach of [Alexopoulos and Shultes 1998] for semi-stationary processes does
not allow transitions from A directly back to A.) If we remove the restriction that
the sets U and V are disjoint in the ARM, then the resulting ARM point estimator
is the same as the SRM estimator when using one long sample path.

Zhang and Ho [1992] developed the A-segments method to reduce the variance of
likelihood ratio derivative estimators. Their technique breaks up a sample path into
A-segments determined by returns to the set A, as is done with the SRM, but they
construct their estimator using an approach that differs from ours and end up with
a different estimator. Also, Zhang and Ho only apply their method to likelihood
ratio derivative estimation, and they do not prove a central limit theorem for their
estimator, as we do.

Permuted regenerative estimators [Calvin and Nakayama 1998; 2000b; 2000a]
are constructed by first running a simulation of a fixed number of cycles from one
regeneration sequence. Then for each regeneration sequence, permute the cycles of
that sequence along the generated path. Compute an estimate of the performance
measure based on this permuted sample path, and averaging over all permuted
paths yields the permuted estimator.

Calvin and Nakayama [2002] analyze the difference between semi-regenerative
and permuted estimators when estimating the second moment of a cycle reward
when |A| = 2. They also compare the two estimators to another, a type of V -
statistic estimator, which resamples trajectories with replacement. They demon-
strate that the three estimators are not the same in general, but they are asymptot-
ically equivalent and satisfy the same central limit theorem. Specifically, they show
that for the performance measure considered, the permuted estimator is unbiased
and the other two estimators have positive bias, with the bias of the SRM estimator
being at least as large of that for the V -statistic estimator.

An alternative approach to using multiple regeneration sequences is to try to
increase the frequency of regenerations from a single sequence. Andradöttir et al.
[1995] discuss such an approach for simulation of Markov chains. Instead of regen-
erations occurring with each visit to a fixed state, regenerations may occur (with
a certain state-dependent probability) for visits to many states. In the case of the
regenerative estimator of the time-average variance constant, basing the estimator
on a regenerative subsequence of a regeneration sequence produces an estimator
with at least as large variance.

The rest of the paper has the following structure. In Section 2 we develop the
mathematical framework for the paper. Throughout this paper we restrict the
setting to discrete-time Markov chains on a discrete state space, but the methods
also apply to more general semi-regenerative processes. In Section 3 we derive
semi-regenerative estimators for steady-state means, and in Section 5 we develop
estimators that incorporate importance sampling for estimating steady-state means.
We construct estimators for the expected cumulative reward until hitting a set of
states, the gradient of a steady-state mean, and the time-average variance constant

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · James M. Calvin et al.

in Sections 6, 7, and 4, respectively. In Section 8 we derive a semi-regenerative
version of a regenerative low-bias estimator. In Section 9 we consider ratios of
steady-state means. We close with some concluding remarks.

Calvin et al. [2001] present (without proofs) some of the results from the current
paper. In particular, Calvin et al. [2001] present the semi-regenerative estimator
based on a single sample path for the expected cumulative reward until hitting a
set, as well as some importance sampling estimators for this measure, which are
not in the current paper. Also, Calvin et al. [2001] give some empirical results.

2. MATHEMATICAL FRAMEWORK

Let X = {Xj : j = 0, 1, 2, . . .} be a discrete-time Markov chain (DTMC) on a
finite or countably infinite state space S. Let Π = (Π(x, y) : x, y ∈ S) be the
transition probability matrix of X , and let Px (resp., Ex, Varx, and Covx) denote
the probability measure (resp., expectation, variance, and covariance) given that
X0 = x, x ∈ S.

Assumption 2.1. The DTMC X with transition probability matrix Π is irre-
ducible and positive recurrent.

Under Assumption 2.1, X has a unique stationary distribution π = (π(x) : x ∈
S), which is the row-vector solution to π = πΠ with

∑
x∈S π(x) = 1 and π(x) > 0

for all x ∈ S.

3. STEADY-STATE MEANS

Let f : S → ℜ be a “reward” function. Our goal is to estimate α = πf ≡∑
x∈S π(x)f(x).

Assumption 3.1. The reward function f satisfies
∑

x∈S

π(x) |f(x)| < ∞.

3.1 The Regenerative Method

Consider first the regenerative method [Crane and Iglehart 1975]. For x ∈ S, define
τx = inf{j ≥ 1 : Xj = x}. Fix a “return state” w ∈ S. Under Assumptions 2.1 and
3.1, the RM is based on the identity

α =
Ew

[∑τw−1
j=0 f(Xj)

]

Ew [τw]
. (1)

The moments in (1) are estimated by generating independent copies of



τw−1∑

j=0

f(Xj), τw


 under measure Pw (2)

and forming the sample means. Specifically, let Tw,0 = inf{j ≥ 0 : Xj = w} and
Tw,k = inf{j > Tw,k−1 : Xj = w} for k ≥ 1. Define τw,k = Tw,k −Tw,k−1, for k ≥ 1.

Also, define Yw,k =
∑Tw,k−1

j=Tw,k−1
f(Xj) for k ≥ 1. Now fix a large integer n and run a

simulation of X up to time Tw,n, giving a sample path {Xj : j = 0, 1, . . . , Tw,n}. The
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(Yw,k, τw,k), k = 1, 2, . . . , n, are i.i.d. copies of (2). Set Ȳw,n = (1/n)
∑n

k=1 Yw,k and
τ̄w,n = (1/n)

∑n
k=1 τw,k. Then the regenerative estimator of α is α̃w,n ≡ Ȳw,n/τ̄w,n.

Let N (κ, Φ) denote a normal distribution with mean vector κ and covariance

matrix Φ, and let
D→ denote convergence in distribution. We can form an asymp-

totically valid confidence interval for α based on the following central limit theorem
(e.g., see p. 100 of [Shedler 1993]).

Proposition 3.2. If Assumption 2.1 holds and if Ew

[(∑τw−1
j=0 |f(Xj)|

)2
]

< ∞
and Ew[τ2

w] < ∞, then

n1/2(α̃w,n − α)
D→ N (0, σ̃2)

as n → ∞, where σ̃2 = (Var[Yw,k] − 2αCov(Yw,k, τw,k) + α2Var[τw,k])/Ew[τw,k].

3.2 The Semi-Regenerative Estimator for Steady-State Means

We will now develop another estimator for α. Fix a set of states A ⊂ S, A 6= ∅,
and set

T0 = inf{j ≥ 0 : Xj ∈ A},
Tk = inf{j > Tk−1 : Xj ∈ A}, k ≥ 1,

T = T1,

Wk = XTk
, k ≥ 0.

The following result follows from pp. 314–315 of [Çinlar 1975].

Proposition 3.3. Under Assumption 2.1, W = {Wk : k ≥ 0} is an irreducible,
positive-recurrent discrete-time Markov chain with state space A.

The process W is sometimes called the “chain on A.” Define R(x, y) = Px(XT =
y) for x, y ∈ A, and let R = (R(x, y) : x, y ∈ A), which is the transition probability
matrix of W . Under Assumption 2.1, Proposition 3.3 implies the existence of a
unique stationary distribution ν = (ν(x) : x ∈ A) ∈ ℜ1×d for W ; i.e., ν is the row
vector satisfying νR = ν with

∑
x∈A ν(x) = 1 and ν(x) > 0 for all x ∈ A. Let Eν

denote expectation with initial distribution ν. We assume the following:

Assumption 3.4. |A| = d < ∞, with A = {x1, x2, . . . , xd}.

The SRM is based on the following identity.

Proposition 3.5. If Assumptions 2.1, 3.1, and 3.4 hold, then

α =
Eν

[∑T−1
j=0 f(Xj)

]

Eν [T ]
=

∑d
i=1 ν(xi)Exi

[∑T−1
j=0 f(Xj)

]

∑d
i=1 ν(xi)Exi

[T ]
.

We defer the proof to Remark 3.9 before Theorem 3.10 in Section 3.3. Çinlar
[1975], Theorem 10.6.12, provides a proof of this result under different assumptions
when the function f is of the form f(x) = I(x ∈ B) for some set of states B ⊂ S,
where I( · ) is the indicator function. Also, see [Zhang and Ho 1992].
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Using the semi-regenerative identity in Proposition 3.5, we will now develop an
estimator for α using a type of stratified sampling. Let

Y =

T−1∑

j=0

f(Xj),

τ = T,

χ(y) = I(XT = y), for y ∈ A.

Let p1, p2, . . . , pd, be d positive numbers summing to one. Given a “replication
budget” n, we will sample ⌊pin⌋ times from the initial state xi ∈ A, where for
a ∈ ℜ, ⌊a⌋ is the greatest integer less than or equal to a. Specifically, for each
i = 1, 2, . . . , d, let

(Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ ⌊pin⌋ be i.i.d. copies of

(Y, τ, χ(y) : y ∈ A) under measure Pxi
.

Set

Rn(xi, y) =
1

⌊pin⌋

⌊pin⌋∑

k=1

χk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and set Rn = (Rn(x, y) : x, y ∈ A) ∈ ℜd×d. Clearly,

Rn → R a.s. (3)

as n → ∞ by the strong law of large numbers. Since R is irreducible and positive
recurrent by Proposition 3.3, Rn also is for sufficiently large n, so there exists a
unique stationary distribution νn = (νn(x) : x ∈ A) ∈ ℜ1×d for Rn for n sufficiently
large; i.e., νn satisfies νn = νnRn with

∑
x∈A νn(x) = 1 and νn(x) > 0 for all x ∈ A

for sufficiently large n by Proposition 3.3. We define the semi-regenerative estimator
of α to be

αn =

∑d
i=1 νn(xi)

1
⌊pin⌋

∑⌊pin⌋
k=1 Yk(xi)

∑d
i=1 νn(xi)

1
⌊pin⌋

∑⌊pin⌋
k=1 τk(xi)

. (4)

If |A| = 1, then αn is the standard regenerative estimator of α.
The estimator αn is a type of stratified estimator (Chapter 5 of [Cochran 1977]),

in which starting a trajectory from xi is effectively a sample from stratum i, 1 ≤
i ≤ d. In general, for an arbitrary choice of the pi’s, the estimator αn can have a
variance very different from that of the point estimator (1/Tn)

∑Tn−1
j=0 f(Xj) based

on one long sample path of length Tn. Later in this section we discuss methods for
determining the weights pi to minimize the asymptotic variance of αn. Also, we
will carry out an asymptotic comparison of the point estimator of one long sample
path and the semi-regenerative estimator in Section 3.3.

We now wish to develop a central limit theorem for the semi-regenerative esti-
mator αn. For this we will need to make some moment assumptions.
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Assumption 3.6. There exists w ∈ S such that

Ew

[
τ2
w

]
< ∞, Ew







τw−1∑

j=0

|f(Xj)|




2

 < ∞.

Proposition 3.7. Under Assumptions 2.1 and 3.6, Ex[Y 2] < ∞ and Ex[τ2] <
∞ for all x ∈ A.

For a proof, see Theorem 4, page 84, of [Chung 1967].
We now state our central limit theorem for αn. For i = 1, 2, . . . , d, define the

matrix Ψi = (Ψi(x, y) : x, y ∈ A) with entries

Ψi(xj , xk) = Covxi
(χ(xj), χ(xk)) = −R(xi, xj)R(xi, xk), j 6= k, (5)

and

Ψi(xj , xj) = Varxi
(χ(xj)) = R(xi, xj)(1 − R(xi, xj)). (6)

For i, j = 1, 2, . . . , d, define g(xi, xj) = Covxi
(χ(xj), Z) and h(xi) = Varxi

(Z),
where Z = Y −ατ . Let z = (z(x) : x ∈ A) ∈ ℜd×1 with z(x) = Ex[Z]. Let e denote
the vector of all 1’s in ℜd×1, and let V be the matrix in ℜd×d in which all rows are
equal to ν; i.e., V = eν. Let F = (I − R + V )−1, the fundamental matrix of W ,
which exists under Assumptions 2.1 and 3.4 by Proposition 3.3 (e.g., see p. 100 of
[Kemeny and Snell 1960]). Finally, let ζ = (ζ(x) : x ∈ A) ∈ ℜd×1 be defined by
ζ = Fz. The following establishes a central limit theorem for αn; see the appendix
for the proof.

Theorem 3.8. Under Assumptions 2.1, 3.1, 3.4, and 3.6,

n1/2 (αn − α)
D→ N (0, σ2)

as n → ∞, where

σ2 =
1

(Eν [T ])2

d∑

i=1

ν2(xi)ηi

pi
, (7)

with

ηi = h(xi) + 2

d∑

j=1

g(xi, xj)ζ(xj) +

d∑

j=1

d∑

l=1

ζ(xj)ζ(xl)Ψi(xj , xl). (8)

We can consistently estimate σ2 by estimating each of the quantities in (7) as
follows:

—Estimate Eν [T ] by νnτ̄n.

—Estimate ν(xi) by νn(xi).

—Estimate h(xi) by

hn(xi) =
1

⌊pin⌋ − 1

⌊pin⌋∑

k=1

(Yk(xi) − Ȳn(xi))
2 +

α2
n

⌊pin⌋ − 1

⌊pin⌋∑

k=1

(τk(xi) − τ̄n(xi))
2

− 2αn

⌊pin⌋ − 1

⌊pin⌋∑

k=1

(Yk(xi) − Ȳn(xi))(τk(xi) − τ̄n(xi)),
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where Ȳn(xi) = (1/⌊pin⌋)
∑⌊pin⌋

k=1 Yk(xi) and τ̄n(xi) = 1
⌊pin⌋

∑⌊pin⌋
k=1 τk(xi).

—Estimate ζ by ζn = (I − Rn + Vn)−1(Ȳn − αnτ̄n), where Vn = eνn and Ȳn =
(Ȳn(x) : x ∈ A).

—Estimate g(xi, xj) by

gn(xi, xj)

=
1

⌊pin⌋ − 1

⌊pin⌋∑

k=1

[χk(xi, xj) − Rn(xi, xj)][(Yk(xi) − αnτk(xi)) − Z̃n(xi)],

where Z̃n(xi) = Ȳn(xi) − αnτ̄n(xi).

—Estimate Ψi(xj , xl) by

Ψi,n(xj , xl) =

{
−Rn(xi, xj)Rn(xi, xl) if j 6= l,
Rn(xi, xj)(1 − Rn(xi, xj)) if j = l.

The resulting estimator σ̂2
n of σ2 is then strongly consistent and can be used to

construct an asymptotically valid (as n → ∞) 100(1−δ)% confidence interval for α
given by (αn − aδσ̂n/

√
n, αn + aδσ̂n/

√
n), where aδ is chosen so that P (N (0, 1) ≥

aδ) = δ/2.
The semi-regenerative approach opens up the possibility of stratification (i.e.,

choosing the {pi}) in a way that is impossible to implement in the regenerative
context. This is a potentially important “additional degree of freedom” that does
not have a regenerative analogue.

For a fixed subset A of states, we now consider the problem of choosing the
optimal {pi} to minimize σ2. By (7) we can write

σ2 ≡ σ2(p1, p2, . . . , pd) =

d∑

i=1

ci

pi
,

where ci = ηi(ν(xi)/Eν [T ])2. It can be shown (see (55) in the appendix) that

ci ≥ 0. Minimizing σ2 subject to
∑d

i=1 pi = 1 and pi ≥ 0 yields the optimal {p∗i }
given by

p∗i =

√
ci∑d

j=1

√
cj

; (9)

see Chapter 5 of [Cochran 1977]. Since the {ci} are typically unknown, one
approach to apply this result in practice is to use a two-stage procedure. In the first
stage, simulate a pilot run to estimate the {ci}; one approach for implementing the
pilot run is to fix a number n of trajectories, and for each i = 1, 2, . . . , d, and start
n/|A| of them from state xi. In the second stage, using the estimates of the {ci},
simulate the production runs with estimates for {p∗i } determined by substituting
the estimates of the {ci} into (9).

(Rather than choosing the pi to minimize variance, we could instead maximize
efficiency, which is often defined as the inverse of the product of the variance and
work; see [Glynn and Whitt 1992]. To define the work in this case, we need to
take into account the cost associated with sampling from each stratum i, and a
reasonable measure of that cost is Exi

[τ ], the expected number of transitions in a
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trajectory starting from xi. Thus, maximizing efficiency corresponds to minimizing
σ2(p1, . . . , pd)

∑d
i=1 piExi

[τ ], subject to
∑d

i=1 pi = 1 and pi ≥ 0, which in general
cannot be solved in closed form, so that numerical methods need to be used.)

We performed numerical experiments to explore the possible benefit of choosing
approximately optimal stratification weights to minimize variance using the two-
stage procedure described above. The model is a Markov chain on state space
S = {0, 1, . . . , 11} that models the maintenance of a machine subject to periodic
breakdowns followed by repair intervals. We model the time until a new machine
breaks down, and the time to return it to service as discrete phase-type distri-
butions, as shown in Figure 1. States 0 and 1 are working states, and when the
chain enters state 2 the machine is out of service. There are three types of repair,
with respective probabilities 0.7, 0.27, and 0.03. After repair the system returns to
state 0. The cost function f is given by f(0) = f(1) = f(2) = f(3) = f(4) = 0,
f(5) = f(6) = f(7) = f(8) = 1, and f(9) = f(10) = f(11) = 24. The steady-state
mean cost is approximately πf ≈ 0.7037.

Table I presents simulation results with different choices of A, where we used
pilot runs to approximate the weights in (9) that minimize variance. Each exper-
iment consisted of 103 independent replications, with each replication simulating
a production run of 2 × 106 transitions of the Markov chain, from which a point
estimate of the steady-state mean was computed using (4). When we applied the
SRM with approximately optimal weights, each replication started with an initial
pilot run of 2 × 104 transitions, which was then followed by a production run; in
this case, we used the data from the pilot run only to estimate the optimal weights
and not to compute the final point estimates. For each choice of A, we computed
the sample variance of the point estimates across the 103 replications, as well as
the bias and mean-square error (MSE). The column labeled “time” provides the
total CPU times (in minutes) required to run all 103 replications, which includes
the time for all the pilot runs for the cases when they are used.

The first row of Table I shows the results for the standard regenerative estima-
tor, with return state 0, and this required no pilot run. The next five rows show
the results for the SRM with pilot runs in each replication to estimate the optimal
stratification weights in (9). With A containing four states the simulation took
about 50% longer than the standard regenerative estimator. The last column in
Table I gives the relative efficiency compared to the regenerative method, where
the efficiency is the reciprocal of the product of variance and CPU time. The
most efficient choice is A = {0, 3, 6}, which is about 28% more efficient than the
standard regenerative estimator. As |A| increases the variance decreases, but the
computational cost also increases. The stationary distribution on A = {0, 3, 6, 9}
is approximately ν = (0.662, 0.233, 0.086, 0.019), and the optimal weights are ap-
proximately p∗ = (0.836, 0.010, 0.027, 0.127).

3.3 Comparison of the Stratified Semi-Regenerative Estimator and the Estimator

Based on One Long Path

We now compare the asymptotic behaviors of the semi-regenerative estimator αn

and the point estimator based on a simulation of one (long) sample path, which we
define as follows. Fix an initial state X0 = x0 ∈ A. (We can also define an initial
distribution µ on A or S to select X0, but for simplicity, we just fix X0 = x0.)
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Table I. Experimental results.

A variance (×10−5) bias (×10−4) MSE (×10−5) time efficiency

{0} 10.55 -0.05 10.6 21.30 1.0

{0,3} 7.65 1.45 7.7 24.52 1.19

{0,6} 8.76 -4.11 8.8 23.49 1.09

{0,9} 7.87 1.33 7.9 24.78 1.15

{0,3,6} 6.53 -0.42 6.5 27.19 1.28

{0,3,6,9} 5.76 -1.66 5.8 31.34 1.24
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Fig. 1. Transition probabilities of a machine-repair Markov chain.

Then simulate X up to time Tn, for n fixed (and large), giving us a sample path
{Xj : j = 0, 1, 2, . . . , Tn}, from which we obtain {Wk : k = 0, 1, 2, . . . , n} with
Wk = XTk

. Then the point estimator of α based on one long sample path is
defined as

α′
n =

∑Tn−1
j=0 f(Xj)

Tn
. (10)

Note that α′
n is identical to the regenerative estimator when T0 = 0 and Tn are

regeneration points.

To facilitate our asymptotic comparison of α′
n and αn, we will re-express α′

n in a

form similar to (4). For x ∈ A, define Hn(x) =
∑n−1

k=0 I(Wk = x). For x ∈ A, define
T ′

1(x) = inf{j ≥ 0 : Xj = x}, and for k ≥ 2, define T ′
k(x) = inf{j > T ′

k−1(x) : Xj =

x}. Also, define T̃ ′
k(x) = inf{j > T ′

k(x) : Xj ∈ A}, which is the first time after
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The semi-regenerative method of simulation output analysis · 11

T ′
k(x) that X enters A again. For x ∈ A and k = 1, 2, . . ., define

Y ′
k(x) =

eT ′

k(x)−1∑

j=T ′

k
(x)

f(Xj), τ ′
k(x) = T̃ ′

k(x) − T ′
k(x).

Also, for x ∈ A, define ν̂n(x) = Hn(x)/n. Then observe that

α′
n =

∑d
i=1

∑Hn(xi)
k=1 Y ′

k(xi)
∑d

i=1

∑Hn(xi)
k=1 τ ′

k(xi)
=

∑d
i=1 ν̂n(xi)

1
Hn(xi)

∑Hn(xi)
k=1 Y ′

k(xi)
∑d

i=1 ν̂n(xi)
1

Hn(xi)

∑Hn(xi)
k=1 τ ′

k(xi)
. (11)

Remark 3.9. Because of Assumption 3.1, all of the Y ′
1(xi) have finite first mo-

ments. Also, Assumption 1 implies that each Hn(xi) → ∞ a.s., so it follows from

(11) that α′
n → Eν [

∑T−1
j=0 f(Xj)]/Eν [T ] a.s. by the strong law of large numbers. In

addition, (10) implies limn→∞ α′
n = limm→∞(1/m)

∑m−1
j=0 f(Xj) a.s. since Tn → ∞

a.s. Now limm→∞(1/m)
∑m−1

j=0 f(Xj) = α a.s. by the strong law of large numbers
for regenerative processes (e.g., see Theorem 2.2 on p. 74 of [Shedler 1993]), thereby
establishing Proposition 3.5.

Note the similarity of α′
n in (11) and αn in (4). We now establish the following

central limit theorem for α′
n; see the appendix for the proof.

Theorem 3.10. Under Assumptions 2.1, 3.1, 3.4, and 3.6,

n1/2 (α′
n − α)

D→ N (0, σ2
1)

as n → ∞, where

σ2
1 =

1

(Eν [T ])2

d∑

i=1

ν(xi)ηi (12)

with ηi defined in (8).

If we set pi = ν(xi), i = 1, 2, . . . , d, in (7), then σ2 = σ2
1 . Therefore, our semi-

regenerative estimator αn in (4) with pi = ν(xi) has the same asymptotic efficiency
as the point estimator α′

n based on one long sample path (if we ignore the added
computational cost of constructing αn). However, choosing the {pi} according to
(9) may lead to the semi-regenerative estimator having an asymptotic variance that
is strictly smaller than that of α′

n.
As stated before, the regenerative estimator is equivalent to α′

n (when T0 =
0 and Tn are regeneration points). We ran experiments using the steady-state
probabilities as the stratification weights pi in (4) and (7), and the results (not
included in Table I) for the variance were consistent with the regenerative method
but with increased computational time for the semi-regenerative estimator.

4. TIME-AVERAGE VARIANCE CONSTANT

Suppose that Assumptions 2.1, 3.1, 3.4, and 3.6 hold. Then

n1/2


 1

n

n−1∑

j=0

f(Xj) − α


 D→ N (0, σ̄2)
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as n → ∞; e.g., see p. 74 of [Shedler 1993]. Our goal is now to estimate σ̄2,
which is known as the time-average variance constant. Assumption 2.1 implies that
Tn/n → Eν [T ] a.s. as n → ∞ with 0 < Eν [T ] < ∞, so

T 1/2
n


 1

Tn

Tn−1∑

j=0

f(Xj) − α


 D→ N (0, σ̄2)

by the random-time-change central limit theorem. But it follows from Theorem 3.10
that

σ̄2 =
1

Eν [T ]

d∑

i=1

ν(xi)ηi,

where ηi is defined in (8).
We now describe an unstratified semi-regenerative estimator of σ̄2 based on a

single simulated sample path up to time Tn. To do this, we will express σ̄2 as a
function of expectations of functionals of trajectories. We first define

y1(x) = Ex [Y ] , y2(x) = Ex

[
Y 2
]
,

t1(x) = Ex [τ ] , t2(x) = Ex

[
τ2
]
, υ(x) = Ex [Y τ ] ,

and let y1 = (y1(x) : x ∈ A) ∈ ℜd×1, y2 = (y2(x) : x ∈ A) ∈ ℜd×1, t1 = (t1(x) : x ∈
A) ∈ ℜd×1, t2 = (t2(x) : x ∈ A) ∈ ℜd×1, υ = (υ(x) : x ∈ A) ∈ ℜd×1, g = (g(x, y) :
x, y ∈ A) ∈ ℜd×d, and Ψ = (Ψi(xj , xk) : i, j, k = 1, 2, . . . , d) ∈ ℜd×d×d. Now define
the function rσ : ℜd×1 × ℜd×1 × ℜd×1 × ℜd×1 × ℜd×1 × ℜd×d × ℜd×d × ℜd×d×d ×
ℜ1×d ×ℜd×d → ℜ given by

rσ(w1, w2, . . . , w10)

=
1

w9w3

{
2w9w6w10

(
w1 −

w9w1

w9w3
w3

)
+

d∑

i=1

w9(xi)

[
w2(xi) − 2

w9w1

w9w3
w5(xi)

+

(
w9w1

w9w3

)2

w4(xi) −
(

w1(xi) −
w9w1

w9w3
w3(xi)

)2

+

(
w10

(
w1 −

w9w1

w9w3
w3

))⊤

w8(xi, · , · )
(

w10

(
w1 −

w9w1

w9w3
w3

))]}
,

and it is easy to show that σ̄2 = rσ(µσ), where µσ = (y1, y2, t1, t2, υ, g, R, Ψ, ν, F ).
Recall from Section 3.3 our definitions of Hn(x), Y ′

k(x), τ ′
k(x), ν̂n(x), and α′

n. Define
R′

n = (R′
n(x, y) : x, y ∈ A) with

R′
n(x, y) =

∑n−1
k=0 I(Wk = x, Wk+1 = y)
∑n−1

k=0 I(Wk = x)
. (13)

Also, define χ′
k(x, y) = I(XeT ′

k
(x) = y), so we can re-express R′

n(x, y) as

R′
n(x, y) =

∑Hn(x)
k=1 χ′

k(x, y)

Hn(x)
.

Our unstratified estimator σ̄2
n′ of σ̄2 is then

σ̄2
n′ = rσ(Ȳ ′

n, Ȳ ′
2,n, τ̄ ′

n, τ̄ ′
2,n, υ′

n, g′n, R′
n, Ψ′

n, ν̂n, F̂ ′
n),
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where Ȳ ′
n = (Ȳ ′

n(xi) : i = 1, 2, . . . , d), Ȳ ′
2,n = (Ȳ ′

2,n(xi) : i = 1, 2, . . . , d), τ̄ ′
n =

(τ̄ ′
n(xi) : i = 1, 2, . . . , d), τ̄ ′

2,n = (τ̄ ′
2,n(xi) : i = 1, 2, . . . , d), υ′

n = (υ′
n(xi) : i =

1, 2, . . . , d), g′n = (g′n(xi) : i = 1, 2, . . . , d), Ψ′
n = (Ψ′

i,n(xj , xk) : i, j, k = 1, 2, . . . , d),

and F̂ ′
n = (I − R′

n − eν̂n)−1 with

Ȳ ′
n(xi) =

1

Hn(xi)

Hn(xi)∑

k=1

Y ′
k(xi), Ȳ ′

2,n(xi) =
1

Hn(xi)

Hn(xi)∑

k=1

Y 2
k′ (xi),

τ̄ ′
n(xi) =

1

Hn(xi)

Hn(xi)∑

k=1

τ ′
k(xi), τ̄ ′

2,n(xi) =
1

Hn(xi)

Hn(xi)∑

k=1

τ2
k′ (xi),

υ′
n(xi) =

1

Hn(xi)

Hn(xi)∑

k=1

Y ′
k(xi) τ ′

k(xi),

g′n(xi, xj) =
1

Hn(xi) − 1

Hn(xi)∑

k=1

[χ′
k(xi, xj) − R′

n(xi, xj)][Z
′
n,k(xi) − Z̃ ′

n(xi)],

Z ′
n,k(xi) = Y ′

k(xi) − α′
nτ ′

k(xi), Z̃ ′
n(xi) = Ȳ ′

n(xi) − α′
nτ̄ ′

n(xi),

Ψ′
i,n(xj , xl) =

{
−R′

n(xi, xj)R
′
n(xi, xl) if j 6= l,

R′
n(xi, xj)(1 − R′

n(xi, xj)) if j = l.

Using similar arguments as in the proof of Theorem 3.10, we can show that

n1/2
[
(Ȳ ′

n, Ȳ ′
2,n, τ̄ ′

n, τ̄ ′
2,n, υ′

n, g′n, R′
n, Ψ′

n, ν̂n, F̂ ′
n) − µσ

]

D→ (N̄ ′
1, N̄

′
2, . . . , N̄

′
10)

D
= N (0, Σ′

σ),

for some normal random elements (N̄ ′
1, N̄

′
2, . . . , N̄

′
10), having a covariance matrix

Σ′
σ. As in the case of the covariance matrix Σ′ in the proof of Theorem 3.10, many

of the entries in Σ′
σ are zero. We will not give all of the non-zero entries of Σ′

σ, but
arguing as in the proof of Theorem 3.10, we can show, for example, that

cov(N ′
1(xi), N

′
2(xj)) =

{ 1
ν(xi)

(
Exi

[Y 3] − y1(xi)y2(xi)
)

if i = j

0 if i 6= j
.

Now we can show (see (57) and (60) of the appendix) that as n → ∞,

n1/2(ν̂n − ν) = n1/2ν̂n(R′
n − R)F + n1/2(ν̂n − ν′

n)(I − R′
n)F

D→ N̄ ′
9 = νN̄ ′

7F. (14)

Also, let V̂n = eν̂n, so for sufficiently large n,

(R′
n − R) + (V̂n − V )

= (I − R − V ) − (I − R′
n − V̂n)

=
[
I − (I − R′

n − V̂n)(I − R − V )−1
]
(I − R − V )

= (I − R′
n − V̂n)

[
(I − R′

n − V̂n)−1 − (I − R − V )−1
]
(I − R − V )

= (I − R′
n − V̂n)

[
F̂ ′

n − F
]
(I − R − V ),
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and it follows that

n1/2
(
F̂ ′

n − F
)

= F̂ ′
n

[
n1/2(R′

n − R) + n1/2(V̂n − V )
]
F.

Consequently, N̄ ′
10 = F (N̄ ′

7 − eνN̄ ′
7F )F by (14). Now applying the delta method

(e.g., Theorem A, p. 122 of [Serfling 1980]) results in the following central limit
theorem for the estimator σ̄2

n′ .

Theorem 4.1. Suppose Assumptions 2.1, 3.1, and 3.4 hold, and also that there
exists w ∈ S such that Ew[τ4

w ] < ∞ and Ew[(
∑T−1

j=0 |f(Xj)|)4] < ∞. Then

n1/2(σ̄2
n′ − σ̄2)

D→ N (0, D⊤
σ ΣσDσ),

where Dσ is the vector of partial derivatives of the function rσ evaluated at µσ.

It is straightforward to compute the entries of Dσ, which we largely omit. For
example, letting ∂

∂w2(xj)
denote the partial derivative with respect to w2(xj), we

see that

∂

∂w2(xj)
rσ(w1, . . . , w10)

∣∣∣∣
(w1,...,w10)=µσ

= w9(xj).

Also, we can similarly define a stratified estimator for σ̄2, but we omit this.

5. IMPORTANCE SAMPLING FOR STEADY-STATE MEANS

Importance sampling is a variance-reduction technique that can lead to dramatic
decreases in variance (when applied appropriately), especially when used in rare-
event simulations; see [Glynn and Iglehart 1989] for an overview of importance
sampling. We now show how to combine importance sampling with the SRM to
estimate steady-state means.

Let Fx,T denote the filtration of the process X up to time T with X0 = x. For
x ∈ A, define Px,T to be the probability measure on Fx,T for the process X under
the transition probability matrix Π given X0 = x. Now suppose that for each
x ∈ A, we define another probability measure P ∗

x,T (not necessarily Markovian) on
Fx,T for X conditional on X0 = x, and let E∗

x,T be the corresponding expectation.
Also, let P ∗

x (resp., E∗
x) be the probability measure (resp., expectation operator)

for X induced by the collection of measures (P ∗
y,T : y ∈ A), given X0 = x. We need

to assume the following.

Assumption 5.1. For each x ∈ A, Px,T is absolutely continuous with respect to
P ∗

x,T .

By the Radon-Nikodym theorem (Theorem 32.2 of [Billingsley 1995]), Assump-
tion 5.1 guarantees the existence of a non-negative random variable L ≡ L(x) for
which

Px,T (C) = E∗
x,T [I(C)L], C ∈ Fx,T . (15)

The random variable L = dPx,T /dP ∗
x,T is known as the likelihood ratio (or Radon-

Nikodym derivative) of Px,T with respect to P ∗
x,T (given X0 = x). For example, if

the measure P ∗
x,T is induced by a transition probability matrix Π∗

x = (Π∗
x(w, y) :

w, y ∈ S), then Assumption 5.1 will hold if Π∗
x(w, y) = 0 implies Π(w, y) = 0 for all
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w, y ∈ S, and the likelihood ratio for the sample-path trajectory X0, X1, X2, . . . , XT ,
given X0 = x, is L =

∏T−1
j=0 Π(Xj , Xj+1)/Π∗

x(Xj , Xj+1). Thus, L is the likelihood of
the observed path (X0, X1, . . . , XT ) under the original measure over the likelihood
of the path under the new measure.

We use the importance-sampling measure P ∗
x0

, x0 ∈ A, to generate a sample path
{Xj : j ≥ 0} of the process X as follows. Set X0 = x0, so T0 = 0. Then using mea-
sure P ∗

X0,T , generate a sequence of states until set A is hit again, thereby yielding the
trajectory X1, X2, . . . , XT1

. Now from state XT1
, use measure P ∗

XT1
,T to generate a

sequence of states until A is hit again, yielding XT1+1, XT1+2, . . . , XT2
. In general,

at the kth hit to set A, the process is in state XTk
, and we use measure P ∗

XTk
,T to

generate a sequence of states until A is hit again, yielding XTk+1, XTk+2, . . . , XTk+1
.

We define the process W = {Wk : k ≥ 0} by letting Wk = XTk
.

The process X defined in this way may no longer be a Markov chain since we did
not assume any particular structure (other than Assumption 5.1) for the measure
P ∗

x . On the other hand, no matter how the P ∗
y,T , y ∈ A, are defined, the embedded

process W is always a Markov chain.

Proposition 5.2. If Assumptions 2.1, 3.4, and 5.1 hold, then for all x ∈ A, W
under measure P ∗

x is an irreducible, positive-recurrent discrete-time Markov chain
on A.

Proof. It is clear that W is a Markov chain. Assumptions 2.1 and 5.1 ensure
that W is irreducible since any sample path of X having positive probability under
the original measure Px also has positive probability under the importance-sampling
measure P ∗

x . Thus, W is positive recurrent by Assumption 3.4.

Define matrix R∗ = (R∗(x, y) : x, y ∈ A) with elements R∗(x, y) = P ∗
x (XT =

y), and note that R∗ is the transition probability matrix of W under importance
sampling. As shown in Proposition 5.2, Assumptions 2.1, 3.4, and 5.1 ensure that
R∗ is irreducible and positive recurrent, so R∗ has a stationary distribution ρ =
(ρ(x) : x ∈ A).

We can write α = πf in Proposition 3.5 as

α =

∑d
i=1 ν(xi)E

∗
xi,T

[Y L]
∑d

i=1 ν(xi)E∗
xi,T

[τL]
(16)

by (15), where ν is the stationary distribution for the R matrix under the original
measure, as before. Expression (16) forms the basis for some semi-regenerative
approaches using importance sampling, which we will describe below. For more
details on importance sampling in general, see [Glynn and Iglehart 1989].

An advantage of applying importance sampling in a semi-regenerative setting
rather than using the RM is that even if all of the P ∗

x,T , x ∈ A, correspond to the
same underlying change of measure, the trajectories simulated using importance
sampling are shorter (fewer transitions) in the SRM than in the regenerative setting.
This suggests that the semi-regenerative estimator will have smaller variance since
Glynn [1995] showed that the variance of the likelihood ratio grows approximately
exponentially with the number of transitions. Moreover, the SRM has the additional
benefit of allowing the P ∗

x,T to correspond to different underlying changes of measure
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for the different x ∈ A, thereby allowing one to tailor the importance sampling for
each x ∈ A.

5.1 Stratified Estimation

We start by describing two stratified sampling methods based on (16). For each
xi ∈ A, let

(Lk(xi), Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ ⌊pin⌋ be i.i.d. copies of

(L, Y, τ, χ(y) : y ∈ A) under measure P ∗
xi,T .

Set

R̄n(xi, y) =
1

⌊pin⌋

⌊pin⌋∑

k=1

χk(xi, y)Lk(xi)

for 1 ≤ i ≤ d and y ∈ A, and let R̄n = (R̄n(x, y) : x, y ∈ A). Since E∗
x[χ(y)L] =

Ex[χ(y)] = R(x, y) for all x, y ∈ A by (15), we have that R̄n → R a.s. as n → ∞.
Using the fact that R is irreducible and positive recurrent by Proposition 3.3, we
can show that R̄n also is for sufficiently large n under Assumption 5.1. Hence, there
exists a stationary distribution ν̄n = (ν̄n(x) : x ∈ A) for R̄n. We define our first
stratified semi-regenerative importance-sampling estimator of α to be

α∗
n =

∑d
i=1 ν̄n(xi)

1
⌊pin⌋

∑⌊pin⌋
k=1 Yk(xi)Lk(xi)

∑d
i=1 ν̄n(xi)

1
⌊pin⌋

∑⌊pin⌋
k=1 τk(xi)Lk(xi)

. (17)

To establish a central limit theorem for α∗
n, we need to assume the following.

Assumption 5.3. E∗
x[Y 2L2] < ∞ and E∗

x[τ2L2] < ∞ for all x ∈ A.

Note that Assumption 5.3 ensures that E∗
x[χ(y)L2] < ∞ for all x, y ∈ A since

0 ≤ χ(y) ≤ 1 ≤ τ . Let Var∗x and Cov∗x denote variance and covariance, respec-
tively, under P ∗

x . Using essentially the same argument that we applied to establish
Theorem 3.8, we can prove the following central limit theorem for α∗

n.

Theorem 5.4. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2 (α∗
n − α)

D→ N (0, σ2
∗)

as n → ∞, where

σ2
∗ =

1

(Eν [T ])
2

d∑

i=1

ν2(xi)ηi∗

pi
, (18)

with

ηi∗ = h∗(xi) + 2

d∑

j=1

g∗(xi, xj)ζ(xj) +

d∑

j=1

d∑

l=1

ζ(xj)ζ(xl)Ψ
∗
i (xj , xl), (19)

h∗(xi) = Var∗xi
(Y L − ατL), g∗(xi, xj) = Cov∗xi

(χ(xj)L, ZL), and Ψ∗
i (xj , xl) =

Cov∗xi
(χ(xj)L, χ(xl)L).
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Observe that in (17), we use importance sampling to estimate ν(xi). However,
in some situations we might obtain a better (lower variance) estimate of ν(xi) by
instead using standard simulation (i.e., without importance sampling). (We will
still use importance sampling to estimate E∗

xi,T
[Y L] and E∗

xi,T
[τL].) To implement

this idea, for each state xi ∈ A, we will now generate two sets of trajectories starting
from xi, where some of the trajectories will be under the original measure Pxi,T and
the others will be generated using the importance-sampling measure P ∗

xi,T
, with all

trajectories being mutually independent. Specifically, let q1, q2, . . . , qd, r1, r2, . . . , rd

be positive numbers such that
∑d

i=1(qi + ri) = 1. Given a replication budget n, we
will sample ⌊qin⌋ (resp., ⌊rin⌋) times from initial state xi ∈ A using the original
measure Pxi,T (resp., importance-sampling measure P ∗

xi,T
). Let

(χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ ⌊qin⌋ be i.i.d. copies of

(χ(y) : y ∈ A) under measure Pxi,T ,

and let

(Lk(xi), Yk(xi), τk(xi))

for 1 ≤ k ≤ ⌊rin⌋ be i.i.d. copies of

(L, Y, τ) under measure P ∗
xi,T ,

where (χk(xi, y) : y ∈ A) and (Lk(xi), Yk(xi), τk(xi)) are generated independently.
Define

R̃n(xi, y) =
1

⌊qin⌋

⌊qin⌋∑

k=1

χk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and define ν̃n = (ν̃n(x) : x ∈ A) such that ν̃n = ν̃nR̃n

with ν̃n ≥ 0 and ν̃ne = 1. Then we define another stratified semi-regenerative
importance-sampling estimator of α to be

α∗∗
n =

∑d
i=1 ν̃n(xi)

1
⌊rin⌋

∑⌊rin⌋
k=1 Yk(xi)Lk(xi)

∑d
i=1 ν̃n(xi)

1
⌊rin⌋

∑⌊rin⌋
k=1 τk(xi)Lk(xi)

, (20)

which satisfies the following central limit theorem.

Theorem 5.5. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2 (α∗∗
n − α)

D→ N (0, σ2
∗∗)

as n → ∞, where

σ2
∗∗ =

1

(Eν [T ])2

d∑

i=1

ν2(xi)



h∗(xi)

ri
+

d∑

j=1

d∑

l=1

ζ(xj)ζ(xl)Ψ
∗
i (xj , xl)

qi



 , (21)

and h∗(xi) and Ψ∗
i (xj , xl) are defined as in Theorem 5.4.

For the estimators in (17) and (20), we are using the same measure P ∗
xi,T

in the
estimation of both E∗

xi,T
[Y L] and E∗

xi,T
[τL] in (16). However, in certain contexts,
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such as for rare-event simulations (e.g., see [Heidelberger 1995]), it might be more
efficient to use different measures for estimating the (conditional) expectations in

the numerator and denominator of (16). Thus, suppose P̃ ∗
xi,T

is a measure on

Fxi,T such that Pxi,T is absolutely continuous with respect to P̃ ∗
xi,T

. Let Ẽ∗
xi,T

be

expectation under measure P̃ ∗
xi,T

, and let L̃ ≡ L̃(xi) be the likelihood ratio of Px,T

with respect to P̃ ∗
xi,T

up to time T . Then we can rewrite (16) as

α =

∑d
i=1 ν(xi)E

∗
xi,T

[Y L]
∑d

i=1 ν(xi)Ẽ∗
xi,T

[
τL̃
] . (22)

We can use (22) as the basis for developing importance-sampling estimators anal-
ogous to (17) and (20), but in which different importance-sampling measures are
used to estimate the expectations in the numerator and denominator. This idea
generalizes a method known as measure-specific importance sampling discussed in
[Goyal et al. 1992]. One possibility is to let P̃ ∗

x,T = Px,T for all x ∈ A, in which

case Ẽ∗
xi,T

[
τL̃
]

= Exi
[τ ]; i.e., we use standard simulation for estimating the ex-

pectations in the denominator of (22). This is the analogue to what is suggested
in [Goyal et al. 1992], and we might implement this by modifying the estimator
in (20) to estimate ν(xi) and Exi

[τ ] using the same samples generated under the
(original) measure Pxi,T .

5.2 Unstratified Estimation

We now develop the estimator corresponding to (17) for when we run a simulation
of a single sample path rather than using stratification. To do this, we apply the
method described at the beginning of Section 5 for using the importance-sampling
measure P ∗

x0
to generate a sample path {Xj : j = 0, 1, 2, . . . , Tn}, from which we

get {Wk : k = 0, 1, 2, . . . , n} with Wk = XTk
.

To state our new estimator, define T ′
k(x), T̃ ′

k(x), Y ′
k(x), τ ′

k(x), and Hn(x), for
x ∈ A, as in Section 3.3, but now these quantities are under measure P ∗

x,T . Also,
for x ∈ A and k ≥ 1, define L′

k(x) to be the likelihood ratio of the sample-path

trajectory {Xj : j = T ′
k(x), T ′

k(x) + 1, . . . , T̃ ′
k(x)} conditional on XT ′

k
(x). Define

R̄′
n = (R̄′

n(x, y) : x, y ∈ A) with

R̄′
n(x, y) =

1

Hn(x)

Hn(x)∑

k=1

I(XeT ′

k
(x) = y)L′

k(x),

and let ν̄′
n = (ν̄′

n(x) : x ∈ A) be the stationary distribution of R̄′
n. Then we define

the analogue of (17) for one sample path as

α∗
n
′ =

∑d
i=1 ν̄′

n(xi)
1

Hn(xi)

∑Hn(xi)
k=1 Y ′

k(xi)L
′
k(xi)

∑d
i=1 ν̄′

n(xi)
1

Hn(xi)

∑Hn(xi)
k=1 τ ′

k(xi)L′
k(xi)

. (23)

We then have the following central limit theorem, which can be established using
arguments similar to those applied in the proof of Theorem 3.10.
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Theorem 5.6. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2
(
α∗

n
′ − α

) D→ N (0, σ′
∗
2
)

as n → ∞, where

σ′
∗
2

=
1

(Eν [T ])
2

d∑

i=1

ν2(xi)ηi∗

ρ(xi)
(24)

with ηi∗ defined as in (19) and ρ is the stationary distribution of R∗.

The reason the ρ(xi), i = 1, 2, . . . , d, appear in the denominator in (24) is that
in (23) we are computing sample averages over Hn(xi) observations. Note that
Hn(xi)/n → ρ(xi) a.s. under measure P ∗

x0
, for any x0 ∈ S, with ρ(xi) > 0 since

R∗ is positive recurrent. Thus, application of the random-time-change central limit
theorem results in the appearance of the ρ(xi). For example,

n1/2


 1

Hn(xi)

Hn(xi)∑

k=1

Z ′
k(xi)L

′
k(xi) − z(xi)


 D→ N

(
0,

h∗(xi)

ρ(xi)

)
,

as n → ∞, where Z ′
k(xi) = Y ′

k(xi) − ατ ′
k(xi).

We now develop the analogue of (20) for when two independent sample paths of X
are generated. Fix x0 and x∗

0 ∈ A. We generate one of the paths using the original
measure Px0

, and we use this path to estimate the ν(x), x ∈ A. The other path is
generated under the importance-sampling measure P ∗

x∗

0
and is used to estimate the

(conditional) expectations in (16). Specifically, fix 0 < q < 1, and let r = 1− q. Set
X0 = x0, and use the original measure Px0

to generate a sample path {Xj : j =
0, 1, 2, . . . , T⌊qn⌋}, from which we get {Wk : k = 0, 1, 2, . . . , ⌊qn⌋} with Wk = XTk

.
Independently of how we generate {Xj : j = 0, 1, 2, . . . , T⌊qn⌋}, fix X∗

0 = x∗
0 and

use the measure P ∗
x0

to generate a sample path {X∗
j : j = 0, 1, 2, . . . , T ∗

⌊rn⌋} in the

manner described in Section 5, and this yields {W ∗
k : k = 0, 1, 2, . . . , ⌊rn⌋} with

W ∗
k = X∗

T∗

k
. Here, the T ∗

k , k ≥ 0, are the hitting times of the X∗ process to the set

A.
For x ∈ A, define ν̃′

n(x) =
∑⌊qn⌋−1

k=0 I(Wk = x)/⌊qn⌋, which is based on the
sample path generated using the original measure. Now we define some notation for
quantities that are computed based on the sample path generated under importance

sampling. For x ∈ A, define H∗
n(x) =

∑⌊rn⌋−1
k=0 I(W ∗

k = x). For x ∈ A, define
T ∗

1 (x) = inf{j ≥ 0 : X∗
j = x}, and for k ≥ 2, let T ∗

k (x) = inf{j > T ∗
k−1(x) : X∗

j =

x}. Also, define T̃ ∗
k (x) = inf{j > T ∗

k (x) : X∗
j ∈ A}. For x ∈ A and k ≥ 1, define

Y ∗
k (x) =

eT∗

k (x)−1∑

j=T∗

k
(x)

f(X∗
j ), τ∗

k (x) = T̃ ∗
k (x) − T ∗

k (x).

Finally, for x ∈ A and k ≥ 1, define L∗
k(x) to be the likelihood ratio corresponding

to the sample path {X∗
j : T ∗

k (x) ≤ j ≤ T̃ ∗
k (x)} given X∗

T∗

k
(x). Then we define the
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analogue of (20) for two sample paths to be

α∗∗
n

′ =

∑d
i=1 ν̃′

n(xi)
1

H∗

n(xi)

∑H∗

n(xi)
k=1 Y ∗

k (xi)L
∗
k(xi)

∑d
i=1 ν̃′

n(xi)
1

H∗

n(xi)

∑H∗

n(xi)
k=1 τ∗

k (xi)L∗
k(xi)

, (25)

which obeys the following central limit theorem.

Theorem 5.7. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2
(
α∗∗

n
′ − α

) D→ N (0, σ′
∗∗

2
)

as n → ∞, where

σ′
∗∗

2
=

1

(Eν [T ])2

d∑

i=1

ν2(xi)



h∗(xi)

r
+

d∑

j=1

d∑

l=1

ζ(xj)ζ(xl)Ψi(xj , xl)

q



 ,

with h∗(xi) defined as in Theorem 5.4 and Ψi(xj , xl) defined in (5) and (6).

We could also develop (but omit since it is straightforward) an estimator sug-
gested by (22) based on 3 long sample paths. The first path is generated under
the original measure Px0

and is used to estimate the ν(xi). The second path is
generated using the measure P ∗

x∗

0
and is used to estimate the E∗

xi,T
[Y L]. The third

path is generated using measure P̃ ∗ex0
and is used to estimate the Ẽ∗

xi,T
[τL̃].

6. EXPECTED CUMULATIVE REWARD UNTIL A HITTING TIME

Fix a nonempty set S0 ⊂ S, and let Γ = inf{n ≥ 0 : Xn ∈ S0}. For x ∈ A, put

λ(x) = Ex




Γ∑

j=1

f(Xj)


 ,

which is the expected cumulative reward up to hitting the set S0 given that the
chain starts in state x. The measure λ(x) arises in many contexts. For example,
it can be the mean time to failure of a reliability system, or the expected time
to buffer overflow in a queueing network. We want to develop semi-regenerative
estimators for λ(x).

Throughout this section, unless stated otherwise, we no longer assume that As-
sumptions 2.1, 3.1, 3.6, 5.1, or 5.3 hold. Assume that Assumption 3.4 and the
following hold.

Assumption 6.1. For each recurrence class C of states in A, there exists some
state x ∈ C such that Px(Γ > T ) < 1.

Note that

λ(x) = Ex




T∧Γ∑

j=1

f(Xj)


+

∑

y∈A

Ex [I(XT = y, Γ > T )] λ(y),
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where a1 ∧ a2 = min(a1, a2) for a1, a2 ∈ ℜ. For x, y ∈ A, put

b(x) = Ex




T∧Γ∑

j=1

f(Xj)


 , K(x, y) = Ex [I(XT = y, Γ > T )] .

Let λ = (λ(x) : x ∈ A), b = (b(x) : x ∈ A), and K = (K(x, y) : x, y ∈ A), and note
that λ = b + Kλ.

Proposition 6.2. If |b| < ∞ and if Assumptions 3.4 and 6.1 hold, then

λ =

∞∑

m=0

Kmb = (I − K)−1b.

Assumption 6.1 ensures that (I−K)−1 exists and equals
∑∞

m=0 Km. Without this
assumption, it is possible that

∑∞
m=0 Km diverges, in which case (I−K)−1 need not

equal
∑∞

m=0 Km. Also, note that Proposition 6.2 does not require irreducibility or
recurrence. Finally, the representation of λ in Proposition 6.2 generalizes the well-

known result (e.g., [Goyal et al. 1992]) that λ(x) = Ex[
∑(τx∧Γ)

j=1 f(Xj)]/Ex[I(Γ <
τx)].

6.1 Stratified Estimation

We now present a stratified semi-regenerative estimator for λ based on Proposi-
tion 6.2. Let

B =

T∧Γ∑

j=1

f(Xj) and φ(y) = I(XT = y, Γ > T ), for y ∈ A.

Let

(Bk(xi), φk(xi, y) : y ∈ A)

for 1 ≤ k ≤ ⌊pin⌋ be i.i.d. copies of

(B, φ(y) : y ∈ A) under measure Pxi
.

Set

bn(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

Bk(xi), Kn(xi, y) =
1

⌊pin⌋

⌊pin⌋∑

k=1

φk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and let bn = (bn(x) : x ∈ A) and Kn = (Kn(x, y) : x, y ∈
A). We define the stratified semi-regenerative estimator for λ to be

λn = (I − Kn)−1bn.

Under Assumption 6.1, (I − K)−1 exists. Since Kn → K a.s., evidently I − Kn is
non-singular for n sufficiently large, and

(I − Kn)−1 → (I − K)−1 a.s. (26)

as n → ∞ by the continuity of the inverse mapping at I−K. To establish a central
limit theorem for λn, we will assume the following.

Assumption 6.3. For each x ∈ A, Ex[B2] < ∞.
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To prove our central limit theorem for λn, we need to get a handle on (I −
Kn)−1 − (I − K)−1 and bn − b. Note that

Kn − K = (I − K) − (I − Kn)

= [I − (I − Kn)(I − K)−1](I − K)

= (I − Kn)[(I − Kn)−1 − (I − K)−1](I − K).

Consequently,

(I − Kn)−1 − (I − K)−1 = (I − Kn)−1(Kn − K)(I − K)−1, (27)

so

λn − λ = (I − Kn)−1bn − (I − K)−1b

= ((I − Kn)−1 − (I − K)−1)bn + (I − K)−1(bn − b)

= (I − Kn)−1(Kn − K)(I − K)−1bn + (I − K)−1(bn − b).

Under Assumption 6.3 we have that

n1/2(Kn − K, bn − b)
D→ (Ñ1, Ñ2)

D
= N (0, Σ̃) (28)

as n → ∞, where Σ̃ is some covariance matrix. Therefore, the continuous mapping
theorem implies that

n1/2(λn − λ)
D→ (I − K)−1Ñ1(I − K)−1b + (I − K)−1Ñ2

by (26) and since bn → b a.s. Finally, because λ = (I − K)−1b, we obtain the
following central limit theorem for λn.

Theorem 6.4. If |b| < ∞ and if Assumptions 3.4, 6.1, and 6.3 hold, then

n1/2 (λn − λ)
D→ (I − K)−1Ñ1λ + (I − K)−1Ñ2

as n → ∞, where (Ñ1, Ñ2) is defined in (28). In particular, for each k = 1, 2, . . . , d,

n1/2 (λn(xk) − λ(xk))
D→ N (0, σ̃2

k)

as n → ∞, where

σ̃2
k =

d∑

i=1

J(xk, xi)
2

pi



vi + 2

d∑

j=1

λ(xj)sij +

d∑

j=1

d∑

l=1

λ(xj)λ(xl)∆i(xj , xl)



 , (29)

J = (J(x, y) : x, y ∈ A) with J = (I −K)−1, vi = Varxi
(B), sij = Covxi

(φ(xj), B),
and ∆i(xj , xl) = Covxi

(φ(xj), φ(xl)).

6.2 Unstratified Estimation

We now present a semi-regenerative estimator for λ based on Proposition 6.2 when
simulating one sample path. We now assume that Assumption 2.1 holds. Define
Hn(x), T ′

k(x), and T̃ ′
k(x) as in Section 3.3. Also, for k ≥ 1, define Γk(x) = inf{j >

T ′
k(x) : Xj ∈ S0}. For x, y ∈ A, let

B′
k(x) =

eT ′

k(x)∧Γk(x)∑

j=T ′

k
(x)+1

f(Xj), φ′
k(x, y) = I

(
XeT ′

k
(x) = y, Γk(x) > T̃ ′

k(x)
)

.
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Then define the estimators of b and K to be b′n = (b′n(x) : x ∈ A) and K ′
n =

(Kn(x, y) : x, y ∈ A), respectively, with

b′n(x) =

∑n−1
k=0

∑Γk∧Tk+1

j=Tk
f(Xj) I(Wk = x)

∑n−1
k=0 I(Wk = x)

=
1

Hn(x)

Hn(x)∑

k=1

B′
k(x),

K ′
n(x, y) =

∑n−1
k=0 I(Wk = x, Wk+1 = y, Γk > Tk+1)∑n−1

k=0 I(Wk = x)
=

1

Hn(x)

Hn(x)∑

k=1

φ′
k(x, y),

where Γk = inf{j > Tk : Xj ∈ S0}. Then we define our semi-regenerative estimator
of λ based on one simulation to be λ′

n = (I−K ′
n)−1b′n, where λ′

n = (λ′
n(x) : x ∈ A).

Using the techniques we developed in the proof of Theorem 3.10, we can prove that

n1/2(λ′
n(xk) − λ(xk))

D→ N (0, σ̃′ 2
k )

as n → ∞, where σ̃′ 2
k is the same as σ̃2

k in (29) except that each pi, i = 1, 2, . . . , d,
appearing in the denominators in (29) is replaced by ν(xi). As shown in Table I,
the freedom to choose the {pi} different from the {ν(xi)} can result in a significant
efficiency improvement.

7. DERIVATIVE OF STEADY-STATE REWARD

We now discuss the estimation of derivatives of a performance measure with respect
to a model parameter. For example, for a reliability system, we may be interested in
computing the derivative of the steady-state availability with respect to the failure
rate of one component.

We now assume that the transition probability matrix of X depends on some
real-valued parameter θ, where we allow θ to vary in an open interval Θ. Thus, we
write Π(θ) = (Π(θ, x, y) : x, y ∈ S) to emphasize the dependence on θ. Our goal is
to compute the derivative of the steady-state mean reward α = α(θ) with respect
to θ, and evaluate this when θ takes on some fixed value θ0 ∈ Θ. We assume the
following:

Assumption 7.1. |S| < ∞. Also, the family (Π(θ) : θ ∈ Θ) is continuously
differentiable in θ, and Π(θ) is irreducible for all θ ∈ Θ, with {(x, y) ∈ S × S :
Π(θ, x, y) > 0} independent of θ ∈ Θ.

For each θ ∈ Θ, the finiteness of S and the irreducibility of Π(θ) imply that
X is positive recurrent. Thus, for each θ ∈ Θ, there exists a unique stationary
distribution π(θ) = (π(θ, x) : x ∈ S) for X .

Let P θ
x denote the probability measure of the process X induced by the transition

matrix Π(θ) given X0 = x, and let Eθ
x be the corresponding expectation operator.

Now define the embedded chain W relative to the set A as in Section 2, and let
R(θ) = (R(θ, x, y) : x, y ∈ A) be its transition probability matrix with stationary
distribution ν(θ) = (ν(θ, x) : x ∈ A). Note that R(θ, x, y) = P θ

x (XT = y), and the
set {(x, y) ∈ A×A : R(θ, x, y) > 0} is independent of θ ∈ Θ under Assumption 7.1.
Also, let P θ1

ν(θ2)
denote the probability measure induced by the transition matrix

Π(θ1) with initial distribution ν(θ2), and let Eθ1

ν(θ2)
be the corresponding expectation
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operator. According to Proposition 3.5, α(θ) = π(θ)f can be written as

α(θ) =
Eθ

ν(θ)

[∑T−1
j=0 f(Xj)

]

Eθ
ν(θ)[T ]

.

With θ0 ∈ Θ fixed, we write

α(θ) =
Eθ0

ν(θ)

[∑T−1
j=0 f(Xj)

∏T−1
l=0

Π(θ,Xl,Xl+1)
Π(θ0,Xl,Xl+1)

]

Eθ0

ν(θ)

[
T
∏T−1

l=0
Π(θ,Xl,Xl+1)
Π(θ0,Xl,Xl+1)

] ≡ ξ(θ)

κ(θ)
.

The above change of measure is justified since P θ1

ν(θ2) is absolutely continuous with

respect to P θ3

ν(θ4)
for all θ1, θ2, θ3, θ4 ∈ Θ by Assumption 7.1. It then follows that

∂α(θ0) =
κ(θ0)∂ξ(θ0) − ξ(θ0)∂κ(θ0)

κ(θ0)2
, (30)

where we use the notation that ∂g(θ0) denotes the derivative of g(θ) taken with
respect to θ and evaluated at θ = θ0.

We now examine ∂ξ(θ0). Observe that

ξ(θ) =
∑

x∈A

ν(θ, x)Eθ0

x




T−1∑

j=0

f(Xj)

T−1∏

l=0

Π(θ, Xl, Xl+1)

Π(θ0, Xl, Xl+1)



 .

Then Assumption 7.1 ensures that

∂ξ(θ0) =
∑

x∈A

∂ν(θ0, x)Eθ0

x




T−1∑

j=0

f(Xj)


+

∑

x∈A

ν(θ0, x)Eθ0

x




T−1∑

j=0

f(Xj) ∂L


 , (31)

where

∂L =

T−1∑

l=0

∂Π(θ0, Xl, Xl+1)

Π(θ0, Xl, Xl+1)
.

Similarly, we can show that

∂κ(θ0) =
∑

x∈A

∂ν(θ0, x)Eθ0

x [T ] +
∑

x∈A

ν(θ0, x)Eθ0

x [T ∂L] . (32)

These expressions form the basis for applying the likelihood ratio (LR) method for
derivative estimation; see, e.g., [Glynn 1990; Reiman and Weiss 1989; Rubinstein
1989] for details on the LR method.

We now need to get a handle on ∂ν(θ0) = (∂ν(θ0, x) : x ∈ A). We can show that
R(θ) is continuous and differentiable in θ by using the fact that

R(θ, x, y) = Eθ0

x

[
I(XT = y)

T−1∏

l=0

Π(θ, Xl, Xl+1)

Π(θ0, Xl, Xl+1)

]
,

so

∂R(θ0, x, y) = Eθ0

x [I(XT = y) ∂L] .
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Let ∂R(θ0) = (∂R(θ0, x, y) : x, y ∈ A). Glynn [1986] shows that the continuity of
R(θ) in θ implies that ν(θ) is also continuous. Then, letting V (θ) be the matrix
with all rows equal to ν(θ) (i.e., V (θ) = eν(θ)), Glynn [1986] also establishes that
∂ν(θ0) exists and

∂ν(θ0) = ν(θ0)∂R(θ0)F (θ0), (33)

where F (θ0) = (I − R(θ0) + V (θ0))
−1.

For x ∈ A, define

y0(x) = Eθ0
x

[∑T−1
j=0 f(Xj)

]
, ∂y(x) = Eθ0

x

[∑T−1
j=0 f(Xj) ∂L

]
,

t(x) = Eθ0
x [T ], ∂t(x) = Eθ0

x [T ∂L] ,

and set y0 = (y0(x) : x ∈ A), ∂y = (∂y(x) : x ∈ A), t = (t(x) : x ∈ A), and
∂t = (∂t(x) : x ∈ A). Define the function r0 : ℜd×1×ℜd×1×ℜd×1×ℜd×1×ℜd×d×
ℜ1×d ×ℜd×d → ℜ as

r0(w1, w2, . . . , w7) =
(w6w5w7w1 + w6w2)w6w3 − w6w1(w6w5w7w3 + w6w4)

(w6w3)2
. (34)

Let µ0 = (y0, ∂y, t, ∂t, ∂R(θ0), ν(θ0), F (θ0)), and note that

∂α(θ0) = r0(µ0) (35)

by (30), (31), (32), and (33). Equation (35) will be the basis for developing semi-
regenerative estimators for ∂α(θ0)

One advantage of using the SRM rather than the RM to implement the likelihood-
ratio derivative method is that the semi-regenerative trajectories are shorter than
the regenerative cycles when the return state w of the RM is chosen from the set
A. Analyses in [Reiman and Weiss 1989; Glynn 1987] suggest that the variance
of likelihood-ratio derivative estimators grows linearly in the length (number of
transitions) of the observation, so semi-regenerative derivative estimators should
have smaller variance than regenerative derivative estimators. Zhang and Ho [1992]
develop a similar idea of dividing regenerative cycles into A-segments, which are
the same as trajectories, but they end up with a different estimator than we do.

7.1 Stratified Estimation

We now develop a stratified semi-regenerative estimator based on (35). For x, y ∈ A,
define Y (x), τ(x), and χ(x, y) as in Section 3.2. Taking p1, p2, . . . , pd, to be d
positive numbers summing to one, we let

(∂Lk(xi), Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ ⌊pin⌋ be i.i.d. copies of

(∂L, Y, τ, χ(y) : y ∈ A) under measure P θ0

xi
.

For i = 1, 2, . . . , d, and y ∈ A, set

Ȳn(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

Yk(xi), ∂Ȳn(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

Yk(xi) ∂Lk(xi),
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τ̄n(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

τk(xi), ∂τ̄n(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

τk(xi) ∂Lk(xi),

Rn(θ0, xi, y) =
1

⌊pin⌋

⌊pin⌋∑

k=1

χk(xi, y),

∂Rn(θ0, xi, y) =
1

⌊pin⌋

⌊pin⌋∑

k=1

χk(xi, y) ∂Lk(xi),

and let Ȳn = (Ȳn(x) : x ∈ A), ∂Ȳn = (∂Ȳn(x) : x ∈ A), τ̄n = (τ̄n(x) : x ∈ A),
∂τ̄n = (∂τ̄n(x) : x ∈ A), Rn(θ0) = (Rn(θ0, x, y) : x, y ∈ A), and ∂Rn(θ0) =
(∂Rn(θ0, x, y) : x ∈ A. Let νn(θ0) = (νn(θ0, x) : x ∈ A) ∈ ℜ1×d be the stationary
distribution of Rn(θ0). Define Vn(θ0) as the matrix with all rows equal to νn(θ0);
i.e., Vn(θ0) = eνn(θ0), where e is the vector of all 1’s in ℜd×1. Also, define Fn(θ0) =
(I − Rn(θ0) + Vn(θ0))

−1. Finally, define ∂νn(θ0) = (∂νn(θ0, x) : x ∈ A) as

∂νn(θ0) = νn(θ0) ∂Rn(θ0)Fn(θ0).

We then define our stratified semi-regenerative estimator of ∂α(θ0) to be

∂αn(θ0) = r0(Ȳn, ∂Ȳn, τ̄n, ∂τ̄n, Rn(θ0), ∂Rn(θ0), νn(θ0), Fn(θ0)),

where the function r0 is defined in (34).
We show in the appendix (see (48)) that

νn(θ0) − ν(θ0) = νn(θ0)(Rn(θ0) − R(θ0))F (θ0), (36)

so

Vn(θ0) − V (θ0) = e(νn(θ0) − ν(θ0)) = eνn(θ0)(Rn(θ0) − R(θ0))F (θ0). (37)

We also establish in the appendix (see (49)) that νn → ν a.s. as n → ∞, so (3)
implies that Vn(θ0) → V (θ0) a.s. as n → ∞. Thus,

Fn(θ0) = (I − Rn(θ0) + Vn(θ0))
−1 → (I − R(θ0) + V (θ0))

−1 = F (θ0) a.s.

as n → ∞ by the continuity of the inverse mapping at I − R(θ0) + V (θ0). Also, in
a similar manner to how we established (27), we can also show that

Fn(θ0) − F (θ0)

= Fn(θ0) [(Rn(θ0) − R(θ0)) − (Vn(θ0) − V (θ0))] F (θ0)

= Fn(θ0) [(Rn(θ0) − R(θ0)) − eνn(θ0)(Rn(θ0) − R(θ0))F (θ0)] F (θ0) (38)

by (37).
Note that the finiteness of S and irreducibility of Π(θ0) by Assumption 7.1 en-

sure that τ has finite moments of all orders under measure P θ0
x , x ∈ A. Also,

the finiteness of S and the continuous differentiability of Π(θ) imply that f and
∂Π(θ0, · , · )/Π(θ0, · , · ) are bounded. Thus, Y , Y ∂L, τ , τ∂L, χ(y), and χ(y)∂L all
have finite moments of all orders under measure P θ0

x , x ∈ A, so it follows that

n1/2
[
(Ȳn, ∂Ȳn, τ̄n, ∂τ̄n, ∂Rn(θ0), νn(θ0), Fn(θ0)) − µ0

]

D→ (M1, M2, . . . , M7)
D
= N (0, Σ0), (39)
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for some normal random elements M1, M2, . . . , M7, and some covariance matrix Σ0.

Also, note that n1/2 [Rn(θ0) − R(θ0)]
D→ M8 as n → ∞, where M8 is a normally

distributed matrix for which the ith row of M8 has covariance matrix p−1
i Ψi, where

Ψi is defined in (5) and (6). Moreover, for i 6= j, the ith and jth row of M8 are
independent. We can then show that

M6 = ν(θ0)M8F (θ0), M7 = F (θ0)(M8 − eν(θ0)M5F (θ0))F (θ0),

by (36) and (38), respectively. Then applying the delta method (e.g., Theorem A,
p. 122 of [Serfling 1980]) results in the following central limit theorem for ∂αn(θ0).

Theorem 7.2. Under Assumption 7.1,

n1/2(∂αn(θ0) − ∂α(θ0))
D→ N (0, D⊤

0 Σ0D0),

where Σ0 is defined in (39) and D0 is the vector of partial derivatives of the function
r0 evaluated at µ0, with r0 defined in (34).

It is straightforward to compute the entries of D0, which we mostly do not give
explicitly. For example, calculating the partial derivative of r0 with respect to
w6(xi) and evaluating at µ0 yields (with a slight abuse of notation)

∂r0(µ0)

∂w6(xi)
=

{
κ(θ0)

2

[
κ(θ0)

(
d∑

l=1

∂R(θ0, xi, xl)

d∑

m=1

F (θ0, xl, xm)y0(xm) + ∂y(xi)

)

+ ∂ξ(θ0)t(xi) − y0(xi) ∂κ(θ0)

− ξ(θ0)

(
d∑

l=1

∂R(θ0, xi, xl)

d∑

m=1

F (θ0, xl, xm)t(xm) + ∂t(xi)

)]

− 2 [κ(θ0)∂ξ(θ0) − ξ(θ0)∂κ(θ0)] κ(θ0)t(xi)

}
κ(θ0)

−4.

Many entries in Σ0 in (39) are zero because (∂Lk(xi), Yk(xi), τk(xi), χk(xi, y) : y ∈ A)
and (∂Lk(xj), Yk(xj), τk(xj), χk(xj , y) : y ∈ A) for i 6= j are independent, and the
remaining non-zero entries are straightforward to calculate. For example,

Covθ0

xi
(M1(xi), M6(xi, xj)) =

Covθ0

xi
(Y, χ(xj) ∂L)

pi
, (40)

where Covθ0 is the covariance operator under parameter value θ0.
One can also construct a semi-regenerative estimator based on (35) for one sample

path, but we omit this.

8. LOW-BIAS ESTIMATOR

In this section we describe a variation of the semi-regenerative estimator that we
expect to have lower bias than the standard semi-regenerative estimator. Put α̂m =
m−1

∑m−1
j=0 f(Xj). In great generality, it is known that

Ex[α̂m] = πf + m−1β + o(m−1)
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as m → ∞; see [Glynn and Heidelberger 1990]. We wish to have a semi-regenerative
estimator βm for β. This is a semi-regenerative analogue of a regenerative estimator
proposed by [Glynn 1994].

Suppose |S| < ∞ with X irreducible and aperiodic. For x ∈ S, let fc(x) =
f(x) − α. Then we can express the bias of α̂m as

1

m
Ex




m−1∑

j=0

f(Xj)


− πf =

1

m
Ex




m−1∑

j=0

fc(Xj)




=
1

m

∞∑

j=0

Ex[fc(Xj)] −
1

m

∞∑

j=m

Ex[fc(Xj)] ≡ 1

m
β(x) + o

(
1

m

)
.

Our goal is to reduce the order 1/m bias by subtracting an estimate of β(x)/m.

Let µ(x) = Ex

[∑T−1
j=0 fc(Xj)

]
for x ∈ A, and µ = (µ(x) : x ∈ A). Then, it

follows that for x ∈ A,

β(x) = Ex




∞∑

k=0

Tk+1−1∑

j=Tk

fc(Xj)


 =

∞∑

k=0

Ex[µ(Wk)]

=

∞∑

k=0

∑

y∈A

Rk(x, y)µ(y) = (Fµ)(x),

i.e., β = Fµ.
We now discuss how to estimate β from a simulation of one sample path. Let

Nm = sup{n ≥ 0 : Tn ≤ m}. Recall our definitions of ν̂n and R′
n from Section 3.3,

and let V̂n = eν̂n. Then βm = (I − R′
Nm

− V̂Nm
)−1µ′

m estimates β, where µ′
m =

(µ′
m(x) : x ∈ A) is an estimate of µ given by

µ′
m(x) =

1
Nm

∑Nm−1
k=0

∑Tk+1−1
j=Tk

(f(Xj) − α̂m)I(Wk = x)

1
Nm

∑Nm−1
k=0 I(Wk = x)

.

We then expect α̂m − βm(x)/m to have lower bias than α̂m does, provided X0 =
x ∈ A.

9. RATIOS OF STEADY-STATE MEANS

In this section we consider a performance measure γ of the form γ = (πf1)/(πf2),
where f1 and f2 are real-valued reward functions on S, and π is the stationary
measure of X on S. Note that (1) implies that

γ =
Ew[

∑T−1
j=0 f1(Xj)]/Ew[T ]

Ew[
∑T−1

j=0 f2(Xj)]/Ew[T ]
=

Ew[
∑T−1

j=0 f1(Xj)]

Ew[
∑T−1

j=0 f2(Xj)]
(41)

for any state w ∈ S when Assumption 2.1 holds. Also, we can write

γ =
Eν [
∑T−1

j=0 f1(Xj)]/Eν [T ]

Eν [
∑T−1

j=0 f2(Xj)]/Eν [T ]
=

Eν [
∑T−1

j=0 f1(Xj)]

Eν [
∑T−1

j=0 f2(Xj)]

by Proposition 3.5.
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The measure γ is a generalization of the ratio formula for steady-state means in
Proposition 3.5. Also, γ arises in practice when applying discrete-time conversion
to a continuous-time Markov chain [Hordijk et al. 1976; Fox and Glynn 1986].
The basic idea is to condition on the embedded discrete-time Markov chain, which
results in replacing the random exponential holding times in each state with their
(conditional) means, and this is guaranteed to reduce variance. Specifically, suppose
that U = {U(t) : t ≥ 0} is a positive-recurrent, irreducible continuous-time Markov
chain on state space S with embedded discrete-time Markov chain X . Suppose
that q(x) is the total transition rate of U out of state x ∈ S, and we are interested

in computing γ = limt→∞(1/t)
∫ t

0 f3(U(s))ds, where f3 : S → ℜ is some reward
function. Then for any state w ∈ S, the steady-state mean reward of the continuous-
time Markov chain can be expressed as

γ =
Ew[

∑T−1
j=0 f3(Xj)/q(Xj)]

Ew[
∑T−1

j=0 1/q(Xj)]
,

which has exactly the form in (41) by letting f1(x) = f3(x)/q(x) and f2(x) = 1/q(x)
for x ∈ S.

The methods described in the previous sections can easily be modified to work
with this more general setting of dealing with the performance measure γ rather
than α. Thus, we can handle continuous-time Markov chains in our framework of
discrete-time Markov chains.

10. CONCLUDING REMARKS

For many of our estimators considered in this paper, confidence intervals are de-
sirable. (But, for example, there is typically no need for a confidence interval for
the bias correction of Section 8.) However, the central limit theorem for many
of our estimators is complicated. From an implementation standpoint, it may be
desirable to produce confidence intervals without having to explicitly work out the
corresponding central limit theorem, followed by consistent estimation of the cor-
responding variance constant.

One way of doing this is by “sectioning.” Sectioning works even in the stratified
sampling context. Given an integer ℓ > 0, we section the computer budget c into ℓ
different pieces, each of size c/ℓ. We then apply our stratification weights p1, . . . , pd

to each of the ℓ sub-budgets; this gives us ℓ i.i.d. estimators. We also get one
estimator for the total budget c. Specifically, suppose the goal is to estimate some
performance measure α. Let α̃i be the estimator for sub-budget i, 1 ≤ i ≤ ℓ, where
α̃1, α̃2, . . . , α̃ℓ are i.i.d. Also let α̃ =

∑ℓ
i=1 α̃i/ℓ be the estimator associated with

the entire budget. Then, under appropriate moment assumptions,

√
c(α̃1 − α, α̃2 − α, . . . , α̃ℓ − α, α̃ − α)

D→
(

N1, N2, . . . , Nℓ,
1

ℓ

ℓ∑

i=1

Ni

)
,

as c → ∞, where N1, N2, . . . , Nℓ are i.i.d. N (0, σ2
⋆) for some σ2

⋆ . Hence,
√

ℓ(α̃ − α)√
1

ℓ−1

∑ℓ
i=1(α̃i − α̃)2

D→ tℓ−1
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as c → ∞, where tℓ−1 is a Student-t random variable with ℓ−1 degrees of freedom.
The sectioning approach avoids the complications of deriving an explicit central
limit theorem. But this is at the cost of producing a Student-t interval, as opposed
to a normal interval. Hence, the intervals are slightly larger and more variable than
in the case where we consistently estimate the variance constant explicitly.

APPENDIX

Proof of Theorem 3.8. For each i = 1, 2, . . . , d, let Zk(xi) = Yk(xi)−ατk(xi),
k ≥ 1, and set

Z̄n(xi) =
1

⌊pin⌋

⌊pin⌋∑

k=1

Zk(xi).

Let Z̄n = (Z̄n(x) : x ∈ A) ∈ ℜd×1 and τ̄n = (τ̄n(x) : x ∈ A) ∈ ℜd×1. Note that

n1/2(αn − α) = n1/2

∑d
i=1 νn(xi)Z̄n(xi)∑d
i=1 νn(xi)τ̄n(xi)

= n1/2 νnZ̄n

νnτ̄n
= Cn + Dn, (42)

where

Cn = n1/2 νnZ̄n

Eν [T ]
, Dn = n1/2νnZ̄n

(
1

νnτ̄n
− 1

Eν [T ]

)
. (43)

We begin by analyzing Cn. The second equality in Proposition 3.5 implies that

νz = 0. (44)

Hence,

Cn = n1/2 (νn − ν)Z̄n + ν(Z̄n − z)

Eν [T ]
. (45)

We now need to analyze νn − ν and Z̄n − z.
Assumptions 2.1 and 3.4 imply that R is finite and irreducible. It then follows

that Rn is finite and irreducible for n sufficiently large by (3). Since νR = ν and
νn = νnRn,

νn − ν = νnRn − νR = νn(Rn − R) + (νn − ν)R, (46)

and so

(νn − ν)(I − R) = νn(Rn − R). (47)

Then because νne − νe = 1 − 1 = 0 and V = eν, we have that (νn − ν)V = 0.
Hence, we can rewrite (47) as

(νn − ν)(I − R + V ) = νn(Rn − R).

Therefore,

νn − ν = νn(Rn − R)F. (48)

Note that Rn − R → 0 a.s. by (3). Also, |A| < ∞ by Assumption 3.4, and νn is
bounded for all n. Thus, (48) implies that

νn → ν a.s. (49)
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as n → ∞. Also because of (48), (45) becomes

Cn = n1/2 νn(Rn − R)FZ̄n + ν(Z̄n − z)

Eν [T ]
. (50)

Under Assumptions 2.1 and 3.6 (see Proposition 3.7),

n1/2(Rn − R, Z̄n − z)
D→ (N1, N2)

D
= N (0, Σ), (51)

where
D
= denotes equality in distribution. Thus, (N1, N2) are jointly normally

distributed with some covariance matrix Σ. (We will examine the structure of the
matrix Σ below.) Because Z̄n → z a.s. and by (49), (n1/2(Rn − R), n1/2(Z̄n −
z), νn, Z̄n)

D→ (N1, N2, ν, z) as n → ∞ by Theorem 3.9 of [Billingsley 1999]. Hence,
the continuous mapping theorem (e.g., Theorem 2.7 of [Billingsley 1999]) implies
that

Cn
D→ νN1Fz + νN2

Eν [T ]
, (52)

as n → ∞.
We now consider Dn from (43). Note that for each x ∈ A, τ̄n(x) → Ex[τ ] a.s. and

Ex[τ ] > 0. Thus, (49) implies that (1/(νnτ̄n)) − (1/Eν [T ])
D→ 0 by the continuous

mapping theorem. So it follows from (52) that

Dn
D→ 0. (53)

Therefore, using (42) and (52) gives

n1/2(αn − α)
D→ ν(N1ζ + N2)

Eν [T ]
(54)

by the converging-together lemma (see Theorem 25.4 of [Billingsley 1995]), since
ζ = Fz.

We now examine the structure of the covariance matrix Σ in (51), which we
will need to know to determine the exact form of the variance of the limiting
distribution in (54). Many of the entries in Σ are zero since (Rn(xi, · ), Z̄n(xi)) is
independent of (Rn(xj , · ), Z̄n(xj)) for i 6= j, where we use the notation that for
x ∈ A, M(x, · ) = (M(x, y) : y ∈ A) for a matrix M = (M(u, v) : u, v ∈ A). We
now consider separately the nonzero components of Σ. Recall we previously defined
the matrix Ψi in (5) and (6), and note that

n1/2 (Rn(xi, · ) − R(xi, · )) D→ N (0, p−1
i Ψi),

as n → ∞. Also, n1/2(Rn(xi, xj)−R(xi, xj), Z̄n(xi)− z(xi)) converges in distribu-
tion to a normal random vector with mean 0 and covariance matrix

p−1
i

(
Ψi(xj , xj) g(xi, xj)
g(xi, xj) h(xi)

)
.

Now the only thing left to show is that the asymptotic variance σ2 is given by
(7). In (54), N1ζ+N2 is a random vector in which each component (N1ζ +N2)(xi)
is normally distributed since it is a linear combination of dependent normals, and

Var((N1ζ + N2)(xi)) =
ηi

pi
. (55)
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For i 6= j, (N1(xi, ·), N2(xi)) and (N1(xj , ·), N2(xj)) are independent because of the
independence of (Rn(xi, ·), Z̄n(xi)) and (Rn(xj , ·), Z̄n(xj)). Therefore, N1ζ + N2 is
a normally distributed random vector with independent components, which implies
that ν(N1ζ +N2) is a linear combination of the independent (N1ζ +N2)(x), x ∈ A,
and so (7) follows.

Proof of Theorem 3.10. For x ∈ A, define Z ′
k(x) = Y ′

k(x) − ατ ′
k(x), k ≥ 1,

and set

Z̄ ′
n(x) =

1

Hn(x)

Hn(x)∑

k=1

Z ′
k(x), τ̄ ′

n(x) =
1

Hn(x)

Hn(x)∑

k=1

τ ′
k(x).

Let Z̄ ′
n = (Z̄ ′

n(x) : x ∈ A) and τ̄ ′
n = (τ̄ ′

n(x) : x ∈ A). Since νz = 0 by (44), we have
that

n1/2(α′
n − α) = C′

n + D′
n,

where

C′
n = n1/2 ν̂nZ̄ ′

n

Eν [T ]
= n1/2 (ν̂n − ν)Z̄ ′

n + ν(Z̄ ′
n − z)

Eν [T ]
,

D′
n = n1/2ν̂nZ̄ ′

n

(
1

ν̂nτ̄ ′
n

− 1

Eν [T ]

)
,

and ν̂n = (ν̂n(x) : x ∈ A).
For x ∈ A, ν(x) > 0 by Proposition 3.3. Also,

ν̂n(x) =
Hn(x)

n
→ ν(x) > 0 a.s. (56)

as n → ∞, so Hn(x) → ∞ a.s. Recall the definition of R′
n at (13). By (56),

R′
n → R a.s., and since R is irreducible and positive recurrent by Proposition 3.3,

R′
n also is for sufficiently large n. Thus, for n sufficiently large, we can define

ν′
n = (ν′

n(x) : x ∈ A) such that ν′
n = ν′

nR′
n, ν′

n ≥ 0, and eν′
n = 1. Observe that

ν̂n − ν = ν̂nR′
n − νR + (ν̂n − ν′

n)(I − R′
n)

= ν̂n(R′
n − R) + (ν̂n − ν)R + (ν̂n − ν′

n)(I − R′
n).

Now arguing as we did to go from (46) to (48), we can show that

ν̂n − ν = ν̂n(R′
n − R)F + (ν̂n − ν′

n)(I − R′
n)F. (57)

Hence,

C′
n = n1/2 ν̂n(R′

n − R)FZ̄ ′
n + ν(Z̄ ′

n − z)

Eν [T ]
+ n1/2 (ν̂n − ν′

n)(I − R′
n)FZ̄ ′

n

Eν [T ]
. (58)

Note that (56) implies that Z̄ ′
n(x) → z(x) a.s. and τ̄ ′

n(x) → Ex[τ ] a.s., and the
random-time-change central limit theorem (e.g., p. 32 of [Serfling 1980]) implies
that

n1/2(R′
n − R, Z̄ ′

n − z)
D→ (N ′

1, N
′
2)

D
= N (0, Σ′), (59)
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i.e., (N ′
1, N

′
2) are jointly normally distributed with some covariance matrix Σ′, for

which we will later give the exact form. It then follows that, as in (52),

n1/2 ν̂n(R′
n − R)FZ̄ ′

n + ν(Z̄ ′
n − z)

Eν [T ]

D→ νN ′
1ζ + νN ′

2

Eν [T ]

by (59) since ν̂n → ν a.s. and Z̄ ′
n → z a.s.

We now show that

n1/2(ν̂n − ν′
n)

D→ 0 (60)

as n → ∞. To see this, define ǫn(x) by

ǫn(x) = ν̂n(x) − ν̂nR′
n(x) =

Hn(x)

n
−
∑

y∈A

Hn(y)

n

∑n−1
k=0 I(Wk = y, Wk+1 = x)
∑n−1

k=0 I(Wk = y)

=
1

n



Hn(x) −
∑

y∈A

n−1∑

k=0

I(Wk = y, Wk+1 = x)





=
1

n
(I(W0 = x) − I(Wn = x)) .

Therefore, |ǫn(x)| ≤ 1/n for each x. Let V ′
n be the matrix with each row equal to

ν′
n, and let F ′

n = (I −R′
n + V ′

n)−1. For any probability vector µ ∈ ℜ1×d, µV ′
n = ν′

n.
Then ν̂n = ν̂nR′

n + ǫn = ν̂n (R′
n − V ′

n) + ν′
n + ǫn, or

ν̂n (I − R′
n + V ′

n) = ν′
n + ǫn = ν′

n (I − R′
n + V ′

n) + ǫn.

Therefore, ν̂n − ν′
n = ǫnF ′

n. Since F ′
n → F a.s. and |ǫn(x)| ≤ 1/n for all x, (60)

follows.
Hence, the second term on the right-hand side of (58) satisfies

n1/2 (ν̂n − ν′
n)(I − R′

n)FZ̄ ′
n

Eν [T ]

D→ 0

since R′
n → R a.s. and Z̄ ′

n → z a.s. Also, as in (53) we can similarly show that

D′
n

D→ 0. Therefore,

n1/2(α′
n − α)

D→ νN ′
1ζ + νN ′

2

Eν [T ]
.

We now examine the structure of the covariance matrix Σ′ in (59). Even though
R′

n(xi, ·) is not independent of R′
n(xj , ·) for i 6= j, it turns out that N ′

1(xi, ·) and
N ′

1(xj , ·) are independent; e.g., see Theorem 3.1 and p. 23 of [Billingsley 1961].
We now show that Cov(N ′

2(xi), N
′
2(xj)) = 0 for i 6= j. For xi ∈ A, define

Ẑ ′
n(xi) =

1

⌊ν(xi)n⌋

⌊ν(xi)n⌋∑

k=1

Z ′
k(xi).

By slightly modifying the argument on p. 20 of [Billingsley 1961], we can prove that
for each xi ∈ A,

n1/2(Z̄ ′
n(xi) − z(xi)) − n1/2(Ẑ ′

n(xi) − z(xi))
D→ 0
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as n → ∞. Now let Ẑ ′
n = (Ẑ ′

n(xi) : i = 1, 2, . . . , d), and it then follows that

n1/2(Z̄ ′
n − z) − n1/2(Ẑ ′

n − z)
D→ 0

as n → ∞. Hence, the converging-together lemma implies that n1/2(Ẑ ′
n − z)

D→ N ′
2

as n → ∞, where N ′
2 is defined in (59); i.e., n1/2(Ẑ ′

n − z) and n1/2(Z̄ ′
n − z) have

the same limiting distribution. But the Markov property implies that for each n,
Ẑ ′

n(xi) and Ẑ ′
n(xj) are independent for i 6= j. Consequently, N ′

2(xi) and N ′
2(xj)

are independent for i 6= j, so Cov(N ′
2(xi), N

′
2(xj)) = 0. We can similarly show that

N ′
1(xi, ·) and N ′

2(xj) are independent for i 6= j.
Thus, Σ′ has non-zero entries in the same places as Σ in (51) does. The dif-

ference between Σ′ and Σ is that the non-zero entries in Σ are divided by the
appropriate pi, whereas they are divided by the appropriate ν(xi) in Σ′. The di-
visors ν(xi) in Σ′ arise from the random-time-change central limit theorem be-
cause Hn(xi)/n → ν(xi) a.s. as we showed in (56). For example, note that

n1/2(Z̄ ′
n(xi) − z)

D→ N (0, h(xi)/ν(xi)), where h(xi) = Varxi
(Z) as before. Thus,

as in the proof of Theorem 3.8, we can work out the exact form of the asymptotic
variance σ2

1 to be (12).
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