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We propose some new two-stage stopping procedures to construct absolute-width and
relative-width confidence intervals for a simulation estimator of the steady-state mean
of a stochastic process. The procedures are based on the method of standardized time
series proposed by Schruben and on Stein’s two-stage sampling scheme. We prove that
our two-stage procedures give rise to asymptotically valid confidence intervals (as the
prescribed length of the confidence interval approaches zero and the size of the first
stage grows to infinity). The sole assumption required is that the stochastic process
satisfy a functional central limit theorem.
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IMATIONS)

1



1 Introduction

When running a simulation to estimate the steady-state mean of some stochastic process, we often
would like a method for determining the run length needed so that the resulting confidence interval
is of a prespecified (absolute or relative) width. In the absence of such a method, we may end up
just fixing the total run length prior to running the simulation. The main disadvantange of such
an approach is that the constructed confidence interval may not be of the desired width. Since the
size of the confidence interval is usually unknown in advance, an inappropriately long run length
wastes computer resources refining the estimator beyond the accuracy needed. On the other hand,
if the specified run length is too short, the resulting confidence intervals may have widths that are
too large to be of practical use.

One method for determining an appropriate simulation run length is to use a fully sequential
stopping procedure. In this approach, we terminate the simulation once the confidence interval
achieves the predetermined width. Schemes of this type are typically based on the initial work of
Chow and Robbins (1965), which established the asymptotic validity (as the confidence interval
width approaches zero) of a fully sequential procedure when the output sequence consisted of i.i.d.
random variables. Glynn and Whitt (1992) extended their work by proving the asymptotic validity
of fully sequential stopping rules for certain dependent processes, which typically arise in the simu-
lation context. Others have also proposed and empirically studied sequential procedures for use in
simulations. In particular, Fishman (1977), Adam (1983), Law and Carson (1979), and Law and
Kelton (1982) all consider sequential schemes using batch means; Lavenberg and Sauer (1977) in-
vestigate sequential procedures in regenerative simulations; Heidelberger and Welch (1981a, 1981b,
1983) use a spectral approach; and Iglehart (1977), in a different kind of application, presents
selection procedures based on sequential methods. For an overview of many of these methods, see
pp. 81–103 of Bratley, Fox, and Schrage (1987).

However, there are certain drawbacks to using a sequential stopping procedure. First, problems
arise because the run length is now randomly determined. Since we do not have direct control over
the simulation, the run length may turn out be very long, thus using more computer resources
than desired. On the other hand, the simulation may terminate inappropriately early due to
statistical variability, which may cause difficulties. For example, in many statistical settings, the
point estimate and the variance estimate are positively correlated. Hence, the confidence interval
width (which is typically determined by the estimate of the variance) is likely to be small if the
point estimate is small. Consequently, the sequential stopping procedure will tend to terminate
early when the point estimate is small, possibly leading to significant problems in the coverage of the
resulting confidence interval. This problem seems to be endemic to virtually all Chow-Robbins type
procedures. The most significant disadvantage, though, is that in order to establish the asymptotic
validity of their fully sequential procedures, Glynn and Whitt (1992) require the estimator of the
asymptotic variance to be strongly consistent; i.e., it converges with probability one. (The strong
consistency assumption can be replaced by assuming that the variance estimator satisfy a functional
weak law of large numbers.) The requirement that the estimator of the asymptotic variance is
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strongly consistent is restrictive. In nonregenerative settings, constructing such estimators often
requires the knowledge of more advanced statistical techniques, such as spectral and autoregressive
methods, which makes implementation difficult. These techniques are also somewhat problem
dependent. Thus, the need arises for robust procedures to determine appropriate simulation run
lengths without such a restrictive requirement.

To this end, we propose two-stage stopping rules that combine a scheme by Stein (1945) with
standardized time series. Stein developed a two-stage procedure for determining the sample size
needed to construct a confidence interval of predetermined absolute length and confidence coefficient
for the mean of i.i.d. normal random variables when the variance is unknown. Stein’s first stage
consists of a fixed number of samples from which an estimate of the variance of the distribution
is formed. Using this, Stein then determines the total number of samples needed. Standardized
time series is a class of methods used to construct confidence intervals (in a nonsequential setting)
without consistently estimating the asymptotic variance constant; see Schruben (1983) or Glynn
and Iglehart (1990). These techniques “cancel out” the variance constant in a manner reminiscent
of the t-statistic instead of trying to consistently estimate it. Thus, in our two-stage procedures,
the first stage amounts to simulating a pilot run having a fixed number of equal-sized batches. We
apply a standardized time series methodology to the first stage and then determine the additional
number of batches needed in order to construct a confidence interval having the desired relative or
absolute length for the steady-state mean of our process.

As with the fully sequential methods described by Glynn and Whitt (1992), our two-stage
stopping rules produce asymptotically valid confidence intervals. The asymptotic validity of our
procedures occurs as the prescribed (relative or absolute) length of the confidence interval ap-
proaches zero and the size of each batch grows to infinity. The only condition we require is that
the stochastic process obey a functional central limit theorem. This mild assumption, also used by
Glynn and Whitt (1992), is satisfied in virtually all practical settings. The main advantage of our
approach is that by using a standardized time series methodology, we avoid requiring a strongly
consistent estimate of the variance constant. Also, implementing the method of batch means with
a fixed number of batches, which is an example of a standardized time series, does not require
any knowledge of more advanced statistical theory, thus making implementation a relatively simple
task. Furthermore, we prove that the total number of batches collected converges to some proper
limiting random variable. Hence, our procedure is in the spirit of the work of Schmeiser (1982),
which suggests that in most applications the total number of batches in a (nonsequential) batch
means procedure should not grow to infinity as the run length goes to infinity, but rather should
be kept fairly small.

Although our two-stage procedures have many desirable properties, there are also some draw-
backs. First, our methods also suffer from one of the problems that afflict fully sequential stopping
rules; viz., the run length of the simulation is now randomly determined and so it may be inap-
propriately long or short. However, by specifying an appropriate length for the first stage, we can
avoid this problem. Determining a suitable size for the first stage, though, is somewhat difficult.
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The complication arises from the fact that there is an interdependence between the batch size and
the desired half-width which must be satisfied in order for our methods to be asymptotically valid.
More specifically, the batch size must grow at a rate which is proportional to the inverse of the
square of the half-width, but the exact rate needed in practice depends on the stochastic process
being simulated. In Section 5 we give some suggestions on how one might deal with this in certain
contexts.

Finally, we should mention that many aspects of standardized time series have been studied
previously. Glynn and Iglehart (1990) show that the methods of standardized time series with a
fixed number of batches yield asymptotically valid confidence intervals when the stochastic process
satisfies a functional central limit theorem. Schruben (1983) shows a similar result but under
the assumption that the process is stationary and satisfies a mixing condition. Goldsman and
Schruben (1984) focus on some asymptotic properties of the confidence intervals produced by
different standardized time series schemes. Sargent, Kang, and Goldsman (1992) investigate the
small sample behavior and convergence properties of these confidence intervals.

A special case of standardized time series is the method of batch means with a fixed number of
batches, a procedure which has been studied extensively in the literature; e.g., see Mechanic and
McKay (1966) or Bratley, Fox, and Schrage (1987). However, Glynn and Whitt (1991) show that
the asymptotic variance constant cannot be consistently estimated from a batch means procedure
in which the number of batches is kept fixed while the size of each batch grows to infinity. Hence,
Glynn and Whitt’s (1992) results for constructing fully sequential stopping procedures are not
applicable in this setting.

On the other hand, Damerdji (1989) has shown (under certain conditions) that by letting the
number of batches in a nonsequential batch means scheme grow to infinity, we can construct a
strongly consistent estimate of the variance. Thus, the approach can be used in a fully sequential
procedure. However, Damerdji’s procedure is computationally complicated and not completely
robust (since the rate at which the number of batches needs to grow depends on the stochastic
process being simulated).

The rest of the paper is organized as follows. In Section 2 we first review Stein’s (1945) orig-
inal two-stage scheme applied to normal random variables and then describe how to extend it to
work with the method of batch means. We generalize the two-stage batch means procedure to use
any standardized time series methodology in Section 3. In Section 3.1 we impose a condition on
the stochastic process being simulated and discuss some of its ramifications; Section 3.2 provides
theorems showing the asymptotic validity of our procedures. Section 4 contains examples of stan-
dardized time series as used in our context. We discuss various implementation issues in Section 5.
Experimental results are given in Section 6, and Section 7 concludes with some directions for future
work. Finally, the appendix contains all of the proofs.
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2 Modifying Stein’s Two-Stage Procedure to Work With the Method
of Batch Means

Stein (1945) proposed the following two-stage procedure for constructing confidence intervals having
coverage probability 1 − δ and predetermined half-width ε for the mean µ of a normal random
variable with unknown variance σ2. Fix m ≥ 2, and in the first stage collect Z̃1, . . . , Z̃m, which are
m independent random samples from a N(µ, σ2) distribution. Then compute s̃2 = 1

m−1

∑m
i=1(Z̃i −

1
m

∑m
k=1 Z̃k)

2, which is the sample variance of the first m samples. The total number of observations
needed is then given by

Ñ = max

{
m,

⌈
s̃2t2m−1,δ

ε2

⌉}
, (1)

where tm−1,δ is the upper 100(1 − δ/2)% quantile point of a Student’s t-distribution with m − 1
degrees of freedom, and dqe denotes the smallest integer greater than or equal to q. After computing
Ñ , we collect additional samples Z̃m+1, . . . , Z̃Ñ from the N(µ, σ2) distribution in the second stage
and use the sample mean of all Ñ observations as our point estimate. We then form the confidence
interval [ 1

Ñ

∑Ñ
i=1 Z̃i − ε, 1

Ñ

∑Ñ
i=1 Z̃i + ε]. Stein proved the following result, which shows the validity

of the procedure.

Proposition 1 (Stein) P
{
µ ∈

[
1
Ñ

∑Ñ
i=1 Z̃i − ε, 1

Ñ

∑Ñ
i=1 Z̃i + ε

]}
≥ 1− δ.

The proof is given in Stein (1945).
We can modify Stein’s method to create a two-stage stopping procedure that will determine

an appropriate run length of a simulation so that the resulting 100(1− δ)% confidence interval for
the steady-state mean µ of the stochastic process is of prespecified width ε. We accomplish this
by combining Stein’s procedure with the method of batch means. (Actually, we can replace the
method of batch means with any standardized time series methodology; see Section 3.) In our
two-stage scheme the first stage amounts to simulating an initial pilot run having m ≥ 2 equal-sized
batches. We then apply (1) with the means of the batches from the first stage in the place of the
i.i.d. normal random variables. This gives us the total number of batches that need to be simulated
in order for the resulting confidence interval to be of appropriate size.

More specifically, let Y = {Y (t) : t ≥ 0} denote the simulation output of some stochastic
process having steady-state mean µ. (There are certain regularity conditions which we require of
the process. These will be discussed in Section 3.1.) First, simulate an initial pilot run of length
1/ε2 and divide it into m ≥ 2 equal-sized batches. (It is important to note that the batch size is
inversely proportional to the square of the desired half-width.) Let

Zi(ε) =

∫ i/(mε2)
(i−1)/(mε2) Y (s)ds

1/(mε2)
, i ≥ 1, (2)

which is the mean of the ith batch of size 1/(mε2) of the process Y, and define

s2(ε) =
1

m− 1

m∑
i=1

(
Zi(ε)−

1
m

m∑
k=1

Zk(ε)

)2

, (3)
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which is the sample variance of the first m batch means. The total number of batches needed in
order to construct our desired confidence interval is consequently given by

Na(ε) = max

{
m,

⌈
s2(ε)t2m−1,δ

ε2

⌉}
.

Then simulate the second stage, which consists of Na(ε)−m batches of size 1/(mε2), and form the
absolute-precision confidence interval

Ia(ε) =

 1
Na(ε)

Na(ε)∑
i=1

Zi(ε)− ε,
1

Na(ε)

Na(ε)∑
i=1

Zi(ε) + ε

 .
The resulting confidence interval Ia(ε) is asymptotically valid in the sense that

lim
ε→0

P{µ ∈ Ia(ε)} ≥ 1− δ;

see Theorem 1 in Section 3.2 for more details.
Figure 1 gives the algorithm for our two-stage stopping procedure for producing a confidence

interval of absolute half-width ε for the steady-state mean µ of a discrete-time process Y = {Yn :
n ≥ 0}. (We can easily modify the algorithm to work with continuous-time processes.) The
variable Na in the algorithm is the total number of batches collected, and L and R, respectively,
represent the resulting left and right endpoints of the confidence interval.

The method just described gives rise to absolute-precision confidence intervals. However, we
often would like to construct confidence intervals having a given relative precision. For example,
we may want the resulting confidence interval to have total width which is, say, 10% of the point
estimate. So now we extend the previous methods in order to have a two-stage procedure that
produces relative-precision confidence intervals. Again, we first simulate an initial pilot run of m
batches, each of size 1/(mε2). Using the initial m batch means, we compute the sample variance
s2(ε) and

Nr(ε) = max

m,


s2(ε)t2m−1,δ

ε2
(

1
m

∑m
i=1 Zi(ε)

)2


 .

Note that the second term on the right side of the above equation contains the sample mean of the
first m batch means in the denominator. Then simulate Nr(ε)−m batches of size 1/(mε2) for the
second stage, and form the relative-precision confidence interval

Ir(ε) = [µ̂r(ε)− ε|µ̂r(ε)|, µ̂r(ε) + ε|µ̂r(ε)|] ,

where

µ̂r(ε) =
1

Nr(ε)

Nr(ε)∑
i=1

Zi(ε), (4)

which is the point estimate for the steady-state mean obtained from the entire simulation. The
resulting confidence interval Ir(ε) satisfies

lim
ε→0

P{µ ∈ Ir(ε)} ≥ 1− δ

5



m← number of batches in first stage (m ≥ 2);
ε← absolute width of confidence interval desired;
b← batch size (b ∼ 1/ε2);
tm−1,δ ← 100(1− δ/2)% quantile point of a Student’s

t-distribution with m− 1 degrees of freedom;

begin
for i← 1, . . . ,m, do begin

Zi ← 1
b

∑b
j=1 Yj+(i−1)b;

end

s←
[

1
m−1

∑m
i=1

(
Zi − 1

m

∑m
j=1 Zj

)2
]1/2

;

Na ← max
{
m,

⌈
s2t2m−1,δ

ε2

⌉}
;

for i← m+ 1, . . . , Na, do begin
Zi ← 1

b

∑b
j=1 Yj+(i−1)b;

end;

L← 1
Na

∑Na
i=1 Zi − ε;

R← 1
Na

∑Na
i=1 Zi + ε;

end.

Figure 1: Absolute precision two-stage stopping procedure
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m← number of batches in first stage (m ≥ 2);
ε← relative width of confidence interval desired;
b← batch size (b ∼ 1/ε2);
tm−1,δ ← 100(1− δ/2)% quantile point of a Student’s

t-distribution with m− 1 degrees of freedom;

begin
for i← 1, . . . ,m, do begin

Zi ← 1
b

∑b
j=1 Yj+(i−1)b;

end

s←
[

1
m−1

∑m
i=1

(
Zi − 1

m

∑m
j=1 Zj

)2
]1/2

;

Nr ← max
{
m,

⌈
s2t2m−1,δ

ε2( 1
m

∑m

i=1
Zi)2

⌉}
;

for i← m+ 1, . . . , Na, do begin
Zi ← 1

b

∑b
j=1 Yj+(i−1)b;

end;

L← 1−ε
Nr

∑Na
i=1 Zi;

R← 1+ε
Nr

∑Na
i=1 Zi;

end.

Figure 2: Relative precision two-stage stopping procedure

provided µ 6= 0; see Theorem 3 in Section 3.2 for more details.
Figure 2 gives the algorithm for our two-stage stopping procedure to produce a confidence

interval of relative half-width ε for the steady-state mean µ of a discrete-time process Y = {Yn :
n ≥ 0}.

3 Generalizing Our Two-Stage Batch Means Procedure

In the previous section we described how Stein’s two-stage procedure can be combined with the
method of batch means. The method of batch means was primarily used to form an “estimate”
of the asymptotic variance of the stochastic process from the output of the first stage. (As Glynn
and Whitt 1991 have shown, the “estimate” of the variance is not consistent.) We can generalize
the schemes by using any standardized time series methodology in the first stage to “estimate” the
variance. Before describing the new methods, we first discuss a condition imposed on the stochastic
process being simulated.

3.1 An Assumption on the Stochastic Process Being Simulated

We now review some of the mathematical machinery that will be used. Let D[0,∞) denote the space
of real-valued functions x on [0,∞) which are right continuous and have left limits (i.e., for each
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t ≥ 0, lims→t+ x(s) = x(t) and lims→t− x(s) ≡ x(t−) exists), and let d denote the Skorohod metric
on the space D[0,∞); i.e., d(x, y) measures the distance between two elements x, y ∈ D[0,∞).
Virtually all stochastic processes arising in operations research applications lie in D[0,∞). Also, let
C[0,∞) denote the space of continuous functions x on [0,∞), and note that C[0,∞) ⊂ D[0,∞). For
more details on the spaces D[0,∞) and C[0,∞), the reader is referred to Ethier and Kurtz (1986)
and Glynn (1989).

We define a function h : C[0,∞) → < to be continuous at x ∈ C[0,∞) if h(xε) → h(x) as
ε → 0, whenever d(xε, x) → 0 as ε → 0, where xε ∈ C[0,∞) for all ε > 0. In this paper we will
consider functions h : C[0,∞)→ < which are typically not continuous, and we let D(h) denote the
set of points x ∈ C[0,∞) at which h is not continuous.

Let {Xε : ε > 0} be a family of random elements taking values in C[0,∞); i.e., the Xε correspond
to stochastic processes with sample paths in C[0,∞). If X is a random element of C[0,∞), then
the Xε are said to converge weakly to X (written Xε ⇒ X as ε→ 0) if

Ef(Xε)→ Ef(X)

as ε → 0, for every bounded, continuous function f : C[0,∞) → <; see the appendix for more
details.

In our development we will only consider random elements Xε having a particular form. More
specifically, let Y = {Y (t) : t ≥ 0} ∈ D[0,∞) be a real-valued (measurable) stochastic process
representing the output of a simulation. We can deal with discrete-time processes by taking Y (t) =
Ybtc, where bqc denotes the greatest integer less than or equal to q. We define

Xε(t) =
1
ε

(Ȳε(t)− µt) (5)

with

Ȳε(t) =
∫ t/ε2

0 Y (s)ds
1/ε2

, for t ≥ 0.

Xε represents a cumulative simulation-generated estimator of the original process Y. Note that
Xε ∈ C[0,∞).

To obtain our results, we need to assume that our stochastic process Y satisfies the following
functional central limit theorem (FCLT):

A1. There exist finite constants µ and σ (σ > 0) such that

Xε ⇒ σB

as ε→ 0, where B is a standard Brownian motion and Xε is defined in (5).

A similar assumption is used by Glynn and Whitt (1992) when proving the validity of their fully
sequential stopping procedures. In addition Glynn and Iglehart (1990) assume a FCLT to establish
the validity of standardized time series.
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Recall that every sample path of a Brownian motion is continuous and so B ∈ C[0,∞). Thus,
since Xε ∈ C[0,∞) also, we are working with weak convergence in the space C[0,∞). In addition
note that the time parameter of the processes Xε(·) and Ȳε(·) are rescaled by 1/ε2 as compared to
the time parameter of the original process Y (·).

Assumption A1 guarantees that∫ t
0 Y (s)ds

t
− µ =

1√
t
X1/

√
t(1)⇒ 0 · σB(1) = 0

as t→∞, and so
∫ t

0 Y (s)ds/t⇒ µ as t→∞. Thus, µ is the steady-state mean that the simulator
wishes to estimate. Also, Assumption A1 gives us

√
t

[∫ t
0 Y (s)ds

t
− µ

]
= X1/

√
t(1)⇒ σB(1)

as t→∞. Recalling that B(1) is normally distributed with mean 0 and variance 1, we see that σ2

is the asymptotic variance constant of the process Y.
Virtually all “real-world” steady-state simulations satisfy Assumption A1. In particular a wide

spectrum of different assumptions on the structure of the output process Y give rise to FCLTs of
the form in Assumption A1. For example, Assumption A1 holds when any one of the following is
in force:

(i) Y is regenerative and satisfies suitable moment conditions (see Glynn and Whitt 1987);

(ii) Y is a martingale process (see Chapter 7 of Ethier and Kurtz 1986);

(iii) Y satisfies appropriate mixing conditions (see Chapter 7 of Ethier and Kurtz 1986);

(iv) there is appropriate positive dependence in the process Y (specifically, when the Y (t) are
associated; see Newman and Wright 1981).

3.2 Two-stage procedures using Standardized Time Series

Now we are in a position to describe how to generalize the two-stage batch means procedure
described in Section 2 to work with any standardized time series methodology. An overview of the
scheme is as follows. We first simulate an initial pilot run (the first stage) of the original process
Y of length 1/ε2 and divide this into m batches, each of length 1/(mε2), where m ≥ 1 is fixed.
Now instead of forming the sample variance of the first m batch means as done in Section 2, we
apply a standardized time series technique to the output of the first stage to form an “estimate” of
the asymptotic variance. (As noted by Glynn and Iglehart 1990, the “estimate” of the variance is
not consistent.) Using this “estimate” of the variance, we determine the total number of batches
needed in the same way as done in Section 2.

We now discuss how the estimate of the variance is formed using a standardized time series. The
basis of standardized time series is a class of functions g developed by Glynn and Iglehart (1990)
which are applied to an integrated (accumulated) version of the entire simulation output Y, namely,
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Xε. In our two-stage procedures we slightly modify the definition of the functions so that they only
depend on the first stage of the simulation. The functions g actually depend on the number
of batches m in the first stage, but for notational convenience, we do not show explicitly the
dependence. We define the class of functions in the next assumption:

A2. The (measurable) function g : C[0,∞)→ < satisfies the following conditions:

(i) For every x ∈ C[0,∞), the quantity g(x) depends only on {x(s) : 0 ≤ s ≤ 1}. Thus, if
x, y ∈ C[0,∞) and x(s) = y(s) for all 0 ≤ s ≤ 1, then g(x) = g(y).

(ii) g(αx) = αg(x) for α > 0, x ∈ C[0,∞).

(iii) g(x− βk) = g(x) for β ∈ < and x ∈ C[0,∞), where k(t) = t.

(iv) P{g(B) > 0} = 1.

(v) P{B ∈ D(g)} = 0.

(vi) g(B) has a continuous distribution function.

LetM′ be the class of functions g satisfying Assumption A2. Condition (i) ensures that the function
g only depends on the evolution of the process up to time 1. Applying the function g to the process
Xε, we see that g(Xε) is solely determined by {Xε(s) : 0 ≤ s ≤ 1}, which corresponds to the
time interval from 0 to 1/ε2 of the original process Y. Hence, g depends only on the evolution of
the process in the first stage. Condition (ii) ensures that, in some sense, g(Xε) is a well-behaved
“estimator” of the parameter σ. More specifically, (ii) guarantees that if we change the basic
units of measurement of the simulation output so that all observations are effectively multiplied
by some positive factor α and the corresponding variance parameter is ασ, then the estimator
based on the function g will also properly reflect this change in the units of measurement. This
property will allow us to “cancel out” the asymptotic variance constant σ; for more details, see
the proof of Theorem 1 in the appendix. Condition (iii) guarantees that g(Xε) does not depend on
the unknown parameter µ. Conditions (iv)–(vi) are technical assumptions required to invoke the
continuous mapping principle.

The class M′ is the same as the class M described by Glynn and Iglehart (1990) upon which
the theory of standardized time series is built, except that we have the additional conditions (i)
and (vi). Condition (i) of Assumption A2 ensures that functions in M′ have essentially the same
domain as the mappings in M possess, and so it does not really affect the class of functions
being considered. On the other hand, condition (vi) is an additional restriction. We should note
though that condition (vi) is satisfied in all of the applications that we have in mind. Hence,
condition (vi) does not seem to be a restrictive assumption in practice. In fact, it is probably true
that conditions (i)–(v) imply condition (vi), but we have not been able to verify this. However, by
slightly modifying the proof of Proposition 4.26 of Glynn and Iglehart (1990), it can be shown that
conditions (i)–(v) imply that the distribution of g(B) cannot solely consist of a finite or countable
number of atoms that are bounded away from 0. This is necessary for condition (vi) to hold.
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As discussed in Glynn and Iglehart (1990), the method of batch means (with a fixed number of
batches) is an example of a standardized time series methodology. Hence, we can define a function g
that corresponds to this procedure; i.e., there exists a g that will give rise to (3). For more details
on this and other g functions, see Section 4.

Now we describe our new two-stage procedures based on standardized time series. First, simu-
late a first stage of length 1/ε2 divided into m ≥ 1 batches of equal size, and then define

s(ε) = m1/2εg(Xε),

where g (= gm) ∈ M′. The quantity s(ε) is our “estimate” of the variance parameter σ obtained
using the standardized time series method corresponding to g. From Assumption A2(i), s(ε) only
depends on the evolution of the process Xε in the first stage. Next we define the total number of
batches needed as

Na(ε) = max

{
m,

⌈
s2(ε)a2

δ

ε2

⌉}
, (6)

where aδ is the 100(1 − δ/2)% quantile point of the random variable B(1)/g(B). Glynn and Igle-
hart (1990) show that the distribution function of B(1)/g(B) is continuous and strictly increasing,
so the quantile exists. In the second stage simulate the remaining Na(ε)−m batches, each of size
1/(mε2), and form the absolute-precision confidence interval

Ia(ε) =

 1
Na(ε)

Na(ε)∑
i=1

Zi(ε)− ε,
1

Na(ε)

Na(ε)∑
i=1

Zi(ε) + ε

 ,
where the Zi(ε) are defined in (2). Then we have the following result.

Theorem 1 Suppose that g ∈M′. If Assumption A1 holds, then

(i) Na(ε)⇒ Na as ε→ 0, where Na is some proper limiting random variable,

(ii) limε→0 P {µ ∈ Ia(ε)} ≥ 1− δ.

Part (i) shows that the total number of batches needed converges to some proper limiting random
variable. The asymptotic validity of the confidence intervals produced by the procedure is shown
in part (ii). The proof is given in the appendix.

Because of the presence of the ceiling function in (6), the previous method often requires the
simulation to be run longer than necessary. This occurs when a second stage is needed, and the
simulation is run until the size of the last batch is the same as the others. In order to alleviate
this problem, we now describe another two-stage procedure in which the ceiling function when
determining the total run length is eliminated, thus creating a method which gives rise to a total
run length that is never longer, and often shorter, than that of the previous procedure.

To this end, define

Qa(ε) = max

{
m,

s2(ε)a2
δ

ε2

}
. (7)
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We use Qa(ε) as a stopping rule in the following manner. First simulate the m initial batches of
size 1/(mε2) in the first stage as before. However, in the second stage, we simulate from 1/ε2 to
Qa(ε)/(mε2) and consider the whole segment as one final batch. So define Zi(ε), for i = 1, . . . ,m,
as in (2), and let

Z ′m+1(ε) =

∫Qa(ε)/(mε2)
m/(mε2) Y (s)ds

(Qa(ε)−m)/(mε2)

be the sample mean of the process in the second stage. Finally, we define a new absolute-precision
confidence interval

I ′a(ε) = [µ̂a(ε)− ε, µ̂a(ε) + ε] ,

where

µ̂a(ε) =
1

Qa(ε)

[
m∑
i=1

Zi(ε) + (Qa(ε)−m)Z ′m+1(ε)

]
.

Note that the batch corresponding to Z ′m+1(ε) is not necessarily the same size as the first m batches.
Thus, we have scaled Z ′m+1(ε) by Qa(ε)−m. The procedure satisfies the following result.

Theorem 2 Suppose that g ∈M′. If Assumption A1 holds, then

(i) Qa(ε)⇒ Qa as ε→ 0, where Qa is some proper limiting random variable,

(ii) limε→0 P {µ ∈ I ′a(ε)} ≥ 1− δ.

The proof is omitted as this result can be shown following an argument similar to that used to
establish Theorem 1.

On the set {Na(ε) > m}, we have Na(ε) = dQa(ε)e. Thus, by using Qa(ε) rather than Na(ε)
to determine the total run length, we avoid having to simulate from Qa(ε)/ε2 to dQa(ε)e/ε2 when
Na(ε) > m. For small values of ε, this can lead to significant savings in the total run length.

Now we extend the previous methods in order to have a two-stage procedure that produces
relative-precision confidence intervals. Thus, define

Nr(ε) = max

m,


s2(ε)a2
δ

ε2
(

1
m

∑m
i=1 Zi(ε)

)2


 , (8)

which is the total number of batches needed. Also, let

µ̂r(ε) =
1

Nr(ε)

Nr(ε)∑
i=1

Zi(ε),

be the point estimate of the steady-state mean obtained from the entire simulation. Finally, define
the relative-precision confidence interval

Ir(ε) = [µ̂r(ε)− ε|µ̂r(ε)|, µ̂r(ε) + ε|µ̂r(ε)|] .

Then we have the following result.
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Theorem 3 Suppose that g ∈M′. If Assumption A1 holds and µ 6= 0, then

(i) Nr(ε)⇒ Nr as ε→ 0, where Nr is some proper limiting random variable,

(ii) limε→0 P {µ ∈ Ir(ε)} ≥ 1− δ.

The proof is given in the appendix.
It should be pointed out that Stein (1945) only discusses absolute-precision confidence intervals.

The reason that we are able to derive a relative-precision confidence interval procedure is that for
fixed m, 1

m

∑m
i=1 Zi(ε) = Ȳε(1)⇒ µ as ε→ 0, and so we have an asymptotically consistent estimator

of the steady-state mean. However, in Stein’s procedure, since m is fixed, there is no consistent
estimate of the mean of the distribution available from the first stage.

As in the case for absolute-precision two-stage methods, we can define a relative-precision two-
stage procedure in which the total run length is never longer, and often shorter, than that of the
previous method by eliminating the ceiling function from (8). To do this, we define

Qr(ε) = max

m, s2(ε)a2
δ

ε2
(

1
m

∑m
i=1 Zi(ε)

)2

 . (9)

Also, define the relative-precision confidence interval

I ′r(ε) =
[
µ̂′r(ε)− ε|µ̂′r(ε)|, µ̂′r(ε) + ε|µ̂′r(ε)|

]
,

where

µ̂′r(ε) =
1

Qr(ε)

[
m∑
i=1

Zi(ε) + (Qr(ε)−m)Z ′m+1(ε)

]
.

Then we have the following theorem.

Theorem 4 Suppose that g ∈M′. If Assumption A1 holds, then

(i) Qr(ε)⇒ Qr as ε→ 0, where Qr is some proper limiting random variable,

(ii) limε→0 P {µ ∈ I ′r(ε)} ≥ 1− δ.

We omit the proof of this result as it is very similar to that of Theorem 3.

4 Examples of Standardized Time Series

In this section we describe various functions g ∈M′ and the resulting standardized time series. All
of these examples are taken directly from Glynn and Iglehart (1990).

Example 1. The first function g that we describe corresponds to the method of batch means,
which we considered in Section 2. For this example we require that the number of initial batches
m is at least 2. Define the function g : C[0,∞)→ < as

g(x) =

[
m

m− 1

m∑
i=1

(
∆mx

(
i

m

)
− x(1)

m

)2
]1/2

,
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where
∆hx(t) = x(t)− x

(
t− 1

h

)
. (10)

Thus, we have

g(Xε) =
1

m1/2ε

 1
m− 1

m∑
i=1

Zi(ε)− 1
m

m∑
j=1

Zj(ε)

2


1/2

,

g(σB) = m1/2

[
1

m− 1

m∑
i=1

(
∆mσB

(
i

m

)
− σB(1)

m

)2
]1/2

,

where Zi(ε) is defined in (2). Note that g(Xε) is equal to the sample standard deviation of the batch
means divided by m1/2ε. Conditions (i)–(v) of M′ are easily verified. Condition (vi) of M′ can be
demonstrated to hold as follows. Note that ∆mσB(i/m), i = 1, . . . ,m, are increments of Brownian
motion and so are independent normally distributed random variables with mean 0 and variance
σ2/m. Also, σB(1)/m is the sample mean of the m increments. Thus, (m− 1)g2(σB)/σ2 has a χ2

distribution with m − 1 degrees of freedom. Hence, g(B) has a continuous distribution function,
and so condition (vi) holds. Furthermore, from Proposition 2.8 of Glynn and Iglehart (1990), B(1)
is independent of g(B), and so B(1)/g(B) has a Student’s t-distribution with m − 1 degrees of
freedom; therefore, the quantile point is given by aδ = tm−1,δ, where tm−1,δ is the 100(1 − δ/2)%
quantile point of a Student’s t-distribution having m − 1 degrees of freedom. The algorithms for
the two-stage procedures corresponding to Theorems 1 and 3 when using this function g (i.e., the
method of batch means) are given in Figures 1 and 2, respectively.

Before discussing our next example, we first give some motivation. As noted in Glynn and
Iglehart (1990), the basic assumption necessary for the validity of the standardized time series
procedures is that we can approximate the output process by a Brownian motion. Thus, it seems
reasonable that we can approximate the increments of our first stage by increments of a Brownian
motion. This suggests that in order to obtain more powerful procedures, we can apply one of the
standardized time series methods to each of the initial batches and then combine them.

In order to do this, we first make some definitions. Let x ∈ C[0,∞). We define the functions
Γ : C[0,∞)→ C[0,∞) and Λi : C[0,∞)→ C[0,∞) for i = 0, . . . ,m− 1, as

Γ(x) = x− kx(1)

Λi(x) = x

(
i+ k

m

)
− x

(
i

m

)
,

where k(t) = t. Note that

(Γ ◦ Λi)(x) = x

(
i+ k

m

)
− x

(
i

m

)
− kx

(
i+ 1
m

)
+ kx

(
i

m

)
.

Now we define N ′ to be the class of functions b : C[0,∞)→ < which satisfy

(i) For every x ∈ C[0,∞), the quantity b(x) only depends on {x(s) : 0 ≤ s ≤ 1}.
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(ii) b(αx) = αb(x) for α > 0, x ∈ C[0,∞).

(iii) P{(b ◦ Γ)(B) > 0} = 1.

(iv) P{B ∈ D(b ◦ Γ)} = 0.

(v) (b ◦ Γ)(B) has a continuous distribution function.

Finally, we define our function g : C[0,∞)→ < as

g(x) =

(
m−1∑
i=0

(b2 ◦ Γ ◦ Λi)(x)

)1/2

,

where b2(x) = b(x) · b(x). Condition (i) of N ′ ensures that Assumption A2(i) is satisfied. Also,
it can be easily shown that item (v) holds if and only if Assumption A2(vi) is satisfied. Thus,
the class of functions M∗ = {g : g = b ◦ Γ, b ∈ N ′} is equivalent to the class M′; see Glynn and
Iglehart (1990).

Example 2. Let m ≥ 1. We define the functions b : C[0,∞)→ < as

b(x) =
∣∣∣∣∫ 1

0
x(t)dt

∣∣∣∣ .
Thus, we have

g(x) =

[
m−1∑
i=0

∣∣∣∣∫ 1

0
x

(
i+ t

m

)
dt− 1

2

(
x

(
i+ 1
m

)
+ x

(
i

m

))∣∣∣∣2
]1/2

g(Xε) = ε

m−1∑
i=0

(∫ 1

0

∫ (i+t)/(mε2)

i/(mε2)
Y (s)ds dt− 1

2

∫ (i+1)/(mε2)

i/(mε2)
Y (s)ds

)2
1/2

.

Glynn and Iglehart (1990) prove that
∫ 1

0 (ΓB)(t)dt is normally distributed with mean 0 and variance
1/12, and so (b ◦ Γ)(B) has a continuous distribution. Hence, it can be shown that b ∈ N ′, and
so g ∈ M′; see Glynn and Iglehart (1990). Finally, Glynn and Iglehart (1990) show that the
random variable 12mg2(B) has a χ2 distribution with m degrees of freedom and that B(1) is
always independent of g(B). Hence, B(1)/((12m)1/2g(B)) has a Student’s t-distribution with m

degrees of freedom, and so the quantile point aδ = (12m)1/2tm,δ. The resulting function g gives rise
to the standardized sum process described by Schruben (1983). The algorithms for the resulting
two-stage procedures are explicitly given in Nakayama (1992).

In a similar manner we can define a function g that corresponds to the standardized maximum
intervals method developed by Schruben (1983). A description of this function and algorithms for
the resulting two-stage procedures are given in Nakayama (1992).
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5 Implementation Issues

The algorithms given in Figures 1 and 2 for implementing the two-stage batch means procedures
have parameters that need to be specified prior to running the simulation. These parameters are
the desired (absolute or relative) width of the resulting confidence interval (ε), the size of the initial
batches (b), and the number of initial batches (m). Theorems 1–4 all require that ε→ 0 and b→∞,
with b proportional to 1/ε2, in order for the results to hold. In practice though, the asymptotics
start taking affect for “reasonable” values of ε and b.

However, we still need to determine appropriate values for these parameters. Lavenberg and
Sauer (1977) state that selecting ε ≤ 0.025 seems to work well in practice for their fully sequential
stopping procedure for constructing relative-precision confidence intervals. It is probably reasonble
to assume that we can also choose ε in this range for our methods. Determining an appropriate batch
size for a given half-width, though, is more difficult. However, when we are simulating a queueing
system, the results of Whitt (1989a, 1989b) may be applied in order to obtain a rough idea of
how to select an appropriate batch size. Whitt calculates approximate values of the asymptotic
variance constants by using heavy-traffic limits for queues and associated diffusion approximations.
Using these values, Whitt estimates the total run length t needed so that the resulting confidence
interval is roughly of desired (absolute or relative) width. In our context, we might, for example,
let the simulation corresponding to the first stage be of total length t/2 by letting each of the
first stage batches be of size t/(2m), when the number of initial batches m is fairly small. By
doing this, we (hopefully) ensure that the size of the initial batches is sufficiently large so that they
are approximately independent and normally distributed. Also, the second stage, when needed,
guarantees that the total run length is of appropriate size.

We must also select the total number, m, of batches in the first stage. When using the procedure
corresponding to Theorem 1 in conjunction with the method of batch means (see Section 2), we can
refer to previous results on Stein’s two-stage procedure, since our procedure in this case and Stein’s
(1945) two-stage procedure are asymptotically equivalent (in the sense that the batch means are
asymptotically i.i.d. normally distributed random variables and the function g used for batch means
gives rise to a quantity that corresponds exactly to Stein’s estimate of the variance that he forms
using the first stage observations). Seelbinder (1953) computes the expected total sample size for
various values of m and gives tables of this. Moshman (1958) suggests that we should consider both
the resulting expected total sample size and an upper percentage point of the distribution of the
total sample size when determining m. However, they both carry through their analyses under the
assumption that we have an idea of the value of the variance constant σ2 before taking any samples,
which may be an unrealistic assumption. On the other hand, we may follow Schmeiser’s (1982)
suggestions for selecting the total number of batches to be used in a nonsequential batch means
procedure. Schmeiser suggests that for a fixed run length, the total number of batches in a batch
means procedure should be kept fairly small (between 10 and 30), thus allowing the size of each
batch to be fairly large. Hence, the implicit assumption of the method of batch means that the
batches are almost independent and normally distributed is more likely to be satisfied, making the
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Batch Customers m ε Abs/Rel Coverage Avg Total Avg Total
Sizes in Stage 1 Precision Batches Customers
Equal 6720 7 0.1 abs 92.7% 12.88 12364.8
Equal 6720 7 0.05 abs 88.9% 47.45 45551.0
Equal 6720 7 0.025 abs 88.2% 188.17 180646.6

Unequal 6720 7 0.1 abs 92.0% 12.55 12045.1
Unequal 6720 7 0.05 abs 88.0% 46.95 45074.2
Unequal 6720 7 0.025 abs 88.5% 187.67 180166.0
Equal 6720 7 0.1 rel 92.2% 12.50 11999.5
Equal 6720 7 0.05 rel 89.6% 46.11 44269.4
Equal 6720 7 0.025 rel 89.4% 182.89 175570.1

Unequal 6720 7 0.1 rel 91.7% 12.15 11663.2
Unequal 6720 7 0.05 rel 88.8% 45.63 43803.3
Unequal 6720 7 0.025 rel 89.4% 182.39 175097.3
Equal 1680 7 0.1 abs 85.8% 43.75 10500.8
Equal 1680 7 0.05 abs 84.9% 173.31 41594.0
Equal 1680 7 0.025 abs 85.4% 691.74 166016.8

Unequal 1680 7 0.1 abs 85.3% 43.26 10383.5
Unequal 1680 7 0.05 abs 84.8% 172.81 41474.5
Unequal 1680 7 0.025 abs 85.3% 691.24 165896.6
Equal 1680 7 0.1 rel 87.7% 40.57 9736.4
Equal 1680 7 0.05 rel 86.2% 160.69 38564.5
Equal 1680 7 0.025 rel 86.4% 641.27 153904.8

Unequal 1680 7 0.1 rel 86.8% 40.09 9620.5
Unequal 1680 7 0.05 rel 86.3% 160.19 38446.5
Unequal 1680 7 0.025 rel 86.4% 640.78 153786.0

Table 1: Coverage results using two-stage batch means stopping procedure from 2000 independent
replications of estimating the expected waiting time in an M/M/1 queue with λ = .5, µ = 1.

procedure more robust. In our context, we should probably select the number of initial batches m
to be on the lower end of Schmeiser’s suggested range since there is still the second stage in our
procedure. Thus, m should be chosen to be between 5 and 15 for our two-stage procedures.

6 Experimental Results

In this section we present some empirical results obtained from simulations using the two-stage
stopping procedures proposed in this paper. The purpose of the experiments was not so much to
thoroughly test the methods, but rather to demonstrate the interdependence between the batch
size and the desired confidence interval half-width and how this changes for different models. Fur-
thermore, we show how Whitt’s (1989a) calculations (referred to in Section 5) can be employed to
determine an appropriate batch size for a given half-width in a simulation of a queueing system.

We ran simulations to estimate the expected waiting time in an M/M/1 queue. The method of
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Batch Customers m ε Abs/Rel Coverage Avg Total Avg Total
Sizes in Stage 1 Precision Batches Customers
Equal 6720 6 0.1 abs 92.0% 11.02 12346.3
Equal 6720 6 0.05 abs 88.1% 40.06 44867.2
Equal 6720 6 0.025 abs 87.6% 158.61 177647.7

Unequal 6720 6 0.1 abs 91.7% 10.70 11981.7
Unequal 6720 6 0.05 abs 87.4% 39.57 44317.3
Unequal 6720 6 0.025 abs 88.5% 158.11 177079.2
Equal 6720 6 0.1 rel 91.8% 10.67 10880.9
Equal 6720 6 0.05 rel 88.0% 38.82 43477.8
Equal 6720 6 0.025 rel 88.7% 153.66 172097.0

Unequal 6720 6 0.1 rel 91.5% 10.34 11576.3
Unequal 6720 6 0.05 rel 88.1% 38.32 42920.4
Unequal 6720 6 0.025 rel 89.1% 153.15 171529.2
Equal 1680 6 0.1 abs 84.4% 35.66 9984.1
Equal 1680 6 0.05 abs 82.6% 140.85 39438.8
Equal 1680 6 0.025 abs 82.8% 561.92 157337.0

Unequal 1680 6 0.1 abs 84.0% 35.18 9851.0
Unequal 1680 6 0.05 abs 82.4% 140.35 39299.2
Unequal 1680 6 0.025 abs 82.7% 561.42 157196.9
Equal 1680 6 0.1 rel 85.4% 33.41 9353.4
Equal 1680 6 0.05 rel 83.9% 131.97 36951.6
Equal 1680 6 0.025 rel 84.6% 526.39 147388.6

Unequal 1680 6 0.1 rel 84.8% 32.93 9219.9
Unequal 1680 6 0.05 rel 83.6% 131.47 36811.9
Unequal 1680 6 0.025 rel 84.2% 525.88 147247.5

Table 2: Coverage results using two-stage standardized sum stopping procedure from 2000 inde-
pendent replications of estimating the expected waiting time in an M/M/1 queue with λ = .5,
µ = 1.
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batch means (BM) and the standardized sum procedure (SS) were each used in different experiments
as the standardized time series method in the first stage (see Examples 1 and 2 in Section 4, respec-
tively). Also, each of the experiments was run using one of the two-stage procedures corresponding
to Theorems 1–4; i.e., we used procedures with either equal sized batches or the last batch being
of different size in order to construct absolute or relative precision confidence intervals. Finally, we
varied the desired (absolute or relative) half-width ε of the confidence interval from 0.025 to 0.1.
Tables 1 and 2 contain the results from using the two-stage batch means stopping procedure and
two-stage standardized sum stopping procedure, respectively, with λ = 0.5 and µ = 1.0. Both of
these tables contain the results from a total number of 2000 independent replications, thus ensuring
that the coverages are accurate to 2 decimal places with 90% probability. Tables 3 and 4 contain the
results from using the two-stage batch means stopping procedure and two-stage standardized sum
stopping procedure, respectively, with λ = 0.8 and µ = 1.0. These tables contain the results from
a total number of 1000 independent replications, thus ensuring that the coverages are accurate to
±2% with 90% probability. For all of the cases, the numbers of initial batches m using the different
standardized time series methodologies were selected so that the resulting Student’s t-statistic had
the same number of degrees of freedom. Thus, we let m = 7 when we used the method of batch
means and m = 6 when the standardized sum method was implemented.

We selected the number of customers in the first stage as follows. The asymptotic variance of
the waiting time process of an M/M/1 queue is

σ2
ρ =

ρ(2 + 5ρ− 4ρ2 + ρ3)
(1− ρ)4

,

where ρ = λ/µ is the traffic intensity (see Law 1975). Using Whitt’s (1989a) calculations, in order
to have the resulting 100(1− δ)% confidence interval be of absolute half-width ε, the total number
of customers simulated should be

ta(ρ, ε, δ) =
σ2
ρz

2
δ

ε2
,

where zδ is the 100(1− δ/2)% quantile point of a standard normal distribution. Thus, for ρ = 0.5,
we have σ2

0.5 = 29, and so we should simulate a total of ta(0.5, 0.1, 0.9) = 11140 customers when we
want to construct 90% confidence intervals having half-width ε = 0.1. As suggested in Section 5,
the number of customers in the first stage of our two-stage procedures should be approximately
ta(0.5, 0.1, 0.9)/2 = 5570. In addition we must select the batch sizes so that they are divisible by
m = 7 and m = 6, which are the number of batches in the first stage when using BM and SS,
respectively. Hence, to be on the safe side, we chose to have 6720 customers in the first stage in
half of the experiments with ρ = 0.5. In order to show that the results only hold when the batch
sizes are sufficiently large, we ran the rest of the experiments for ρ = 0.5 using 1680 customers
in the first stage. When ρ = 0.8 as in our other experiments, we now have σ2

0.8 = 1976, and so
we should simulate a total of ta(0.5, 0.1, 0.9) = 759100 customers. However, we let the first stage
consist of 6720 customers when ρ = 0.8 in order to show that the number of customers that should
be observed in the first stage depends on the stochastic process being simulated.
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Batch Customers m ε Abs/Rel Coverage Avg Total Avg Total
Sizes in Stage 1 Precision Batches Customers
Equal 6720 7 0.4 abs 83.6% 48.07 46144.3
Equal 6720 7 0.2 abs 81.5% 190.55 182927.0
Equal 6720 7 0.1 abs 83.2% 760.65 730225.0

Unequal 6720 7 0.4 abs 83.4% 47.60 45693.1
Unequal 6720 7 0.2 abs 81.5% 190.05 182443.3
Unequal 6720 7 0.1 abs 83.6% 760.16 729751.2
Equal 6720 7 0.1 rel 86.5% 41.64 39977.3
Equal 6720 7 0.05 rel 84.7% 164.99 158393.3
Equal 6720 7 0.025 rel 84.6% 658.51 632166.7

Unequal 6720 7 0.1 rel 85.8% 41.17 39522.2
Unequal 6720 7 0.05 rel 84.7% 164.50 157923.9
Unequal 6720 7 0.025 rel 84.3% 658.00 631680.2

Table 3: Coverage results using two-stage batch means stopping procedure from 1000 independent
replications of estimating the expected waiting time in an M/M/1 queue with λ = .8, µ = 1.

In Tables 1 and 2, we can see that when the number of customers in the first stage is 6720,
the coverages for all of the methods are close to the nominal value of 90% when ε = 0.1. However,
when ε = 0.05 or 0.025, the coverages start falling off slightly. Thus, we can see that the batch size
and desired half-width do depend on each other. Also, when the number of customers in the first
stage is 1680, all of the coverages are below 90%. Therefore, the sizes of the batches are too small
for the corresponding values of ε in order for the procedures to be valid.

Also, the average total number of batches when ε = 0.1 is relatively small, which agrees with
part (i) of Theorems 1–4. (The total number of batches when the last batch is not of the same
size as in the first stage (as in Theorems 2 and 4) is calculated by the total number of customers
divided by the batch size of the first stage batches.)

Examining Tables 3 and 4, we see that all of the coverages are below 90%. Thus, the sizes of
the batches are too small for the corresponding values of ε in order for the procedures to be valid,
even though there are 6720 customers in the first stage (the same number for which the procedures
had good coverage when ε = 0.1). This demonstrates that the exact rate at which the batch size
needs to grow with respect to ε depends on the problem being considered.

7 Conclusion

We have shown the asymptotic validity of our proposed two-stage stopping procedures. The main
advantage of our method over fully sequential stopping procedures is that we do not require a
strongly consistent estimate of the asymptotic variance constant, which may be difficult to obtain.
We avoid this issue by using the method of standardized time series in the first stage of the
procedure.
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Batch Customers m ε Abs/Rel Coverage Avg Total Avg Total
Sizes in Stage 1 Precision Batches Customers
Equal 6720 7 0.4 abs 82.4% 36.93 41362.7
Equal 6720 7 0.2 abs 81.5% 145.76 163251.2
Equal 6720 7 0.1 abs 79.0% 581.56 651342.7

Unequal 6720 7 0.4 abs 82.8% 36.47 40847.7
Unequal 6720 7 0.2 abs 81.2% 145.28 162709.2
Unequal 6720 7 0.1 abs 78.8% 581.07 650794.5
Equal 6720 7 0.1 rel 83.3% 32.30 36174.9
Equal 6720 7 0.05 rel 82.1% 127.40 142686.9
Equal 6720 7 0.025 rel 80.0% 508.07 569042.9

Unequal 6720 7 0.1 rel 83.2% 31.82 35637.7
Unequal 6720 7 0.05 rel 81.6% 126.90 142126.2
Unequal 6720 7 0.025 rel 80.0% 507.57 568482.4

Table 4: Coverage results using two-stage standardized sum stopping procedure from 1000 inde-
pendent replications of estimating the expected waiting time in an M/M/1 queue with λ = .8,
µ = 1.

One theoretical problem still needs to be resolved. As stated in Section 3.2, property (vi) of
Assumption A2 probably follows from properties (i)–(v), but we have not been able to show this.
We should note though that property (vi) is satisfied in all of the applications that we have in
mind, and so it does not seem to be a restrictive assumption in practice.

Some practical issues are still open for further investigation. Most importantly, the question
of how to determine an appropriate batch size to correspond to a desired half-width in general
simulations is unanswered. It is probably the case that there is not a single formula that can be
applied in all contexts. However, in queueing simulations, we have given some suggestions on how
to deal with this problem (see Section 5). In other settings, more experimentation should be carried
out in order to determine the sensitivity of the coverage with respect to these two parameters. This
may lead to the development of different heuristics that can be applied in the various situations.1

Appendix

Here we will provide the proofs for Theorems 1 and 3 from Section 3.2. In order to prove our
results, we will apply to the accumulated process Xε a function which is “suitably well-behaved”
when evaluated at the limiting process B. More precisely, consider a function h : C[0,∞) → <,
and let D(h) be the set of elements x ∈ C[0,∞) at which the function h is discontinuous. Then
the exact description of “suitably well-behaved” is given in the following proposition, known as the

1This paper is based directly on material from the author’s Ph.D. dissertation which was written while he was
in the Operations Research Department at Stanford University. The research there was supported by IBM contract
12480042 and NSF grant ECS 86-17905. The author would like to thank his dissertation advisor Peter W. Glynn for
his guidance and the department editor, the associate editor, and the referees for their helpful comments.
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continuous mapping principle.

Proposition 2 Suppose Xε, X ∈ C[0,∞) are random elements such that Xε ⇒ X as ε → 0. If
P{X ∈ D(h)} = 0, then h(Xε)⇒ h(X) as ε→ 0.

See Ethier and Kurtz (1986), Billingsley (1968), or Glynn (1989) for a proof of this result.
Because of the importance of Proposition 2, we now describe how it can be applied to develop our

results. It turns out that each formula we use to determine the final number of batches or to estimate
µ boils down to a (measurable) function of the form h(Xε). ¿From Assumption A1, Xε converges
weakly to a standard Brownian motion process B, which we recall only takes on sample paths
in C[0,∞). The continuous mapping principle will therefore ensure that every limiting random
variable of interest will have the form h(B), i.e., h(Xε)⇒ h(B), provided that P{B ∈ D(h)} = 0.
In general, it is difficult to establish that P{B ∈ D(h)} = 0 by working directly with the definition
of continuity and the Skorohod metric. However, we will be able to avoid doing this by appealing
to Assumption A2.

We now present two preparatory lemmas that will be useful for proving Theorems 1 and 3.

Lemma 1 Let r : < → < be a measurable function such that r(α) ≥ 1 for all α ∈ <. Also, define
R = r(σg(B)), where g satisfies Assumption A2. Then, given g(B), the random variable B(R) is
conditionally normally distributed with mean 0 and variance R.

Proof. First, we will show that B(R)−B(1) is independent of B(1). Define

zA(x) = P{B(R)−B(1) ∈ A | g(B) = x},

where A is some (measurable) subset of <. Note R ≥ 1 and R is known when given g(B). ¿From
Proposition 2.8 of Glynn and Iglehart (1990), B(1) is independent of g(B). Thus, using As-
sumption A2(i) and the fact that increments of Brownian motion are independent and normally
distributed with mean 0 and variance equal to the length of the increment, zA(x) is the probability
that a normal random variable with mean 0 and variance R− 1 is in the set A. Hence,

P{B(R)−B(1) ∈ A | B(1)}

= E [P{B(R)−B(1) ∈ A | B(1), σg(B)} | B(1)]

= E[zA(σg(B)) | B(1)]

by the independent increments property of Brownian motion. Since B(1) is independent of g(B),
E[zA(σg(B)) | B(1)] = E[zA(σg(B))], and so B(R)−B(1) is independent of B(1). Again using the
fact that B(1) and g(B) are independent leads us to conclude that given g(B), B(R) − B(1) and
B(1) are conditionally independent. Therefore, since B(1) is normally distributed with mean 0 and
variance 1, given g(B), B(R) is conditionally normally distributed with mean 0 and variance R.
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Lemma 2 Let r : < → < be a measurable function such that r(α) ≥ 1 for all α ∈ <. Also, let
R = r(g(σB)), where g satisfies Assumption A2. Then, B(R)/(g(B)

√
R) has the same distribution

as B(1)/g(B).

Proof. Letting G(x) = P{g(B) ≤ x} and letting N(a, b) denote a normally distributed random
variable with mean a and variance b, we have

P

{
B(R)

g(B)
√
R
≤ x

}
=

∫ ∞
0

P

{
B(R)√
R
≤ xg(B)

∣∣∣∣ g(B) = y

}
G(dy)

=
∫ ∞

0
P

{
N(0, R)√

R
≤ xg(B)

∣∣∣∣ g(B) = y

}
G(dy)

by Lemma 1. Hence,

P

{
B(R)

g(B)
√
R
≤ x

}
=
∫ ∞

0
P {N(0, 1) ≤ xg(B) | g(B) = y}G(dy) = P

{
B(1)
g(B)

≤ x
}
,

which proves the result.

We are now in a position to prove the theorems of Section 3.2.

Proof of Theorem 1. First, we prove part (i). Define the function ha : C[0,∞)→ < as

ha(x) =
1
m

max
{
m,
⌈
mg2(x)a2

δ

⌉}
. (11)

Note that ha(Xε) = Na(ε)/m and D(ha) = D(g) ∪ {x : mg2(x)a2
δ ∈ {m,m + 1,m + 2, . . .} }.

Assumption A2(v) implies P{σB ∈ D(g)} = 0 since σ is finite. Also, using Assumptions A2(ii)
and A2(vi), we have

P{mg2(σB)a2
δ ∈ {m,m+ 1,m+ 2, . . .} }

= P

{
g(B) ∈

{
m1/2

m1/2σaδ
,
(m+ 1)1/2

m1/2σaδ
,
(m+ 2)1/2

m1/2σaδ
, . . .

}}
= 0.

Thus, P{σB ∈ D(ha)} = 0, and so ha(Xε)⇒ ha(σB) as ε→ 0 by the continuous mapping principle.
Hence, we have shown that Na(ε) ⇒ Na as ε → 0, where Na = mha(σB). Now we have to show
that P{Na < ∞} = 1. Since 0 < σ < ∞, {g(σB) < ∞} = {g(B) < ∞} by Assumption A2(ii).
Assumption A2(v) states that g is continuous at B with probability 1 so P{g(B) <∞} = 1 (since
a continuous function must be finite). Therefore, P{ha(σB) <∞} = 1 and Na is a proper random
variable.

Now we prove part (ii). First, define the function ua : C[0,∞)→ < as

ua(x) =
x(ha(x))

g(x)
√
ha(x)

. (12)

Since x is assumed to be continuous, the numerator in (12) is discontinuous at the discontinuity
points of ha. Hence, D(ua) ⊂ D(ha) ∪D(g) ∪ A1, where A1 = {x : g(x)

√
ha(x) = 0}. ¿From the
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proof of part (i) we have P{σB ∈ D(ha)} = 0 and P{σB ∈ D(g)} = 0. Also, using (11), we have
ha(x) ≥ 1 for all x, and P{g(σB) = 0} = 0 from Assumption A2(iv), and so P{σB ∈ A1} = 0.
Therefore, P{σB ∈ D(ua)} = 0, and so ua(Xε) ⇒ ua(σB) as ε → 0 by the continuous mapping
principle.

By Assumption A2(ii), we have

ua(σB) =
σB(ha(σB))

g(σB)
√
ha(σB)

=
B(ha(σB))

g(B)
√
ha(σB)

.

Hence, ua(σB) has the same distribution as B(1)/g(B) by Lemma 2. We can write

ua(Xε) =
∑Na(ε)
i=1 (Zi(ε)− µ)
s(ε)

√
Na(ε)

.

¿From (6), we have ε ≥ s(ε)aδ/
√
Na(ε), and so

P{µ ∈ Ia(ε)} = P

 1
Na(ε)

Na(ε)∑
i=1

Zi(ε)− ε ≤ µ ≤ 1
Na(ε)

Na(ε)∑
i=1

Zi(ε) + ε


≥ P

 1
Na(ε)

Na(ε)∑
i=1

Zi(ε)−
aδs(ε)√
Na(ε)

≤ µ ≤ 1
Na(ε)

Na(ε)∑
i=1

Zi(ε) +
aδs(ε)√
Na(ε)


= P {−aδ ≤ ua(Xε) ≤ aδ} .

Thus, since the random variable B(1)/g(B) has a continuous distribution function (see Glynn and
Iglehart 1990) and ua(Xε)⇒ ua(σB) as ε→ 0,

P{−aδ ≤ ua(Xε) ≤ aδ} → P{−aδ ≤ ua(σB) ≤ aδ} = 1− δ,

as ε→ 0, by Theorem 2.1 of Billingsley (1968). The last equality follows from the fact that ua(σB)
has the same distribution as B(1)/g(B) by Lemma 2. Hence, we have our result.

Proof of Theorem 3. First, we prove part (i). Define the function k ∈ C[0,∞) as k(t) = t. By
Assumption A1, Ȳε − µk = εXε ⇒ 0 · σB = 0 as ε → 0, and so Ȳε ⇒ µk as ε → 0. Since µk is
deterministic, (Xε, Ȳε)⇒ (σB, µk) as ε→ 0 by Theorem 4.4 of Billingsley (1968).

Now define the function hr : C[0,∞)× C[0,∞)→ < as

hr(x, y) =
1
m

max

{
m,

⌈
mg2(x)a2

δ

y2(1)

⌉}
.

Note that hr(Xε, Ȳε) = Nr(ε)/m. Also, since we are working in C[0,∞)×C[0,∞), y is continuous
at 1 by assumption. Hence, D(hr) ⊂ A1 ∪A2 ∪A3, where

A1 = {(x, y) : x ∈ D(g)}

A2 = {(x, y) : y(1) = 0}

A3 =

{
(x, y) :

mg2(x)a2
δ

y2(1)
∈ {m,m+ 1,m+ 1, . . .}

}
.
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Assumption A2(v) implies P{σB ∈ D(g)} = 0, and so P{(σB, µk) ∈ A1} = 0. Since µ 6= 0,
P{(σB, µk) ∈ A2} = 0. Also, using Assumptions A2(ii) and A2(vi), we have that

P

{
mg2(σB)a2

δ

µ2
∈ {m,m+ 1,m+ 1, . . .}

}

= P

{
g(B) ∈

{
|µ|m1/2

m1/2σaδ
,
|µ|(m+ 1)1/2

m1/2σaδ
,
|µ|(m+ 2)1/2

m1/2σaδ
, . . .

}}
= 0.

Hence, P{(σB, µk) ∈ D(hr)} = 0, and so hr(Xε, Ȳε) ⇒ ha(σB, µk) as ε → 0 by the continuous
mapping principle. Hence, we have shown that Nr(ε) ⇒ Nr as ε → 0, where Nr = mhr(σB, µk).
Also, we can write

Nr = max

{
m,

⌈
mg2(σB)a2

δ

µ2

⌉}
. (13)

Since P{g ∈ D(g)} = 0 by Assumption A2(v), we have P{g(σB) < ∞} = 1 since σ < ∞.
Furthermore, µ 6= 0 implies P{Nr <∞} = 1, thus showing Nr is a proper random variable.

Now we will prove part (ii). First, define the function wr : C[0,∞)× C[0,∞)→ < as

wr(x, y) =
x(hr(x, y))
|y(hr(x, y))|

.

Note that D(wr) ⊂ D(hr) ∪ A4, where A4 = {(x, y) : y(hr(x, y)) = 0}. We showed P{(σB, µk) ∈
D(hr)} = 0 in the proof of part (i). Finally, since µ 6= 0 and since hr(x, y) ≥ 1 for all (x, y) by
(13), we have P{(σB, µk) ∈ A4} = 0. Thus, P{(σB, µk) ∈ D(wr)} = 0, and so

wr(Xε, Ȳε)⇒ wr(σB, µk) =
σB(Nr/m)
|µ|Nr/m

as ε→ 0 by the continuous mapping principle.
Now we will show that wr(σB, µk) has a continuous distribution function H. Let x be some

real-valued constant. Then

H(x) ≡ P{wr(σB, µk) ≤ x}

= P

{
σB(hr(σB, µk))
|µ|hr(σB, µk)

≤ x
}

=
∞∑
k=m

P

{
σB(hr(σB, µk))
|µ|hr(σB, µk)

≤ x
∣∣∣∣ hr(σB, µk) =

k

m

}
P

{
hr(σB, µk) =

k

m

}

=
∞∑
k=m

P

{
σB(Nr/m)
|µ|Nr/m

≤ x
∣∣∣∣ Nr = k

}
P {Nr = k} .

¿From Lemma 1, given g(σB), σB(Nr/m) is conditionally normally distributed with mean 0 and
variance Nrσ

2/n. Therefore, letting N(a, b) denote a normal random variable with mean a and
variance b, we have

H(x) =
∞∑
k=m

P

{
N(0, σ2Nr/m)
|µ|Nr/m

≤ x
∣∣∣∣∣ Nr = k

}
P {Nr = k}

=
∞∑
k=m

P

{
N(0, 1)

N
1/2
r

≤ |µ|x
m1/2σ

∣∣∣∣∣ Nr = k

}
P {Nr = k} .
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Note that N(0, 1) is independent of Nr since B(1) is independent of g(B). Thus, the continuity
of the distribution of N(0, 1) and the bounded convergence theorem imply that H is continuous
everywhere in x.

Now note that

wr(Xε, Ȳε) =
∑Nr(ε)
i=1 (Zi(ε)− µ)

ε
∣∣∣∑Nr(ε)

i=1 Zi(ε)
∣∣∣ .

Recalling our definition of µ̂r(ε) given in (4), we have

P{µ ∈ Ir(ε)} = P {µ̂r(ε)− ε|µ̂r(ε)| ≤ µ ≤ µ̂r(ε) + ε|µ̂r(ε)|}

= P

−1 ≤
∑Nr(ε)
i=1 (Zi(ε)− µ)

ε
∣∣∣∑Nr(ε)

i=1 Zi(ε)
∣∣∣ ≤ 1


= P

{
−1 ≤ wr(Xε, Ȳε) ≤ 1

}
→ P {−1 ≤ wr(σB, µk) ≤ 1} ,

as ε → 0, since wr(Xε, Ȳε) ⇒ wr(σB, µk) as ε → 0 and wr(σB, µk) has a continuous distribution
function; see Theorem 2.1 of Billingsley (1968). Also, from (13), |µ| ≥ g(σB)aδ/

√
Nr, and so

P {−1 ≤ wr(σB, µk) ≤ 1} = P

{
−|µ| ≤ σB(Nr/m)

Nr/m
≤ |µ|

}
≥ P

{
−g(σB)aδ√

Nr/m
≤ σB(Nr/m)

Nr/m
≤ g(σB)aδ√

Nr/m

}

= P

{
−aδ ≤

σB(Nr/m)
g(σB)

√
Nr/m

≤ aδ

}
= P {−aδ ≤ ur(σB, µk) ≤ aδ} ,

where we define the function ur : C[0,∞)× C[0,∞)→ < as

ur(x, y) =
x(hr(x, y))

g(x)
√
hr(x, y)

.

By Lemma 2, ur(σB, µk) has the same distribution as B(1)/g(B) so P {−aδ ≤ ur(σB, µk) ≤ aδ} =
1− δ, which proves part (ii).
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