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Randomized quasi-Monte Carlo methods have been introduced with the main purpose of yielding a computable

measure of error for quasi-Monte Carlo approximations through the implicit application of a central limit

theorem over independent randomizations. But to increase precision for a given computational budget, the

number of independent randomizations is usually set to a small value so that a large number of points are used

from each randomized low-discrepancy sequence to benefit from the fast convergence rate of quasi-Monte Carlo.

While a central limit theorem has been previously established for a specific but computationally expensive

type of randomization, it is also known in general that fixing the number of randomizations and increasing

the length of the sequence used for quasi-Monte Carlo can lead to a non-Gaussian limiting distribution.

This paper presents sufficient conditions on the relative growth rates of the number of randomizations and

the quasi-Monte Carlo sequence length to ensure a central limit theorem and also an asymptotically valid

confidence interval. We obtain several results based on the Lindeberg condition for triangular arrays and

expressed in terms of the regularity of the integrand and the convergence speed of the quasi-Monte Carlo

method. We also analyze the resulting estimator’s convergence rate.
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1 INTRODUCTION
Research and analysis of complicated problems across diverse fields of science, engineering, business,

etc., often entail computing integrals, as in molecular dynamics, queueing systems, or pricing of

financial instruments. The integral frequently corresponds to the mean of a stochastic model, and

model complexity usually precludes analytically evaluating the integral, so numerical methods are

employed. Monte Carlo (MC) methods are computational algorithms based on random sampling

that can be applied to estimate a mean (integral); see, e.g., [1, 17] among the vast literature on

the topic. Along with its many other desirable features, MC methods can provide a measure of an

estimate’s precision through a confidence interval (CI) obtained from an associated central limit

theorem (CLT) assumed to hold as the sample size 𝑛 →∞.
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Quasi-Monte Carlo (QMC) methods [27, 31] replace the random sampling of (standard) MC

by a sequence of points deterministically chosen to be “evenly dispersed" over the space. The

points form a so-called low-discrepancy sequence, and thanks to the more rapid coverage of the

domain, the resulting approximation can converge faster than MC to the integral’s exact value,

at least for regular integrands. This improved convergence speed can be shown through several

existing error bounds [15], the most famous being the Koksma-Hlawka inequality [31, Section 2.2].

A drawback of QMC stems from the fact that such error bounds, while theoretically valuable in

proving asymptotic properties, are in most cases practically useless, being difficult to compute and

grossly overestimating the error for a fixed sample size and specific integrand; see, e.g., [41, Section

2.2] for a discussion of the issues.

Randomized quasi-Monte Carlo (RQMC) methods have been introduced with the main purpose

to solve this problem of assessing error in QMC methods. The principle is to randomly “shake” the

low-discrepancy sequence, but without losing its good repartition over the sampling space. From

𝑟 independently randomized QMC estimators, we then can obtain an approximate CI via a CLT,

exploiting the assumed convergence to a normal distribution as 𝑟 →∞. For tutorials on RQMC,

see among others, [19, 22, 27, 41]. Several types of randomization exist, the main ones being the

random shift [7], which translates all points of the low-discrepancy sequence by the same uniform
random vector; the digital shift [19], which applies random (digital) shifts to digits of the points of

the low-discrepancy sequence, the same digital shift being utilized on digits of the same order for

all the points; and the digital scrambling, which randomly permutes the digits [35, 36].

In implementing RQMC, we apply 𝑟 independent randomizations of 𝑚 points from the low-

discrepancy sequence of QMC. Given a computation budget that allows for about 𝑛 evaluations

of the integrand, the user then needs to determine how to allocate 𝑛 to (𝑚, 𝑟 ) so that 𝑚𝑟 ≈ 𝑛.
Choosing𝑚 large and 𝑟 correspondingly small benefits from the faster convergence speed (i.e., the

improved precision) of QMC compared to MC. One might try applying a common rule of thumb

that suggests a CLT roughly holds for fixed 𝑟 ≈ 30, and taking𝑚 to be as large as possible to get a

smaller error. But this heuristic generally lacks a theoretical basis. For example, [23] establish that

for a single (i.e., 𝑟 = 1) random shift of a lattice, the limiting error distribution as𝑚 →∞ typically

follows a non-normal distribution; thus, for RQMC with any fixed 𝑟 ≥ 1 in this setting, the error’s

limiting distribution will not be Gaussian, so the common suggestion of specifying a small 𝑟 rests

on unsteady ground. A CLT, though, has been verified by [28] (as𝑚 →∞ for fixed 𝑟 ≥ 1) in the

case of digital scrambling of a particular type called nested uniform scrambling; [2, 13] similarly

prove CLTs for related scrambles. But this scrambling is computationally expensive, which has

limited its adoption in practice in the past, although this may be less of an issue with today’s more

powerful computers. The last paragraph of Section 17.6 of [37] states, “It seems likely that the

other scrambles considered [in his book] do not satisfy a central limit theorem” for a single or fixed

number of randomizations.

The question we thus aim at answering here is, for RQMC, how should (𝑚, 𝑟 ) comparatively

increase to ensure a CLT and yield an asymptotically valid CI (AVCI)? The ordinary (Lindeberg-

Lévy) CLT [3, Theorem 27.1] typically does not apply in our setting because the distribution of

the estimator from a single randomization changes as𝑚 varies. Instead, we formulate the problem

using a so-called triangular array, for which a CLT can be obtained under the Lindeberg condition

[3, Theorem 27.2]. More precisely, we provide sufficient conditions on the relative increase of𝑚 and

𝑟 under various alternative assumptions on properties of the integrand. We initially establish CLTs

in terms of the true variance from a single randomization, but this quantity is usually unknown.

Thus, we also derive AVCI conditions when the variance is estimated. Comparing our conditions on

the integrand shows that weaker assumptions correspond to stronger requirements on the number

of randomizations (i.e., higher relative proportion for 𝑟 ). Similarly, the faster the convergence of the
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underlying QMC method, the more weight should be placed on randomizations. But in all cases

when𝑚 →∞, we further verify that under our assumptions, RQMC always outperforms MC in

terms of convergence speed of the estimators’ root-mean-square errors (RMSEs).

The rest of the paper unfolds as follows. Section 2 presents the notation and reviews MC, QMC

and RQMC methods. It also introduces the different assumptions on the relative increase of𝑚 and

𝑟 and on the properties of the integrand, along with related useful lemmas. Section 3 applies the

conditions of Lindeberg and Lyapounov [3, Theorem 27.3] for triangular-array CLTs in our RQMC

framework. We further specialize the CLTs to obtain corollaries exploiting specific properties

of the integrand, and show that stronger conditions on the integrand allow more weight to be

put on the QMC component. Section 4 presents similar results when the variance is estimated,

the “real-life" situation, to obtain conditions for AVCI. Section 5 expresses the results under the

special context when𝑚 ≡ 𝑛𝑐 and 𝑟 ≡ 𝑛1−𝑐
for 𝑐 ∈ (0, 1), helping to gain deeper insights on the

conditions and their implications. Section 6 provides concluding remarks. Appendices contains all

proofs (Appendix A), as well as additional analysis when (𝑚, 𝑟 ) = (𝑛𝑐 , 𝑛1−𝑐 ) (Appendices B and C)

and numerical results (Appendix D). The present work extends our conference paper [30], which

presents many of the theorems, corollaries and propositions (but all without proofs), as well as

Figures 1, 3, and 4, which are in Appendix C of the current paper. Moreover, [30] focus mainly on

the case of (𝑚, 𝑟 ) = (𝑛𝑐 , 𝑛1−𝑐 ), whereas the current paper also develops a more general setting.

2 NOTATION/FRAMEWORK
Our goal is to estimate

𝜇 =

∫
[0,1]𝑠

ℎ(𝑢) d𝑢 = E[ℎ(𝑈 )],

where ℎ : [0, 1]𝑠 → R is a given function (integrand) for some fixed 𝑠 ≥ 1, random vector

𝑈 ∼ U[0, 1]𝑠 withU[0, 1]𝑠 the uniform distribution on the 𝑠-dimensional unit hypercube [0, 1]𝑠 ,
∼ means “is distributed as”, and E denotes the expectation operator. Integrating over [0, 1]𝑠 is
the standard QMC setting, and means of many stochastic models may be expressed in this way,

e.g., through a change of variables. We can think of integrand ℎ as being a complicated simulation

program that converts 𝑠 independent univariate uniform random numbers into observations from

specified input distributions (possibly with dependencies and different marginals), which are used

to produce an output of the stochastic model.

Our paper will consider limiting regimes, often in which 𝑛 → ∞, and we adopt the following

asymptotic notation. Consider univariate real-valued functions 𝑓 and 𝑔. We write 𝑓 (𝑛) = 𝑂 (𝑔(𝑛))
(resp., 𝑓 (𝑛) = Θ(𝑔(𝑛))) as 𝑛 →∞ to mean that there exist positive constants 𝑎0, 𝑎1, and 𝑛0 such that

|𝑓 (𝑛) | ≤ 𝑎1 |𝑔(𝑛) | (resp., and also |𝑓 (𝑛) | ≥ 𝑎0 |𝑔(𝑛) |) for all 𝑛 > 𝑛0. Also, 𝑓 (𝑛) = 𝑜 (𝑔(𝑛)) as 𝑛 →∞
denotes that 𝑓 (𝑛)/𝑔(𝑛) → 0 as 𝑛 →∞, and 𝑓 (𝑛) = 𝜔 (𝑔(𝑛)) as 𝑛 →∞means that 𝑓 (𝑛)/𝑔(𝑛) → ∞
as 𝑛 →∞ (i.e., 𝑔(𝑛) = 𝑜 (𝑓 (𝑛))).

The following subsections will describe methods for estimating 𝜇 via MC, QMC, and RQMC.

2.1 Monte Carlo
The (standard) MC estimator of 𝜇 is 𝜇̂MC

𝑛 = 1

𝑛

∑𝑛
𝑖=1
ℎ(𝑈𝑖 ), with 𝑈𝑖 , 𝑖 = 1, 2, . . . , 𝑛, as independent

and identically distributed (i.i.d.)U[0, 1]𝑠 random vectors. Suppose that𝜓 2 ≡ Var[ℎ(𝑈 )] ∈ (0,∞),
where Var[·] denotes the variance operator. The MC estimator’s root-mean-square error then

satisfies

RMSE

[
𝜇̂MC

𝑛

]
≡

√︃
E[(𝜇̂MC

𝑛 − 𝜇)2] = 𝜓
√
𝑛

(1)
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because 𝜇̂MC

𝑛 is unbiased (i.e., E[𝜇̂MC

𝑛 ] = 𝜇), as will be true for all estimators of 𝜇 that we consider.

Moreover, the MC estimator 𝜇̂MC

𝑛 obeys a (Gaussian) CLT (e.g., [3, Theorem 27.1]):

√
𝑛[𝜇̂MC

𝑛 −
𝜇]/𝜓 ⇒ N(0, 1) as 𝑛 →∞, where⇒ denotes convergence in distribution (which is equivalent to

convergence in probability when the limit is deterministic; [3, Theorem 25.3]), and N(𝑎1, 𝑎
2

2
) is a

normal random variable with mean 𝑎1 and variance 𝑎
2

2
. The CLT provides a simple way to construct

a (probabilistic) measure of the estimator’s error through a confidence interval for 𝜇. Specifically,

we define an MC CI as 𝐼MC

𝑛,𝛾 ≡ [𝜇̂MC

𝑛 ± 𝑧𝛾𝜓𝑛/
√
𝑛], where𝜓 2

𝑛 = [1/(𝑛 − 1)]∑𝑛
𝑖=1
[ℎ(𝑈𝑖 ) − 𝜇̂MC

𝑛 ]2 is an
unbiased estimator of 𝜓 2

, 0 < 𝛾 < 1 is the specified confidence level (e.g., 𝛾 = 0.95), 𝑧𝛾 satisfies

Φ(𝑧𝛾 ) = 1 − (1 − 𝛾)/2, and Φ is the N(0, 1) cumulative distribution function (CDF). Then 𝐼MC

𝑛,𝛾 is an

asymptotically valid CI for 𝜇 in the sense that lim𝑛→∞P(𝜇 ∈ 𝐼MC

𝑛,𝛾 ) = 𝛾 [5, Example 10.4.4].

2.2 Quasi-Monte Carlo
QMC replaces MC’s random i.i.d. uniforms (𝑈𝑖 )𝑖≥1 with a deterministic low-discrepancy sequence

Ξ = (𝜉𝑖 )𝑖≥1 (e.g., a digital net, such as a Sobol’ sequence, or a lattice [27, Chapter 5]), leading QMC to

approximate 𝜇 via 𝜇̂
Q

𝑛 = 1

𝑛

∑𝑛
𝑖=1
ℎ(𝜉𝑖 ) based on 𝑛 evaluations of the integrand ℎ. The Koksma-Hlawka

inequality (e.g., [27, Section 5.6.1] or [31, Theorem 2.11]) provides an error bound

|𝜇̂Q𝑛 − 𝜇 | ≤ 𝑉HK (ℎ)𝐷∗𝑛 (Ξ) (2)

for all 𝑛, where 𝑉HK (ℎ) is the Hardy-Krause variation of the integrand ℎ, and 𝐷∗𝑛 (Ξ) is the star-
discrepancy of the first 𝑛 terms of Ξ, which satisfy 𝑉HK (ℎ) ≥ 0 and 0 ≤ 𝐷∗𝑛 (Ξ) ≤ 1. In (2), 𝑉HK (ℎ)
measures the “roughness” of ℎ, while 𝐷∗𝑛 (Ξ) quantifies the “non-uniformity” of Ξ. We typically

have

𝐷∗𝑛 (Ξ) = 𝑂 (𝑛−1 (ln𝑛)𝑠 ), as 𝑛 →∞. (3)

Thus, when 𝑉HK (ℎ) < ∞, which we denote by ℎ ∈ BVHK (i.e., bounded variation in the sense of

Hardy and Krause), putting (3) into (2) shows that |𝜇̂Q𝑛 − 𝜇 | = 𝑂 (𝑛−1 (ln𝑛)𝑠 ), so the QMC error has

an asymptotically faster convergence rate than 𝜇̂MC

𝑛 does (as measured, e.g., by the MC estimator’s

RMSE in (1)).

Unfortunately, (2) does not yield a practical error bound for QMC. Indeed, 𝑉HK (ℎ) is the sum of

2
𝑠 − 1 Vitali variations [31], each at least as difficult to compute as 𝜇, and the resulting 𝑉HK (ℎ) is
additionally potentially very large even for moderate dimensions 𝑠 . Similarly, (3) provides only an

upper bound for the rate at which 𝐷∗𝑛 (Ξ) decreases and can be quite loose for moderate values of 𝑛.

Other error bounds similar to (2) exist (see among others, [14, 15, 18, 26, 31]), but each encounters

similar computational issues.

2.3 RandomizedQuasi-Monte Carlo
RQMC randomizes the low-discrepancy sequence, without losing its good repartition property, and

computes an estimator from the randomized point set. More precisely, let (𝑈 ′𝑖 )𝑖≥1 be a randomized

low-discrepancy sequence constructed from Ξ, such that each 𝑈 ′𝑖 is uniformly distributed over

[0, 1]𝑠 but (𝑈 ′𝑖 )𝑖≥1 are correlated and preserve the low-discrepancy property of the original sequence.

RQMC repeats this 𝑟 ≥ 1 i.i.d. times, computing an estimator from each randomization. Specifically,

let 𝑈 ′𝑖, 𝑗 ∈ [0, 1]𝑠 be the 𝑖-th point of the 𝑗-th i.i.d. randomization (𝑖 ≥ 1 and 1 ≤ 𝑗 ≤ 𝑟 ). The RQMC

estimator is then

𝜇̂
RQ

𝑚,𝑟 =
1

𝑟

𝑟∑︁
𝑗=1

𝑋 𝑗 , where 𝑋 𝑗 =
1

𝑚

𝑚∑︁
𝑖=1

ℎ(𝑈 ′𝑖, 𝑗 ), (4)

with 𝑋 𝑗 as the estimator from randomization 𝑗 = 1, 2, . . . , 𝑟 , of𝑚 points. The independence across

the 𝑟 randomizations ensures that 𝑋 𝑗 , 𝑗 = 1, 2, . . . , 𝑟 , are i.i.d. From their sample variance 𝜎2

𝑚,𝑟 =
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𝑗=1
(𝑋 𝑗 − 𝜇̂RQ𝑚,𝑟 )2/(𝑟 − 1) when 𝑟 ≥ 2, we then obtain a potential 𝛾-level CI for 𝜇 as 𝐼

RQ

𝑚,𝑟,𝛾 ≡
[𝜇̂RQ𝑚,𝑟 ± 𝑧𝛾𝜎𝑚,𝑟/

√
𝑟 ]. The hope is that as𝑚 or 𝑟 (or both) grows large, the overall RQMC estimator

𝜇̂
RQ

𝑚,𝑟 obeys a Gaussian CLT (see Section 3) and 𝐼
RQ

𝑚,𝑟,𝛾 is an AVCI (see Section 4). (Section 2.4 discusses

how (𝑚, 𝑟 ) = (𝑚𝑛, 𝑟𝑛) are chosen as functions of an overall computing budget 𝑛 for the total

number of evaluations of ℎ, but we use the simpler notation (𝑚, 𝑟 ) here to introduce the ideas

before adopting the more complicated notation (𝑚𝑛, 𝑟𝑛) later.) We next describe some existing

randomizations and associated existing theoretical results.

2.3.1 Random Shift. A random shift of a low-discrepancy sequence generates a single uniformly

distributed point 𝑈 ∼ U[0, 1]𝑠 and adds it to each point of Ξ, modulo 1, coordinate-wise [7].

Formally, using the first 𝑚 points of the low-discrepancy sequence Ξ and 𝑟 ≥ 1 independent

randomizations leads to

𝑈 ′𝑖, 𝑗 = ⟨𝑈 𝑗 + 𝜉𝑖⟩ (5)

in (4), where across randomizations, 𝑈1,𝑈2, . . . ,𝑈𝑟 are i.i.d. U[0, 1]𝑠 and with ⟨𝑥⟩ the modulo-1

operator applied to each coordinate of 𝑥 ∈ R𝑠 . It is simple to show that each𝑈 ′𝑖, 𝑗 ∼ U[0, 1]𝑠 . Within

each randomization 𝑗 , we have that ⟨𝑈 𝑗 + 𝜉𝑖⟩, 𝑖 = 1, 2, . . . ,𝑚, are dependent as they share the same

𝑈 𝑗 . The RQMC estimator of 𝜇 from random shifts is then as in (4) with𝑈 ′𝑖, 𝑗 from (5).

Each randomized sequence Ξ𝑈 𝑗
≡ (⟨𝑈 𝑗 + 𝜉𝑖⟩)𝑖≥1 satisfies

𝐷∗𝑚 (Ξ𝑈 𝑗
) ≤ 4

𝑠𝐷∗𝑚 (Ξ), (6)

as shown in [39, Theorem 2]. As a consequence, if ℎ ∈ BVHK, the standard deviation of each 𝑋 𝑗 in

(4) from a point set of size𝑚 is

RMSE[𝑋 𝑗 ] = 𝑂 (𝑚−1 (ln𝑚)𝑠 ) (7)

as𝑚 →∞, faster than the Θ(𝑚−1/2) rate in (1) for MC with the same number𝑚 of calls to function

ℎ.

The convergence speed can even be faster for special classes of functions and specific sequences

Ξ called lattice rules ([21, 40]) for which the random shift preserves the lattice structure. Let Z

denote the set of all integers, and for 𝑔 = (𝑔1, 𝑔2, . . . , 𝑔𝑠 ) ∈ Z𝑠 , define 𝑡 (𝑔) =
∏𝑠
𝑖=1

max(1, |𝑔𝑖 |). For
a periodic function 𝑓 : R

𝑠 → R with period 1 over each coordinate, define its Fourier coefficient

of rank 𝑔 ∈ Z𝑠 as ˆ𝑓 (𝑔) =
∫
[0,1]𝑠 𝑓 (𝑥)𝑒

−(2𝜋
√
−1)𝑔·𝑥

d𝑥 , where 𝑣 · 𝑦 =
∑𝑠
𝑖=1
𝑣𝑖𝑦𝑖 is the inner product of

𝑣 = (𝑣1, . . . , 𝑣𝑠 ) ∈ R𝑠 and 𝑦 ∈ (𝑦1, . . . , 𝑦𝑠 ) ∈ R𝑠 . For 𝛼 > 1 and 𝐶 > 0, let 𝐸𝑠𝛼 (𝐶) be the set of such
periodic functions 𝑓 : R

𝑠 → R for which | ˆ𝑓 (𝑔) | ≤ 𝐶𝑡 (𝑔)−𝛼 for all 𝑔 ∈ Z𝑠 . Then, for each 𝛼 > 1,

𝐶 > 0 and𝑚 ≥ 1, there exists a lattice rule Ξ[𝑚] = (𝜉 [𝑚]
𝑖
)𝑖=1,...,𝑚 (depending on𝑚, as well as 𝛼 , 𝐶 ,

and 𝑠) such that for𝑈 ∼ U[0, 1]𝑠 ,

sup

𝑓 ∈𝐸𝑠𝛼 (𝐶 )
RMSE

[
1

𝑚

𝑚∑︁
𝑖=1

𝑓 (⟨𝑈 + 𝜉 [𝑚]
𝑖
⟩)

]
= 𝑂 (𝑚−𝛼 (ln𝑚)𝛼𝑠 ).

Thus, the convergence speed has an asymptotic upper bound that is even better than what we get

from the Koksma-Hlawka bound (2) and (3).

For a randomly-shifted low-discrepancy sequence, the RQMC estimator may not obey a Gaussian

CLT for a fixed 𝑟 as𝑚 →∞, as shown for lattices in [23]. In particular, for 𝑟 = 1, the limiting error

distribution in dimension 𝑠 = 1 is uniform over a bounded interval if the integrand is non-periodic,

and has a square root form over a bounded interval if the integrand is periodic. In higher dimensions

(still for 𝑟 = 1), [23] argues that characterizing the error distribution is not practical. Thus, for

any fixed 𝑟 ≥ 1, the limit distribution as𝑚 →∞ is generally non-normal, motivating our goal of

defining rules on (𝑚, 𝑟 ) that ensure a Gaussian CLT.
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0:6 Nakayama and Tuffin

2.3.2 Scrambled Digital Nets. Owen [34, 35] introduces scrambled digital nets as another form of

RQMC. The method scrambles the digits of special low-discrepancy sequences, namely, digital

nets [31]. The approach applies random permutations to the digits in a way that preserves the

low-discrepancy property. We do not provide the full description of the construction of the low-

discrepancy sequence (see [31, Chapter 4], for details), but rather focus on the randomization. For a

digital net Ξ = (𝜉𝑖 )𝑖≥1 in base 𝑏0 and dimension 𝑠 , we express the 𝑘-th coordinate (1 ≤ 𝑘 ≤ 𝑠) of
the 𝑖-th point 𝜉𝑖 = (𝜉 (1)𝑖 , . . . , 𝜉

(𝑠 )
𝑖
) as 𝜉 (𝑘 )

𝑖
=

∑∞
𝑙=1
𝜉
(𝑘,ℓ )
𝑖

𝑏−ℓ
0

with each 𝜉
(𝑘,𝑙 )
𝑖
∈ {0, . . . , 𝑏0 − 1}. If we

let𝑈 ′𝑖 = (𝑈
(1),′
𝑖

, . . . ,𝑈
(𝑠 ),′
𝑖
) denote the 𝑖-th randomized point in a generic randomization (therefore

omitting the index 𝑗 for the 𝑗-th randomization), its 𝑘-th coordinate is defined by

𝑈
(𝑘 ),′
𝑖

=

∞∑︁
ℓ=1

𝑈
(𝑘,ℓ ),′
𝑖

𝑏−ℓ
0
, with 𝑈

(𝑘,ℓ ),′
𝑖

=

{
𝜋𝑘

0
(𝜉 (𝑘,1)
𝑖
) if ℓ = 1

𝜋𝑘
0,𝑈
(𝑘,1),′
𝑖

,...,𝑈
(𝑘,ℓ−1),′
𝑖

(𝜉 (𝑘,ℓ )
𝑖
) if ℓ > 1

,

where 𝜋𝑘
0
, 𝜋𝑘

0,𝑈
(𝑘,1),′
𝑖

,...,𝑈
(𝑘,ℓ−1),′
𝑖

, ∀𝑘, ℓ , are independent and uniformly distributed on the set of 𝑏0!

permutations of {0, . . . , 𝑏0−1}. In other words, the digits are randomly permuted, with independent

permutations. This randomization is called nested uniform scrambling. For a digital net, the devel-
opment in base 𝑏0 of 𝜉𝑖 is finite, meaning that the required number of permutations is finite, even if

large. Other more computationally efficient (but theoretically less powerful) forms of scrambling

appear in [16, 19], and [29], including the linear matrix scramble.
Scrambled digital nets keep the discrepancy property of the original digital net. Specifically,

let ΞΠ denote the scrambling of a digital net Ξ in base 𝑏0. If there is a constant 𝐶 > 0 such that

𝐷∗𝑚 (Ξ) ≤ 𝐶𝑚−1 (ln𝑚)𝑠 for all𝑚, then the scrambling also satisfies ([19, 34])

𝐷∗𝑚 (ΞΠ) ≤ 𝐶𝑚−1 (ln𝑚)𝑠 , (8)

so the estimator 𝑋 𝑗 in (4) from a single randomization converges at the same speed as (7) when

the integrand ℎ ∈ BVHK. For special classes of ℎ [36], the RMSE of the quadrature rule based

on nested uniform scrambling can be as small as 𝑂
(
𝑚−3/2 (ln𝑚) (𝑠−1)/2)

; Appendix B.5 describes

similar results.

For RQMC via digital nets and Owen’s full nested scrambling, [28] establishes a Gaussian CLT

for 𝑟 = 1 as𝑚 →∞ (so the number of involved independent permutations also tends to infinity);

[2] and [13] establish extensions. But these CLTs are restricted to this specific scrambling, whose

large computational cost has limited its use in practice in the past (although this may be less of

an issue with today’s more powerful computers); more general CLTs are needed for other forms

of RQMC. Another drawback of the CLT of [28] is that it applies to nested scrambling to only a

particular class of digital sequences with so-called 𝑡-value of 0, where lower values of 𝑡 ensure

better equidistribution; see [37, Section 15.7] for details. But restricting to 𝑡 = 0 rules out the

popular Sobol’ sequence except in very small dimensions 𝑠 . While 𝑡 = 0 allows for Faure sequences,

empirical studies seem to indicate that these produce less accurate approximations to 𝜇 than Sobol’

sequences.

2.3.3 Digital Shift. The digital shift randomization is a third possibility, which also applies a

random-shift principle but specifically designed for digital nets, with the idea of preserving its

digital-net structure. Formally, consider again a digital net Ξ = (𝜉𝑖 )𝑖≥1 in base 𝑏0 and dimension 𝑠 ,

and recall the notation 𝜉𝑖 = (𝜉 (1)𝑖 , . . . , 𝜉
(𝑠 )
𝑖
) for the 𝑖-th point, whose 𝑘-th coordinate (1 ≤ 𝑘 ≤ 𝑠) is

𝜉
(𝑘 )
𝑖

=
∑∞
ℓ=1

𝜉
(𝑘,ℓ )
𝑖

𝑏−ℓ
0

with each 𝜉
(𝑘,𝑙 )
𝑖
∈ {0, . . . , 𝑏0 − 1}. The 𝑗-th randomization employs a single

uniform 𝑈 𝑗 = (𝑈 (1)𝑗 , . . . ,𝑈
(𝑠 )
𝑗
) ∼ U[0, 1]𝑠 , and we write the development in base 𝑏0 of its 𝑘-th

coordinate as 𝑈
(𝑘 )
𝑗

=
∑∞
ℓ=1
𝑈
(𝑘,ℓ )
𝑗

𝑏−ℓ
0

(where each 𝑈
(𝑘,ℓ )
𝑗
∈ {0, . . . , 𝑏0 − 1}). For the 𝑖-th randomized

ACM Trans. Model. Comput. Simul., Vol. 00, No. 0, Article 0. Publication date: January 2023.
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point𝑈 ′𝑖, 𝑗 = (𝑈
(1),′
𝑖, 𝑗

, . . . ,𝑈
(𝑠 ),′
𝑖, 𝑗
) from the 𝑗-th randomization, its 𝑘-th coordinate is defined by

𝑈
(𝑘 ),′
𝑖, 𝑗

=

∞∑︁
ℓ=1

𝑈
(𝑘,ℓ ),′
𝑖, 𝑗

𝑏−ℓ
0
, where 𝑈

(𝑘,ℓ ),′
𝑖, 𝑗

= (𝜉 (𝑘,ℓ )
𝑖
+𝑈 (𝑘,ℓ )

𝑗
) mod 𝑏0.

As with the scrambling procedure of Section 2.3.2, the digital shift applied to a digital net retains

the low-discrepancy property of the original sequence [19]. Specifically, for a digital net Ξ, let Ξ
Dig

𝑈 𝑗

be its digital shift based on 𝑈 𝑗 ∼ U[0, 1]𝑠 . Then there exists a constant 𝐶 > 0 such that when

𝐷∗𝑚 (Ξ) ≤ 𝐶𝑚−1 (ln𝑚)𝑠 for all𝑚, we also have

𝐷∗𝑚 (Ξ
Dig

𝑈 𝑗
) ≤ 𝐶𝑚−1 (ln𝑚)𝑠 . (9)

2.4 Assumptions and Preliminary Results
Recall that for a given computation budget of about 𝑛 integrand evaluations, we define the RQMC

estimator in (4) with (𝑚, 𝑟 ), where 𝑟 is the number of randomizations and𝑚 is the number of points

used from each randomized sequence, so the total number of evaluations of the integrand ℎ is

𝑚𝑟 . For a fair comparison with MC, which uses 𝑛 evaluations of ℎ when the sample size is 𝑛, we

will assume that RQMC has𝑚𝑟 ≈ 𝑛, which will be more precisely expressed below. To study the

asymptotic behavior as 𝑛 → ∞, we take 𝑟 ≡ 𝑟𝑛 ≥ 1 and𝑚 ≡𝑚𝑛 ≥ 1 as functions of 𝑛 satisfying

the following:

Assumption 1.A. 𝑚𝑛𝑟𝑛 ≤ 𝑛 for each 𝑛 ≥ 1, with𝑚𝑛𝑟𝑛/𝑛 → 1 and 𝑟𝑛 →∞ as 𝑛 →∞.

Under Assumption 1.A, the RQMC estimator of 𝜇 in (4) becomes

𝜇̂
RQ

𝑚𝑛,𝑟𝑛 =
1

𝑟𝑛

𝑟𝑛∑︁
𝑗=1

𝑋𝑛,𝑗 , where 𝑋𝑛,𝑗 =
1

𝑚𝑛

𝑚𝑛∑︁
𝑖=1

ℎ(𝑈 ′𝑖, 𝑗 ), (10)

so 𝑋𝑛,𝑗 is the estimator from randomization 𝑗 = 1, 2, . . . , 𝑟𝑛 , of𝑚𝑛 points, where𝑚𝑛 ≤ 𝑛. Section 3’s

goal is to determine conditions on the behavior of allocation (𝑚𝑛, 𝑟𝑛) as 𝑛 grows that ensure 𝜇̂
RQ

𝑚𝑛,𝑟𝑛

obeys a CLT (with Gaussian limit) as 𝑛 →∞, and Section 4 derives conditions for an asymptotically

valid CI for 𝜇. Other papers (e.g., [8, 11]) adopt a framework similar to Assumption 1.A to study

MC methods for analyzing steady-state behavior of a stochastic model (for example, batching with

𝑟𝑛 batches, each of size𝑚𝑛).

Assumption 1.A requires 𝑟𝑛 →∞ as 𝑛 →∞ because otherwise, a Gaussian CLT may not hold.

As noted earlier, [23] show that when applying RQMC using a lattice rule and the random shift, the

resulting estimator can obey a limit theorem with non-Gaussian limit as𝑚 →∞ for fixed 𝑟 ≥ 1

(see the discussion at the end of Section 2.3.1), and the only Gaussian CLTs that the authors are

aware of are only for the (computationally expensive) nested digital scrambling [2, 13, 28] (see

the end of Section 2.3.2). But while Assumption 1.A specifies that 𝑟𝑛 →∞ as 𝑛 →∞, it does not
require that𝑚𝑛 → ∞ as 𝑛 → ∞, and we sometimes take𝑚𝑛 =𝑚0 for some fixed𝑚0 ≥ 1, where

𝑚0 = 1 corresponds to MC.

Section 5 will also consider the following special case of Assumption 1.A:

Assumption 1.B. 𝑚𝑛 = 𝑛𝑐 and 𝑟𝑛 = 𝑛1−𝑐 with 𝑐 ∈ (0, 1).

We now give some remarks on Assumption 1.B.

• Under Assumption 1.B, both 𝑟𝑛,𝑚𝑛 → ∞ as 𝑛 → ∞ because 𝑐 ∈ (0, 1). In particular,

𝑟𝑛 = 𝑛1−𝑐 →∞ precludes the setting of [23] in which a Gaussian CLT does not hold.

• As𝑚𝑛 and 𝑟𝑛 need to be integers, Assumption 1.B should define, e.g.,𝑚𝑛 = ⌊𝑛𝑐⌋ and 𝑟𝑛 =

⌊𝑛1−𝑐⌋, where ⌊·⌋ denotes the floor function. Moreover, while our asymptotic analyses also
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will hold for (𝑚𝑛, 𝑟𝑛) = (𝑎1+𝑑1𝑛
𝑐 , 𝑎2+𝑑2𝑛

1−𝑐 ) for nonnegative constants 𝑎1 and 𝑎2 and positive

constants 𝑑1 and 𝑑2, we simplify the discussion by assuming that (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) is
integer-valued under Assumption 1.B.

• Assumption 1.B precludes allocations such as (𝑚𝑛, 𝑟𝑛) = (𝑛/ln𝑛, ln𝑛) allowed by 1.A. But

allocations of this form can permit the number𝑚𝑛 of points from the QMC sequence to grow

more rapidly than 𝑛𝑐 for any 𝑐 > 0 as 𝑛 → ∞, so Assumption 1.A enables taking greater

advantage of QMC’s fast convergence rate than is possible under Assumption 1.B.

• While Assumption 1.B specifies that 𝑐 < 1, we could also consider the case of 𝑐 = 1, which

corresponds to a single randomization or a fixed number 𝑟0 of randomizations. Then for

fully nested scrambling [2, 13, 28], each randomization satisfies a CLT as𝑚𝑛 → ∞, so an

asymptotically valid Student-𝑡 confidence interval could be constructed when 𝑟0 ≥ 2; see

Appendix B.5 for related discussions.

For those 𝑐 ∈ (0, 1) ensuring that 𝜇̂
RQ

𝑚𝑛,𝑟𝑛 satisfies a Gaussian CLT or that AVCI holds, Section 5

determines the value of 𝑐 that maximizes the convergence rate for RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] as 𝑛 →∞.
Let Ξ′ be a generic randomized low-discrepancy sequence. It is Ξ′ = Ξ𝑈 𝑗

for a random shift

(Section 2.3.1), Ξ′ = ΞΠ for digital scrambling (Section 2.3.2), and Ξ′ = Ξ
Dig

𝑈 𝑗
for a digital shift

(Section 2.3.2). As we will explain below, each of these randomization methods satisfy the following

condition, which will be helpful to analyze RQMC estimators with integrands ℎ ∈ BVHK.

Assumption 2. For the RQMC method used, there exists a constant 0 < 𝑤 ′
0
< ∞ such that

each randomized sequence Ξ′ satisfies 𝐷∗𝑚 (Ξ′) ≤ 𝑤 ′0𝑚−1 (ln𝑚)𝑠 for all 𝑚 > 1, where 𝑤 ′
0
depends

on the RQMC method but not on the randomization’s realization (e.g., of the random uniforms or
permutations).

We next explain why the RQMC methods in Section 2.3 satisfy Assumption 2, which does not

depend on a particular allocation (𝑚𝑛, 𝑟𝑛), as in Assumption 1.A or 1.B. By (3), there exists a constant

0 < 𝑤0 < ∞ such that 𝐷∗𝑚 (Ξ) ≤ 𝑤0𝑚
−1 (ln𝑚)𝑠 whenever𝑚 > 1. Hence, Assumption 2 holds with

𝑤 ′
0
= 4

𝑠𝑤0 for a random shift by (6) (whatever the considered low-discrepancy sequence), and with

𝑤 ′
0
= 𝐶 in (8) and (9) for scrambling and a digital shift.

Our results will further depend on properties of the integrand ℎ. We will often consider four

alternative conditions on ℎ, presented in order of decreasing strength (see Proposition 2.1 below).

For fixed 𝑝 ≥ 1, we write ℎ ∈ L𝑝 when

∫
[0,1]𝑠 |ℎ(𝑢) |

𝑝
d𝑢 < ∞, and ℎ ∈ L∞ when ℎ is bounded

(almost everywhere).

Assumption 3.A. ℎ ∈ BVHK.

Assumption 3.B. ℎ ∈ L∞.

Assumption 3.C. ℎ ∈ L2+𝑏 for some 𝑏 > 0, which ensures that for𝑈 ∼ U[0, 1]𝑠 ,

E

[
|ℎ(𝑈 ) − 𝜇 |2+𝑏

]
< ∞. (11)

Assumption 3.D. ℎ ∈ L2; i.e., ℎ(𝑈 ) has finite variance.

Assumption 3.A limits the roughness of ℎ. Assumptions 3.B, 3.C and 3.D restrict how slowly the

tails of the distribution of ℎ(𝑈 ) can decrease, with 3.B being an extreme case of no tails. None of

3.A, 3.B, 3.C and 3.D depends on the allocation (𝑚𝑛, 𝑟𝑛) nor the randomization method.

Proposition 2.1. Assumption 3.A is strictly stronger than Assumption 3.B, itself strictly stronger
than Assumption 3.C, which in turn is strictly stronger than Assumption 3.D.
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We next give two bounds on absolute central moments of the estimator 𝑋𝑛,1 in (10) based on𝑚𝑛

points from a single randomization, which will be useful when establishing a CLT or AVCI. We

omit the proof of the following, which follows by an argument analogous to [39, Theorem 2].

Lemma 2.2. Under Assumptions 1.A, 2, and 3.A, for any 𝑞 > 0 and for all 𝑛 such that𝑚𝑛 > 1,

𝜂𝑛,𝑞 ≡ E
[
|𝑋𝑛,1 − 𝜇 |𝑞

]
≤ E

[
(𝑉HK (ℎ)𝐷∗𝑚𝑛

(Ξ′))𝑞
]
≤

(
𝑤 ′

0
𝑉HK (ℎ) (ln𝑚𝑛)𝑠

𝑚𝑛

)𝑞
< ∞. (12)

By (12), when ℎ ∈ BVHK and𝑚𝑛 →∞ as 𝑛 →∞, the order-𝑞 absolute central moment of 𝑋𝑛,𝑗

in (10) shrinks as 𝑂 ( [(ln𝑚𝑛)𝑠/𝑚𝑛]𝑞) as 𝑛 →∞, so 𝜂𝑛,𝑞 = 𝑂 (𝑚−𝑞+𝜖𝑛 ) for each 𝜖 > 0. But assuming

𝑉HK (ℎ) < ∞ is restrictive; e.g., the proof (in Appendix A) of Proposition 2.1 notes that 𝑉HK (ℎ) = ∞
for 𝑠 ≥ 2 if ℎ is an indicator function (so 𝜇 is a probability) with discontinuities not aligned with the

coordinate axes. If 𝑉HK (ℎ) < ∞ is not true or cannot be verified, we can still bound 𝜂𝑛,𝑞 as follows

under a moment condition on ℎ(𝑈 ). (The proof appears in Appendix A.)

Lemma 2.3. Under Assumption 1.A, for any 𝑞 ≥ 1, if E[|ℎ(𝑈 ) − 𝜇 |𝑞] < ∞ for𝑈 ∼ U[0, 1]𝑠 , then
𝜂𝑛,𝑞 ≤ E[|ℎ(𝑈 ) − 𝜇 |𝑞] for every 𝑛.

For a given total number 𝑛 of integrand evaluations, a common suggestion when using RQMC

methods is to let𝑚𝑛 be as large as possible to benefit from the superior convergence speed of QMC

(compared to MC), but we still want 𝑟𝑛 to be big enough so that a Gaussian CLT roughly holds (see

the discussion at the end of Section 2.3.1) and an asymptotically valid CI for 𝜇 can be constructed.

As in (12), when ℎ ∈ BVHK and𝑚𝑛 →∞ as 𝑛 →∞, we have that

RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] ≤
[𝑤 ′

0
𝑉HK (ℎ) (ln𝑚𝑛)𝑠/𝑚𝑛]√

𝑟𝑛
= Θ

(
(𝑐 ln𝑛)𝑠

𝑛 (1+𝑐 )/2

)
as 𝑛 →∞ by replacing𝑚𝑛 and 𝑟𝑛 by 𝑛𝑐 and 𝑛1−𝑐

, respectively, as in Assumption 1.B. Hence, larger

𝑐 leads to faster convergence. Taking 𝑐 = 1 is optimal in this respect but does not satisfy Assump-

tion 1.B, and then a Gaussian CLT may not be guaranteed [23], as noted earlier (Section 2.3.1).

The following sections establish various conditions that ensure 𝜇̂
RQ

𝑚𝑛,𝑟𝑛 obeys a CLT and when

we can obtain an AVCI for 𝜇. Sections 3 and 4 derive these conditions when (𝑚𝑛, 𝑟𝑛) satisfy
Assumption 1.A, whereas Section 5 instead adopts Assumption 1.B, which permits simpler and

more intuitive analysis.

3 GENERAL CONDITIONS FOR A CENTRAL LIMIT THEOREM
In analyzing 𝜇̂

RQ

𝑚𝑛,𝑟𝑛 in (10) as 𝑛 → ∞, the distribution of the averaged terms 𝑋𝑛,1, 𝑋𝑛,2, . . . , 𝑋𝑛,𝑟𝑛
changes with 𝑛. A theoretical framework for handling this under Assumption 1.A uses that the

(𝑋𝑛,𝑗 )𝑛=1,2,...;𝑗=1,2,...,𝑟𝑛 in (10) form a triangular array [3, p. 359]. In a triangular array, also called

a double array (e.g., [38, Section 1.9.3]), the 𝑟𝑛 variables within each row 𝑛 are independent, but

variables in different rows may be dependent. Let 𝜇𝑛,𝑗 = E[𝑋𝑛,𝑗 ] = 𝜇 and
𝜎2

𝑛,𝑗 = Var[𝑋𝑛,𝑗 ] ≡ 𝜎2

𝑚𝑛
, (13)

where both 𝜇 and 𝜎2

𝑚𝑛
do not depend on 𝑗 . Indeed, we have

𝑋𝑛,1, 𝑋𝑛,2, . . . , 𝑋𝑛,𝑟𝑛 are i.i.d., each with some distribution 𝐹𝑛 . (14)

This setup allows for the distribution 𝐹𝑛 to change with 𝑛, as is the case in (10).

Although (14) has that the 𝑟𝑛 random variables are i.i.d. for each 𝑛, the general setting for a

triangular array, as in [3, p. 359], assumes that they are only independent but not necessarily

identically distributed (nor that they have the same mean and variance). Specifically, recall the

Lindeberg CLT [3, Theorem 27.2] for triangular arrays:
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For each 𝑛, assume that 𝑋𝑛,𝑗 , 𝑗 = 1, . . . , 𝑟𝑛 , are independent (but not necessarily identically

distributed), with 𝐸 [𝑋𝑛,𝑗 ] = 𝜇𝑛,𝑗 and Var[𝑋𝑛,𝑗 ] = 𝜎2

𝑛,𝑗 < ∞, and let 𝑠2

𝑛 = 𝜎2

𝑛,1 + · · · + 𝜎2

𝑛,𝑟𝑛
. Let 𝐺𝑛,𝑗

denote the distribution of 𝑌𝑛,𝑗 = 𝑋𝑛,𝑗 − 𝜇𝑛,𝑗 and let 𝜏2

𝑛,𝑗 (𝑡) =
∫
|𝑦 |>𝑡𝑠𝑛

𝑦2
d𝐺𝑛,𝑗 (𝑦) for 𝑡 ≥ 0. Also, let

𝑋𝑛 = (1/𝑟𝑛)
∑𝑟𝑛
𝑗=1
𝑋𝑛,𝑗 and 𝜇𝑛 = (1/𝑟𝑛)

∑𝑟𝑛
𝑗=1

𝜇𝑛,𝑗 . Then under Assumption 1.A,

𝑋𝑛 − 𝜇𝑛√︁
Var[𝑋𝑛]

⇒ N(0, 1), as 𝑛 →∞ (15)

provided that the Lindeberg condition holds:

𝜏2

𝑛,1 (𝑡) + · · · + 𝜏2

𝑛,𝑟𝑛
(𝑡)

𝜎2

𝑛,1
+ · · · + 𝜎2

𝑛,𝑟𝑛

→ 0, as 𝑛 →∞, ∀𝑡 > 0. (16)

The Lindeberg condition (16) implies that max1≤ 𝑗≤𝑟𝑛 𝜎
2

𝑛,𝑗/𝑠2

𝑛 → 0 as 𝑛 → ∞ (e.g., [25, p. 588]),

so it ensures that the contribution of any single 𝑋𝑛,𝑗 , 1 ≤ 𝑗 ≤ 𝑟𝑛 , to their sum’s variance 𝑠2

𝑛 is

negligible for large 𝑛. This precludes the possibility that, e.g., 𝑋𝑛,𝑗 ≡ 0, 2 ≤ 𝑗 ≤ 𝑟𝑛 , so the left side

of (15) reduces to (𝑋𝑛,1 − 𝜇𝑛,1)/𝜎𝑛,1, which can have any distribution with mean 0 and variance 1.

We now adapt the Lindeberg condition (16) to study the RQMC estimator 𝜇̂
RQ

𝑚𝑛,𝑟𝑛 in (10). By (14),

𝑠2

𝑛 = 𝜎2

𝑛,1 + · · · + 𝜎2

𝑛,𝑟𝑛
= 𝑟𝑛𝜎

2

𝑚𝑛
. (17)

Denote the distribution of 𝑌𝑛,𝑗 = 𝑋𝑛,𝑗 − 𝜇 by 𝐺𝑛 , which does not depend on 𝑗 by (14). Note that

𝜎2

𝑚𝑛
=

∫
𝑦2

d𝐺𝑛 (𝑦), and let

𝜏2

𝑛 (𝑡) =
∫
|𝑦 |>𝑡𝑠𝑛

𝑦2
d𝐺𝑛 (𝑦), for 𝑡 > 0. (18)

We will impose another assumption to avoid uninteresting cases. The following precludes the exact

result from being eventually always returned by the RQMC estimator.

Assumption 4. 𝜎2

𝑚𝑛
> 0 for all 𝑛 large enough.

We omit the proof of the following, which specializes for RQMC the condition (16) as (19) below.

Theorem 3.1. Suppose that Assumptions 1.A and 4 hold. If the Lindeberg condition

𝜏2

𝑛 (𝑡)
𝜎2

𝑚𝑛

→ 0, as 𝑛 →∞, ∀𝑡 > 0 (19)

holds, then the RQMC estimator in (10) satisfies the CLT

𝜇̂
RQ
𝑚𝑛,𝑟𝑛 − 𝜇
𝜎𝑚𝑛
/√𝑟𝑛

⇒ N(0, 1), as 𝑛 →∞. (20)

From [3, p. 361], condition (19) is even necessary and sufficient for the CLT (20) since for all 𝑗 ,

𝜎2

𝑛,𝑗/𝑠2

𝑛 = 1/𝑟𝑛 → 0 as 𝑛 → ∞ by Assumption 1.A. The Lindeberg condition (19), which imposes

restrictions on the tail behavior of 𝐺𝑛 through (18), holds under a Lyapounov (moment) condition

[3, Theorem 27.3], which (21) below adapts for our RQMC setting.

Theorem 3.2. Suppose that Assumptions 1.A and 4 hold. Further suppose that there exists 𝑑 > 0

such that E
[��𝑋𝑛,1 − 𝜇��2+𝑑 ] < ∞ for each 𝑛 satisfying Assumption 4 and that

E

[��𝑋𝑛,1 − 𝜇��2+𝑑 ]
𝑟
𝑑/2
𝑛 𝜎2+𝑑

𝑚𝑛

→ 0, as 𝑛 →∞. (21)

Then the Lindeberg condition (19) and CLT (20) hold.
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3.1 Corollaries of Theorems 3.1 and 3.2
We now develop various sufficient conditions that secure CLT (20) through Theorem 3.1 or 3.2.

Section 3.2 will compare the conditions under a general allocation (𝑚𝑛, 𝑟𝑛) of Assumption 1.A, with

Table 1 in Section 4.2 outlining the results (also including those for AVCI in Section 4.1). Later in

Section 5.8, Table 2 summarizes and compares all of our corollaries under the simple allocations

(𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) of Assumption 1.B; Figures 1, 2, and 3 in Appendix C provide graphical

comparisons. Our results provide conditions on (𝑚𝑛, 𝑟𝑛) in terms of 𝜎𝑚𝑛
, whose exact asymptotic

behavior has not been established in the literature for most RQMC methods. One exception that we

are aware of is for nested uniform scrambling (Section 2.3.2) under certain restrictions, which we

discuss in Appendix B.5. For some other RQMC methods, Appendix D provides numerical results

studying the behavior of 𝜎𝑚𝑛
.

In the following corollary, we define 𝐴𝑚 = 1

𝑚

∑𝑚
𝑖=1
ℎ(𝑈 ′𝑖 ) as an estimator based on𝑚 points from

a single randomization Ξ′ = (𝑈 ′𝑖 )𝑖≥1, and 𝜎
2

𝑚 = Var[𝐴𝑚]. This is to emphasize the dependence of

these quantities on the point-set size𝑚 but not on the budget 𝑛 nor the allocation (𝑚𝑛, 𝑟𝑛).
Corollary 1. Suppose that Assumptions 1.A and 4 hold for allocation (𝑚𝑛, 𝑟𝑛) with𝑚𝑛 →∞ as

𝑛 → ∞, and that there are constants 𝑑 > 0 and 𝑘1 ≡ 𝑘1,𝑑 ∈ (0,∞) such that E
[
|𝐴𝑚 − 𝜇 |2+𝑑

]
< ∞

and
E

[
|𝐴𝑚 − 𝜇 |2+𝑑

]
𝜎2+𝑑
𝑚

≤ 𝑘1, for all𝑚 sufficiently large. (22)

Then the Lyapounov condition (21) and CLT (20) hold. A sufficient condition for (22) is that there
exists a constant 𝑘2 ∈ (0,∞) such that

P ( |𝐴𝑚 − 𝜇 | ≤ 𝑘2𝜎𝑚) = 1, for all𝑚 sufficiently large. (23)

Condition (22) (resp., (23)) bounds the moment (resp., almost sure) behavior of the absolute

error |𝐴𝑚 − 𝜇 | from a single randomization of𝑚 points relative to its standard deviation 𝜎𝑚 for

all large𝑚. While Corollary 1 requires𝑚𝑛 → ∞, (22) and (23) do not depend otherwise on the

allocation (𝑚𝑛, 𝑟𝑛), so Corollary 1 can fulfill Assumption 1.A with 𝑟𝑛 growing slowly to∞ as 𝑛 →∞.
Under Assumption 1.B, we may then take (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) for 𝑐 ∈ (0, 1) arbitrarily close to

1, allowing large 𝑚𝑛 to exploit QMC’s fast convergence rate; Section 5.1 will explore this idea.

But Assumption 1.A further permits, e.g., (𝑚𝑛, 𝑟𝑛) = (⌊𝑛/ln𝑛⌋, ⌊ln𝑛⌋), so𝑚𝑛 can increase even

more quickly in 𝑛. However, [37, Chapter 17 end notes] states that under a linear matrix scramble

[29], “There is reason to believe that the skewness and kurtosis . . . could diverge” as𝑚 → ∞ for

some integrands ℎ, in which case (22) may not hold for 𝑑 = 1 and 2. Appendix D.4 investigates

numerically the validity of Condition (22) and illustrates that it appears to be satisfied in certain

(but not all) settings.

Establishing (22) or (23) may be difficult, so we next provide other conditions that can be more

readily verifiable to ensure CLT (20). We will prove corollaries corresponding to each of our

restrictions on the integrand ℎ in Assumptions 3.A–3.D, which are in decreasing order of strength

(Proposition 2.1).

Corollary 2. Suppose that Assumption 1.A holds with𝑚𝑛 > 1 for all 𝑛 large enough, along with
Assumptions 2, 3.A (ℎ ∈ BVHK), and 4. Also, suppose that

𝑟 1−𝜆
𝑛

(
𝑚𝑛𝜎𝑚𝑛

(ln𝑚𝑛)𝑠

)
2

→∞, as 𝑛 →∞, (24)

for some constant 𝜆 ∈ (0, 1), which can be chosen arbitrarily small. Then the Lyapounov condition
(21) and CLT (20) hold.
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The following corollary of Theorem 3.1 considers the case when the integrand ℎ is a bounded

function.

Corollary 3. Suppose that Assumptions 1.A, 3.B (ℎ ∈ L∞), and 4 hold. If
𝑠2

𝑛 = 𝑟𝑛𝜎
2

𝑚𝑛
→∞, as 𝑛 →∞, (25)

then the Lindeberg condition (19) and CLT (20) hold.

As with Corollary 2, the next corollary follows from Theorem 3.2, but it does not require

ℎ ∈ BVHK, precluding the application of Lemma 2.2. It instead employs Lemma 2.3, so it assumes a

moment condition on ℎ(𝑈 ) (Assumption 3.C).

Corollary 4. Suppose that Assumptions 1.A, 3.C (ℎ ∈ L2+𝑏 for some 𝑏 > 0), and 4 hold. Also,
suppose that

𝑟
𝑏/(2+𝑏 )
𝑛 𝜎2

𝑚𝑛
→∞, as 𝑛 →∞. (26)

Then the Lyapounov condition (21) and CLT (20) hold.

While Assumption 1.A specifies that 𝑟𝑛 → ∞ as 𝑛 → ∞, it does not require that𝑚𝑛 → ∞ as

𝑛 →∞. The previous corollaries allow𝑚𝑛 →∞ as 𝑛 →∞, although this was not required except

for Corollary 1. The following result specializes Theorem 3.1 to consider the case when𝑚𝑛 is fixed.

Corollary 5. Suppose that Assumption 3.D (ℎ ∈ L2) holds. If

(𝑚𝑛, 𝑟𝑛) =
(
𝑚0,

⌊
𝑛

𝑚0

⌋)
for all 𝑛, for some fixed𝑚0 ≥ 1 with 𝜎2

𝑚0

> 0, (27)

which implies Assumptions 1.A and 4, then the Lindeberg condition (19) and CLT (20) hold.

3.2 Comparison of Conditions for CLT
We now want to compare Corollaries 2–5 from Section 3.1, each of which ensures the CLT (20).

Proposition 2.1 establishes that these corollaries impose successively weaker restrictions on the

integrand ℎ. We next show that in many settings, the corollaries require correspondingly stronger

conditions on (𝑚𝑛, 𝑟𝑛), demonstrating tradeoffs in our assumptions. (Section 5.8 will provide further

comparisons under Assumption 1.B.)

Proposition 3.3. If Assumption 1.A holds, then condition (27) of Corollary 5 implies condition (26)

of Corollary 4, and (26) in turn implies condition (25) of Corollary 3. If in addition

1

𝑟𝜆𝑛

(
𝑚𝑛

(ln𝑚𝑛)𝑠

)
2

→ 𝑑0 ∈ (0,∞], as 𝑛 →∞, for 𝜆 ∈ (0, 1), (28)

then (25) implies condition (24) of Corollary 2. Condition (28) holds, e.g., under Assumption 1.B.

The condition (28) in Proposition 3.3 specifies that 𝑟𝑛 does not grow too quickly (as 𝑛 → ∞)
compared to𝑚𝑛 . While (28) is always true under Assumption 1.B, it does not hold, e.g., for fixed

𝑚𝑛 ≡𝑚0, as in condition (27) of Corollary 5, or for (𝑚𝑛, 𝑟𝑛) = (⌊ln𝑛⌋, ⌊𝑛/ln𝑛⌋).

4 ASYMPTOTICALLY VALID CONFIDENCE INTERVAL
We now enhance the CLTs in Section 3 to construct an asymptotically valid CI for 𝜇 under the

framework of Assumption 1.A. Suppose that 𝑟𝑛 ≥ 2, which Assumption 1.A ensures holds for all

𝑛 sufficiently large. For each such 𝑛, the 𝑋𝑛,𝑗 , 𝑗 = 1, 2, . . . , 𝑟𝑛 , are i.i.d. by (14), and their sample

variance

𝜎2

𝑚𝑛,𝑟𝑛
=

1

𝑟𝑛 − 1

𝑟𝑛∑︁
𝑗=1

(
𝑋𝑛,𝑗 − 𝜇̂RQ𝑚𝑛,𝑟𝑛

)
2
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is an unbiased estimator of 𝜎2

𝑚𝑛
in (13). For a given desired confidence level 100𝛾%, with 0 < 𝛾 < 1,

we then consider a CI for 𝜇 as

𝐼
RQ

𝑚𝑛,𝑟𝑛,𝛾 ≡
[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛 ± 𝑧𝛾𝜎𝑚𝑛,𝑟𝑛/
√
𝑟𝑛

]
. (29)

Our goal now is to provide conditions ensuring that 𝐼𝑛,𝛾 is an AVCI, i.e., (31) below holds.

Theorem 4.1. Suppose that Assumptions 1.A and 4 hold. If the CLT (20) holds and if

𝜎2

𝑚𝑛,𝑟𝑛

𝜎2

𝑚𝑛

⇒ 1, as 𝑛 →∞, (30)

then
lim

𝑛→∞
P(𝜇 ∈ 𝐼RQ𝑚𝑛,𝑟𝑛,𝛾 ) = 𝛾 . (31)

We now want a sufficient condition ensuring that (30) holds to secure AVCI (31).

Theorem 4.2. Suppose that Assumptions 1.A and 4 hold. If E
[
(𝑋𝑛,1 − 𝜇)4

]
< ∞ and

E
[
(𝑋𝑛,1 − 𝜇)4

]
𝑟𝑛𝜎

4

𝑚𝑛

→ 0, as 𝑛 →∞, (32)

then the CLT (20), (30), and AVCI (31) hold.

To summarize, we see that Theorem 4.1 imposes an extra condition (30) to those ensuring a CLT

through Theorems 3.1 or 3.2 to further guarantee an AVCI. Theorem 4.2 then shows that assuming

the Lyapounov condition (21) of Theorem 3.2 holds for 𝑑 = 2 (i.e., (32)) is sufficient to secure (30).

4.1 Specific Sufficient Conditions for AVCI
We next establish AVCI (31) (often through Theorem 4.2) under various conditions.

Corollary 6. Suppose that Assumptions 1.A and 4 hold. If (22) holds with 𝑑 = 2, then the CLT
(20), (30), and AVCI (31) hold. A sufficient condition to ensure (22) with 𝑑 = 2 is that (23) holds.

By Corollaries 1 and 6, the condition (23) ensures both the CLT (20) and AVCI (31). But as we

will see in Section 5, securing AVCI often uses stronger conditions than ensuring a CLT.

We next establish AVCI (31) under alternative Assumptions 3.A (ℎ ∈ BVHK), 3.C (ℎ ∈ L2+𝑏
), and

3.D (ℎ ∈ L2
), which were previously used to establish CLTs in Corollaries 2, 4, and 5, respectively.

The following AVCI result imposes Assumption 3.A, with the condition (33) below replacing (24) of

Corollary 2.

Corollary 7. Suppose that Assumption 1.A holds with𝑚𝑛 > 1 for all 𝑛 large enough, along with
Assumptions 2, 3.A (ℎ ∈ BVHK), and 4. If

𝑟𝑛

(
𝑚𝑛𝜎𝑚𝑛

(ln𝑚𝑛)𝑠

)
4

→∞, as 𝑛 →∞, (33)

then the CLT (20), (30), and AVCI (31) hold.

As with Corollary 4, the following result uses Assumption 3.C (ℎ ∈ L2+𝑏
) but requires 𝑏 = 2

rather than 𝑏 > 0, which also corresponds to replacing condition (26) with (34) below.

Corollary 8. Suppose that Assumptions 1.A and 4 hold, along with Assumption 3.C (ℎ ∈ L4). If

𝑟𝑛𝜎
4

𝑚𝑛
→∞, as 𝑛 →∞, (34)

then the CLT (20), (30), and AVCI (31) hold.
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The next result considers the case when𝑚𝑛 ≡𝑚0 is fixed, as in condition (27) of Corollary 5.

Corollary 9. The same conditions as in Corollary 5 imply that (30) and AVCI (31) hold.

Corollaries 5 and 9 assume the same conditions, where the former establishes the CLT (20),

and the latter proves that (29) is AVCI (31). Thus, when𝑚𝑛 =𝑚0 is fixed, AVCI does not require

any additional conditions beyond that for a CLT. Corollaries 7 and 8 also allow for𝑚𝑛 =𝑚0, but

further permit𝑚𝑛 →∞. But if𝑚𝑛 =𝑚0 is fixed, Corollary 9 ensures AVCI (31) more broadly than

Corollaries 7 and 8, as the latter impose additional restrictions on integrand ℎ.

4.2 Remarks on Comparing Conditions for CLT and AVCI
We now compare Corollaries 7, 8, and 9, each of which ensures AVCI (31). By Proposition 2.1,

Assumption 3.A (ℎ ∈ BVHK) in Corollary 7 is strictly stronger than Assumption 3.C (ℎ ∈ L4
)

in Corollary 8, and the latter restriction is strictly stronger than Assumption 3.D (ℎ ∈ L2
) of

Corollary 9. We next compare the corollaries’ constraints on (𝑚𝑛, 𝑟𝑛), showing that the conditions

instead weaken from Corollary 7 to 8 to 9.

Proposition 4.3. Under Assumption 1.A, condition (27) in Corollary 9 implies condition (34) of
Corollary 8. If also𝑚𝑛 > 1 for all 𝑛 sufficiently large, then (34) implies condition (33) of Corollary 7.

Table 1 summarizes the findings of Propositions 3.3 and 4.3. Comparing the conditions securing

CLT (20) and AVCI (31) provides further insights. Corollary 1 (resp., 6) ensures the CLT (resp.,

AVCI) when condition (22) holds for 𝑑 > 0 (resp., 𝑑 = 2), so the corollaries impose a more stringent

condition to ensure AVCI beyond a CLT. But both Corollaries 1 and 6 also guarantee CLT and AVCI

under the more restrictive requirement (23). Corollaries 5 and 9 assume the same conditions, so

when𝑚𝑛 =𝑚0 is fixed, AVCI (31) does not require any additional conditions beyond that for the CLT

(20). Theorem 4.2 and Corollaries 7 and 8 provide sufficient conditions for AVCI, which also imply

CLT (20). Ideally, we would have that AVCI is true whenever the CLT holds without any additional

restrictions (although this may not be possible, e.g., [9, Example 3.4.13] provides an example of i.i.d.

summands having infinite variance, and a CLT holds but with a nonstandard scaling). To study

this, we could compare (the conditions of) Theorem 3.2 to Theorem 4.2, compare Corollary 2 to

Corollary 7, and compare Corollary 4 to Corollary 8. However, as such a comparison is long, we

instead will carry out the analysis only under Assumption 1.B in Section 5.8 (see Table 2), which

will lead to simpler and more intuitive results. Compared to the broad generality of Assumption 1.A

used by Table 1, the additional structure of Assumption 1.B enables sharper conclusions in Table 2.

5 ANALYSIS WHEN (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) (ASSUMPTION 1.B)
Recall that Assumption 1.B specializes Assumption 1.A so that (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) for some

𝑐 ∈ (0, 1). We now want to utilize the results of Sections 3 and 4 to determine what values of

𝑐 ensure CLT (20) or AVCI (31), and which of those 𝑐 lead to the best rates of convergence for

RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] as 𝑛 → ∞. Table 2 at the end of this section will summarize the results under

Assumption 1.B.

With RQMC, we typically have 𝜎𝑚 , defined before Corollary 1, is 𝑂 (𝑚−𝛼 ) as 𝑚 → ∞ with

𝛼 > 1/2 (e.g., see (12) when ℎ ∈ BVHK). In this case, the RQMC standard deviation (and RMSE) for

a single randomization of a low-discrepancy sequence of length𝑚 has a better rate of convergence

than MC.

Throughout the remainder of this section, we will make the following assumption.
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Cor. 𝑘 Ensures Assumption on only ℎ Other Key Condition Implications
1 CLT Eq. (22) for some 𝑑 > 0

2 CLT 3.A (ℎ ∈ BVHK) Eq. (24)

3 CLT 3.B (ℎ ∈ L∞) Eq. (25) [(25) ∧ (28)]⇛ (24)

4 CLT 3.C (ℎ ∈ L2+𝑏
for some 𝑏 > 0) Eq. (26) (26) ⇛ (25)

5 CLT 3.D (ℎ ∈ L2
) Eq. (27) (27) ⇛ (26)

6 AVCI Eq. (22) for 𝑑 = 2

7 AVCI 3.A (ℎ ∈ BVHK) Eq. (33)

8 AVCI 3.C (ℎ ∈ L4
) Eq. (34) (34) ⇛ (33)

9 AVCI 3.D (ℎ ∈ L2
) Eq. (27) (27) ⇛ (34)

Table 1. Summary of Corollaries 1–9 under Assumption 1.A for any allocations (𝑚𝑛, 𝑟𝑛) when𝑚𝑛 > 1 for all
𝑛 sufficiently large, where in the last column, “∧” denotes logical AND, and “𝑝 ⇛ 𝑞” means that 𝑝 implies 𝑞.

Assumption 5. The decreasing rate limit

𝛼∗ = − lim

𝑚→∞
ln(𝜎𝑚)
ln(𝑚) , (35)

exists.

In this assumption, 𝛼∗ is the only constant such that the rate (as𝑚 →∞) at which 𝜎𝑚 decreases

is strictly faster than𝑚−𝛼∗+𝜖 and strictly slower than𝑚−𝛼∗−𝜖 for all 𝜖 > 0; i.e.,

𝜎𝑚 = 𝑜 (𝑚−𝛼∗+𝜖 ) and 𝜎𝑚 = 𝜔 (𝑚−𝛼∗−𝜖 ) as 𝑚 →∞ for any 𝜖 > 0, (36)

which we denote by 𝜎𝑚≃𝑚−𝛼∗ as𝑚 →∞. By (12) with 𝑞 = 2, we see that

𝛼∗ ≥ 1 for RQMC when ℎ ∈ BVHK (37)

as in Assumption 3.A, and we assume in general (as is common for RQMC) that

𝛼∗ >
1

2

. (38)

The value of 𝛼∗ depends on the integrand ℎ and the method to construct the randomized sequence

(𝑈 ′𝑖,1)𝑖≥1, but not on how (𝑚𝑛, 𝑟𝑛) or 𝑐 is specified in Assumptions 1.A and 1.B.

Note that while the limit in𝑚 in Assumption 5 in (35) may not exist for certain RQMCmethods, it

may instead hold for particular subsequences𝑚∗ of𝑚. This is often assumed in the QMC and RQMC

literature when investigating the methods’ efficiency through numerical experiments. Using the

particular structure of so-called (0, 𝑘∗, 𝑠)-nets in base 𝑏0 ≥ 2 for example, such limits are established

[28, Theorem 1] for nested scrambling and sufficiently smooth ℎ with𝑚∗ = 𝑏
𝑘∗
0

as 𝑘∗ →∞, which
we will further analyze in Appendix B.5, comparing the convergence rates to some of our corollaries

from Sections 3 and 4. Specifically, in the particular case of nested scrambling applied to a smooth

function with Lipschitz continuous mixed partial of order 𝑠 , [28, Theorem 1] obtains an exact

convergence rate for the variance, which Appendix B.5 uses to get 𝛼∗ = 3/2 along the subsequence

𝑚∗ = 𝑏
𝑘∗
0
as 𝑘∗ →∞. Even if we may need to consider the limit in (35) along such a subsequence

𝑚∗, we will consider it in𝑚 to simplify the notation.

(Appendix D.1 presents results from numerical experiments to estimate 𝛼∗ for different RQMC

methods and various integrands corresponding to Assumptions 3.A (ℎ ∈ BVHK), 3.B (ℎ ∈ L∞), and
3.C (ℎ ∈ L2+𝑏

). In particular, Table 3 shows that for all randomization methods considered, (37)
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seems to hold for the integrands satisfying Assumption 3.A, and the other integrands appear to be

consistent with (38).)

For𝑚𝑛 = 𝑛𝑐 , we get from (36) that (as 𝑐 is bounded)

𝜎𝑚𝑛
= 𝜔 (𝑛−𝑐𝛼∗−𝜖 ), as 𝑛 →∞, for any 𝜖 > 0. (39)

Therefore, using 𝑟𝑛 = 𝑛1−𝑐
leads to

RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
=
𝜎𝑚𝑛√
𝑟𝑛

= 𝜔

(
𝑛−𝑣 (𝛼∗,𝑐 )−𝜖

)
, as 𝑛 →∞, for any 𝜖 > 0, (40)

where 𝑣 (𝛼∗, 𝑐) ≡ 𝑐
[
𝛼∗ − 1

2

]
+ 1

2
. Similarly, (36) also yields RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
= 𝑜

(
𝑛−𝑣 (𝛼∗,𝑐 )+𝜖

)
as 𝑛 →∞

for all 𝜖 > 0. As 𝜖 can be arbitrarily small, RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
then decreases at about rate (ignoring

the leading coefficient and lower-order terms) 𝑛−𝑣 (𝛼∗,𝑐 ) as 𝑛 → ∞. Our assumption (38) ensures

𝑣 (𝛼∗, 𝑐) > 1/2 for every 𝑐 ∈ (0, 1). Consequently, for any choice of 𝑐 , the RQMC estimator’s RMSE

shrinks faster than the MC estimator’s RMSE, which from (1) decreases at rate 𝑛−𝑣MC
as 𝑛 → ∞,

where

𝑣MC ≡
1

2

. (41)

Moreover, for any fixed 𝛼∗ satisfying (38), 𝑣 (𝛼∗, 𝑐) is strictly increasing in 𝑐 , so choosing larger 𝑐

leads to the RQMC RMSE shrinking faster. We next want to see how large 𝑐 ∈ (0, 1) can be chosen

and still ensure CLT (20) or AVCI (31).

As will be shown below in Sections 5.1–5.6, the corollaries guaranteeing CLT (20) or AVCI (31)

in Sections 3 and 4 will typically lead to imposing restrictions on 𝑐 of the form

𝑐 < 𝑐𝑘 (𝛼∗) (42)

for some 0 < 𝑐𝑘 (𝛼∗) ≤ 1 depending on the particular Corollary 𝑘 considered. (The only exceptions

to constraints as in (42) are Corollaries 5 and 9, which essentially have 𝑐 = 0 because they assume

that 𝑛𝑐 = 𝑚𝑛 = 𝑚0 is fixed in (27); see Section 5.7 for more details.) We will see that except for

𝑘 = 1 and 6, each upper bound 𝑐𝑘 (𝛼∗) in (42) is strictly decreasing in 𝛼∗. Thus, as 𝛼∗ gets larger
(i.e., better RQMC convergence rate for a single randomization), the choices for 𝑐 ensuring CLT

(20) or AVCI (31) shrink in most cases, so the length𝑚𝑛 = 𝑛𝑐 of the low-discrepancy sequence

needs to grow more slowly and the number 𝑟𝑛 = 𝑛1−𝑐
of independent randomizations must increase

more quickly in 𝑛. In this sense, when RQMC does better on a single randomization, our sufficient

conditions handicap the method by choosing a budget allocation to employ more randomizations

𝑟𝑛 (i.e., smaller 𝑐) to secure a Gaussian limit. Appendix D.2 presents numerical results studying this,

showing that for a fixed budget 𝑛 and varying 𝑐 , CI coverage degrades when 𝑐 is too large.

The “largest” possible 𝑐 satisfying (42) is 𝑐 = 𝑐𝑘 (𝛼∗) − 𝛿 for 𝛿 > 0 infinitesimally small. For this

choice of 𝑐 , what is the RMSE convergence rate of the RQMC estimator? The exponent of 𝑛 in (40)

then becomes −[(𝑐𝑘 (𝛼∗) − 𝛿) (𝛼∗ − 1/2) + 1/2] − 𝜖 = −𝑣𝑘 (𝛼∗) − 𝑡1 (𝜖, 𝛿), where

𝑣𝑘 (𝛼∗) ≡ 𝑐𝑘 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

(43)

and 𝑡1 (𝜖, 𝛿) ≡ 𝜖 − 𝛿 [𝛼∗ − 1/2]. For each (arbitrarily small) 𝜖 > 0, we take any 𝛿 ∈ (0, 𝛿0 (𝜖)) for
𝛿0 (𝜖) = 𝜖/(𝛼∗ − 1/2) so that 𝑡1 (𝜖, 𝛿) > 0 under our assumption (38). We then get by (40) that

RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
= 𝜔

(
𝑛−𝑣𝑘 (𝛼∗ )−𝑡1 (𝜖,𝛿 )

)
as 𝑛 →∞, for any 𝜖 > 0 and any 𝛿 ∈ (0, 𝛿0 (𝜖)) . (44)

By (36), we also have that 𝜎𝑚 = 𝑜 (𝑚−𝛼∗+𝜖 ′ ) as𝑚 → ∞ for all arbitrarily small 𝜖′ > 0, yielding

𝜎𝑚𝑛
= 𝑜 (𝑛−𝑐𝛼∗+𝜖 ) as 𝑛 → ∞ for all 𝜖 > 0. This then leads to RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
= 𝜎𝑚𝑛

/√𝑟𝑛 =
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𝑜 (𝑛−[𝑐 (𝛼∗−1/2)+1/2]+𝜖 ) as 𝑛 →∞, and using 𝑐 = 𝑐𝑘 (𝛼∗) − 𝛿 results in

RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
= 𝑜

(
𝑛−𝑣𝑘 (𝛼∗ )+𝑡2 (𝜖,𝛿 )

)
as 𝑛 →∞, for any 𝜖 > 0 and any 𝛿 ∈ (0, 𝛿0 (𝜖)), (45)

where 𝑡2 (𝜖, 𝛿) ≡ 𝜖 + 𝛿 [𝛼∗ − 1/2] > 0 under our assumption (38). Therefore, because 𝑡1 (𝜖, 𝛿) > 0

and 𝑡2 (𝜖, 𝛿) > 0 in (44) and (45) can be made arbitrarily small by taking 𝜖 → 0 (which also ensures

𝛿 → 0), the optimal rate at which RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
decreases under (42) is about

RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
≃𝑛−𝑣𝑘 (𝛼∗ ) as 𝑛 →∞, (46)

for 𝑣𝑘 (𝛼∗) from (43), where “≃” is as defined after (36).

We see by (43) that 𝑣𝑘 (𝛼∗) > 1/2 under our assumption that 𝛼∗ > 1/2 in (38) because 𝑐𝑘 (𝛼∗) > 0

always holds in (42). Hence, the optimal rate at which the RQMC estimator’s RMSE shrinks is faster

than MC’s rate exponent 𝑣MC = 1/2. For any Corollaries 𝑘 and 𝑘 ′, (43) also implies that for a fixed

𝛼∗ under our assumption (38),

𝑣𝑘 (𝛼∗) > 𝑣𝑘 ′ (𝛼∗) if and only if 𝑐𝑘 (𝛼∗) > 𝑐𝑘 ′ (𝛼∗), (47)

so expanding the range of valid values for 𝑐 in (42) corresponds to better optimal approximate RMSE

convergence rate by (46). If the constraint (42) has 𝑐𝑘 (𝛼∗) = 1, which is the largest possible upper

bound, then (43) shows that 𝑣𝑘 (𝛼∗) = 𝛼∗; thus in this case, even with the number of randomizations

slowly growing large (i.e., 𝑐 = 1 − 𝛿 for infinitesimally small 𝛿 > 0, which we denote as 𝑐�1),

RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
decreases at about the rate for a single randomization of a low-discrepancy sequence

of full length𝑚𝑛 = 𝑛 (or for an RQMC estimator with a fixed number 𝑟0 ≥ 1 of randomizations,

each of length𝑚𝑛 = ⌊𝑛/𝑟0⌋).
The next few subsections will specialize 𝑐𝑘 (𝛼∗) in (42) and 𝑣𝑘 (𝛼∗) in (43) for Corollaries 𝑘 = 1,

2, 3, 4, 6, 7, and 8. Appendices B and C compare the resulting values analytically and graphically,

respectively.

5.1 CLT and AVCI Conditions Under Corollaries 1 and 6
For𝑚𝑛 →∞ as 𝑛 →∞, Corollary 1 ensures CLT (20) under condition (22) for some 𝑑 > 0 (used for

the order-(2 + 𝑑) absolute central moment of 𝐴𝑚); Corollary 6 secures AVCI (31) using condition

(22) with 𝑑 = 2. As (22) does not depend on the allocation (𝑚𝑛, 𝑟𝑛), Corollaries 1 and 6 allow any

𝑐 < 1 in Assumption 1.B, so we define 𝑐1 (𝛼∗) and 𝑐6 (𝛼∗) in constraint (42) and 𝑣1 (𝛼∗) and 𝑣6 (𝛼∗) in
(43) as

𝑐1 (𝛼∗) = 𝑐6 (𝛼∗) ≡ 1 and 𝑣1 (𝛼∗) ≡ 𝑐1 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

= 𝛼∗ ≡ 𝑣6 (𝛼∗). (48)

Thus, as noted in the discussion after (47), because 𝑣1 (𝛼∗) = 𝑣6 (𝛼∗) = 𝛼∗, the RMSE of 𝜇̂
RQ

𝑚𝑛,𝑟𝑛 as

𝑛 →∞ with the number 𝑟𝑛 of randomizations slowly growing large (i.e., 𝑐 < 1 with 𝑐�1) decreases

at about the same rate 𝑛−𝛼∗ as for an RQMC estimator with a fixed number 𝑟0 ≥ 1 of randomizations.

This is perhaps the best that one can hope for to ensure a CLT or AVCI with RQMC. Moreover,

as previously noted in Section 3.1, if we instead consider the more general allocation (𝑚𝑛, 𝑟𝑛) of
Assumption 1.A, Corollaries 1 and 6 allow the number 𝑟𝑛 of randomizations to grow more slowly

than 𝑛𝑐 for any 𝑐 > 0, e.g., 𝑟𝑛 = ⌊ln𝑛⌋, permitting RQMC to even further exploit QMC’s fast

convergence.
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5.2 Corollary 2: CLT Conditions When ℎ ∈ BVHK

We now derive a constraint on 𝑐 as in (42) to ensure CLT (20) through Corollary 2, which requires

ℎ ∈ BVHK (Assumption 3.A) and that (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) satisfies (24) for some (small) 𝜆 ∈ (0, 1).
Then the left side of (24) becomes 𝑛 (1−𝑐 ) (1−𝜆)

(
𝑛𝑐𝜎𝑚𝑛

(𝑐 ln𝑛)𝑠
)

2

. Thus, squaring (39) implies that (24) holds

when (1 − 𝑐) (1 − 𝜆) + 2𝑐 − 2𝑐𝛼∗ > 0 for some 𝜆 ∈ (0, 1). This is equivalent to

𝑐 <
1 − 𝜆

2𝛼∗ − 1 − 𝜆 ≡ 𝑐
′
2
(𝛼∗, 𝜆). (49)

Because Corollary 2 assumes that ℎ ∈ BVHK so 𝛼∗ ≥ 1 by (37), we get 𝑐′
2
(𝛼∗, 𝜆) = 1 when 𝛼∗ = 1.

Now consider any fixed 𝛼∗ > 1. As 𝑐′
2
(𝛼∗, 𝜆) is strictly decreasing in 𝜆 ∈ (0, 1), choosing 𝜆 smaller

leads to a looser constraint (i.e., more possible choices for 𝑐 satisfying (49)), and Corollary 2 allows

taking 𝜆 ∈ (0, 1) in (24) to be arbitrarily small. But as 𝑐′
2
(𝛼∗, 𝜆) is continuous in 𝜆 ∈ (0, 1) and

because (49) has a strict inequality, we can replace (49) with the constraint

𝑐 <
1

2𝛼∗ − 1

≡ 𝑐2 (𝛼∗), which satisfies 0 < 𝑐2 (𝛼∗) ≤ 1 (50)

since 𝛼∗ ≥ 1. (To see why (49) can be replaced by the constraint in (50), note that if 𝑐 < 𝑐2 (𝛼∗), then
(49) also holds for any 𝜆 ∈ (0, 𝜆0), where 𝜆0 ≡ (1 − 2𝑐𝛼∗ + 𝑐)/(1 − 𝑐) is strictly positive because

1 − 2𝑐𝛼∗ + 𝑐 > 0 by (50). Also, (37) ensures that 𝜆0 ≤ 1.) If 𝛼∗ = 1, then 𝑐2 (𝛼∗) = 1, making (50) the

weakest possible constraint on 𝑐 . For 𝛼∗ > 1, we get 𝑐2 (𝛼∗) < 1.

Under Corollary 2, the optimal rate that RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases is about 𝑛−𝑣2 (𝛼∗ ) as 𝑛 → ∞,
with

𝑣2 (𝛼∗) ≡ 𝑐2 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

= 1 (51)

by (43), (50) and (37), so 𝑣2 (𝛼∗) > 𝑣MC = 1/2.

5.3 Corollary 3: CLT Conditions When ℎ ∈ L∞

Note that (39) implies that (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) satisfies condition (25) of Corollary 3 if 𝑟𝑛𝜎
2

𝑚𝑛
=

𝜔
(
𝑛1−𝑐𝑛−2𝑐𝛼∗−2𝜖

)
→∞ as𝑛 →∞ for all sufficiently small 𝜖 > 0, which is true when 1−𝑐−2𝑐𝛼∗ > 0,

or equivalently,

𝑐 <
1

2𝛼∗ + 1

≡ 𝑐3 (𝛼∗), which satisfies 0 < 𝑐3 (𝛼∗) <
1

2

(52)

under the assumption that 𝛼∗ > 1/2 in (38). If 𝛼∗ ≥ 1, as (37) ensures when ℎ ∈ BVHK, which is

not required by Corollary 3, then 0 < 𝑐3 (𝛼∗) ≤ 1/3.
By (43) and (52), the optimal rate at which RMSE

[
𝜇̂
RQ

𝑚𝑛,𝑟𝑛

]
decreases (as𝑛 →∞) under Corollary 3

is about 𝑛−𝑣3 (𝛼∗ ) with

𝑣3 (𝛼∗) ≡ 𝑐3 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

=
2𝛼∗

2𝛼∗ + 1

, which satisfies

1

2

< 𝑣3 (𝛼∗) < 1 (53)

when 𝛼∗ > 1/2. (If 𝛼∗ ≥ 1, as in (37), then 2/3 ≤ 𝑣3 (𝛼∗) < 1.) Hence, under Corollary 3, the RQMC

estimator’s RMSE shrinks faster than the MC estimator’s RMSE by (41).

5.4 Corollary 4: CLT Conditions When ℎ ∈ L2+𝑏 for Some 𝑏 > 0

We now derive a constraint on 𝑐 as in (42) to ensure CLT (20) through Corollary 4, which assumes

that ℎ ∈ L2+𝑏
(Assumption 3.C) and (26) both hold for some 𝑏 > 0. In (26), we have 𝑟

𝑏/(2+𝑏 )
𝑛 =

𝑛 (1−𝑐 )𝑏/(2+𝑏 ) and 𝜎𝑚𝑛
= 𝜔 (𝑛−𝑐𝛼∗−𝜖 ) for any 𝜖 > 0 by (39). Thus, (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) satisfies (26)
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if 𝑟
𝑏/(2+𝑏 )
𝑛 𝜎2

𝑚𝑛
= 𝜔

(
𝑛 (1−𝑐 )

𝑏
2+𝑏 −2𝑐𝛼∗−2𝜖

)
→ ∞ as 𝑛 → ∞, which holds when (1 − 𝑐) 𝑏

2+𝑏 − 2𝑐𝛼∗ > 0,

or equivalently,

𝑐 <
1

2𝛼∗ (1 + 2

𝑏
) + 1

≡ 𝑐4 (𝛼∗, 𝑏), which satisfies 0 < 𝑐4 (𝛼∗, 𝑏) <
1

2

(54)

for each 𝑏 > 0 when 𝛼∗ > 1/2, as assumed in (38). If 𝛼∗ ≥ 1, as (37) ensures when ℎ ∈ BVHK

(Assumption 3.A), which is not required by Corollary 4, then 0 < 𝑐4 (𝛼∗, 𝑏) ≤ 1/3. In general, for

any fixed 𝛼∗ > 1/2, 𝑐4 (𝛼∗, 𝑏) is strictly increasing in 𝑏, so the more absolute central moments of

ℎ(𝑈 ) that are finite (as required by (11)), the larger we can choose 𝑐 in (54).

By (43), under Corollary 4, the optimal rate at which RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases (as 𝑛 → ∞) is
about 𝑛−𝑣4 (𝛼∗,𝑏 ) , where for any 𝑏 > 0,

𝑣4 (𝛼∗, 𝑏) ≡ 𝑐4 (𝛼∗, 𝑏)
(
𝛼∗ −

1

2

)
+ 1

2

=
2𝛼∗ (1 + 1

𝑏
)

2𝛼∗ (1 + 2

𝑏
) + 1

, which satisfies

1

2

< 𝑣4 (𝛼∗, 𝑏) < 1 (55)

when 𝛼∗ > 1/2. Hence, we get 𝑣4 (𝛼∗, 𝑏) > 𝑣MC = 1/2 by (41) for any 𝑏 > 0. Also, 𝑣4 (𝛼∗, 𝑏) is strictly
increasing in 𝑏 because 𝑐4 (𝛼∗, 𝑏) has this property and 𝛼∗ > 1/2, so the optimal convergence rate

of RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] under Corollary 4 improves as ℎ(𝑈 ) has more finite absolute moments.

It is interesting to note that lim𝑏→∞ 𝑐4 (𝛼∗, 𝑏) = 𝑐3 (𝛼∗), the latter from (52) when the integrand ℎ

is bounded. Similarly, we have that lim𝑏→∞ 𝑣4 (𝛼∗, 𝑏) = 𝑣3 (𝛼∗). Thus, the tradeoffs of the conditions
of Corollaries 3 and 4 disappear as 𝑏 →∞.

5.5 Corollary 7: AVCI Conditions When ℎ ∈ BVHK

For 𝐼
RQ

𝑚𝑛,𝑟𝑛,𝛾 in (29) to be AVCI as in (31), we assumed, in addition to the CLT in (20), that (30) holds.

Corollary 7 ensures (30) is satisfied when ℎ ∈ BVHK (Assumption 3.A) and condition (33) holds,

which is the same as the square of CLT condition (24) for 𝜆 = 1/2. In the setting of Assumption 1.B,

(24) holds for 𝜆 = 1/2 if 𝑐 satisfies (49) with 𝜆 = 1/2, so AVCI condition (33) is true when

𝑐 <
1

4𝛼∗ − 3

≡ 𝑐7 (𝛼∗), which satisfies 0 < 𝑐7 (𝛼∗) ≤ 1 (56)

because 𝛼∗ ≥ 1 by (37). Note that 𝑐7 (𝛼∗) = 1 when 𝛼∗ = 1, and 𝑐7 (𝛼∗) < 1 for 𝛼∗ > 1.

By (43), under Corollary 7, the optimal rate at which RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases (as 𝑛 → ∞) is
about 𝑛−𝑣7 (𝛼∗ ) , with

𝑣7 (𝛼∗) ≡ 𝑐7 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

=
3𝛼∗ − 2

4𝛼∗ − 3

, which satisfies

3

4

< 𝑣7 (𝛼∗) ≤ 1 (57)

since 𝛼∗ ≥ 1 by (37). Note that (57) implies that 𝑣7 (𝛼∗) > 𝑣MC = 1/2. Also, 𝑣7 (𝛼∗) = 1 when 𝛼∗ = 1,

and 𝑣7 (𝛼∗) < 1 for 𝛼∗ > 1. Thus, while (57) implies that RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] can at best decrease at about

rate 𝑛−1
as 𝑛 →∞ under Corollary 7, we can do better through Corollary 6 when its conditions

hold, as discussed in Section 5.1. In the latter case, (48) shows that RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] shrinks at about
rate 𝑛−𝛼∗ , which is better than Corollary 7 for 𝛼∗ > 1.

5.6 Corollary 8: AVCI Conditions When ℎ ∈ L4

By Corollary 8, which does not require ℎ ∈ BVHK, the combination of ℎ ∈ L4
(Assumption 3.C

with 𝑏 = 2) and condition (34) implies (30), then ensuring AVCI (31). Under Assumption 1.B, we

have in (34) that 𝜎4

𝑚𝑛
= 𝜔 (𝑛−4𝑐𝛼∗−4𝜖 ) as 𝑛 →∞ for any 𝜖 > 0 by (39) and 𝑟𝑛 = 𝑛1−𝑐

. Thus, (34) holds

if 𝑟𝑛𝜎
4

𝑚𝑛
= 𝜔 (𝑛1−𝑐𝑛−4𝑐𝛼∗−4𝜖 ) → ∞ as 𝑛 →∞, which is true if 1 − 𝑐 − 4𝑐𝛼∗ > 0, or equivalently,

𝑐 <
1

4𝛼∗ + 1

≡ 𝑐8 (𝛼∗), which satisfies 0 < 𝑐8 (𝛼∗) <
1

3

(58)
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Cor. 𝑘 Ensures Key Assumption 𝑐 upper bd 𝑐𝑘 (𝛼∗) RMSE rate exp 𝑣𝑘 (𝛼∗)
1 CLT Eq. (22) for some 𝑑 > 0 1 ≥ 𝛼∗
2 CLT 3.A (ℎ ∈ BVHK)

1

2𝛼∗−1
> 1 >

3 CLT 3.B (ℎ ∈ L∞) 1

2𝛼∗+1 >
2𝛼∗

2𝛼∗+1 >

4 CLT 3.C (ℎ ∈ L2+𝑏
for some 𝑏 > 0)

1

2𝛼∗ (1+ 2

𝑏
)+1 >

2𝛼∗ (1+ 1

𝑏
)

2𝛼∗ (1+ 2

𝑏
)+1 >

5 CLT 3.D (ℎ ∈ L2
) 0

1

2

6 AVCI Eq. (22) for 𝑑 = 2 1 ≥ 𝛼∗
7 AVCI 3.A (ℎ ∈ BVHK)

1

4𝛼∗−3
>

3𝛼∗−2

4𝛼∗−3
>

8 AVCI 3.C (ℎ ∈ L4
)

1

4𝛼∗+1 >
3𝛼∗

4𝛼∗+1 >

9 AVCI 3.D (ℎ ∈ L2
) 0

1

2

Table 2. Summary of Corollaries 1–9 under Assumption 1.B (i.e., (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 )), where the inequalities
in the last two columns compare entries in successive rows within the same column.

when 𝛼∗ > 1/2, as assumed in (38). If 𝛼∗ ≥ 1, then 0 < 𝑐8 (𝛼∗) ≤ 1/5.
By (43), under Corollary 8, the optimal rate at which RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases (as 𝑛 → ∞) is

about 𝑛−𝑣8 (𝛼∗ ) , where

𝑣8 (𝛼∗) ≡ 𝑐8 (𝛼∗)
(
𝛼∗ −

1

2

)
+ 1

2

=
3𝛼∗

4𝛼∗ + 1

, which satisfies

1

2

< 𝑣8 (𝛼∗) <
3

4

(59)

when 𝛼∗ > 1/2. Thus, we have 𝑣8 (𝛼∗) > 𝑣MC = 1/2 by (41).

5.7 Remarks on the Case𝑚𝑛 ≡𝑚0 in Corollaries 5 and 9
As noted before after (42), Corollaries 5 and 9 essentially have 𝑐 = 0 as they assume that 𝑛𝑐 =𝑚𝑛 =

𝑚0 is fixed in (27). Thus, under Corollaries 5 and 9, which require Assumption 3.D (ℎ ∈ L2
), the

exact rate at which RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases (as 𝑛 →∞) is 𝑛−1/2
, which can be seen through (43)

and (46) by setting 𝑐𝑘 (𝛼∗) = 0. Hence, the RMSE for this case of RQMC shrinks at the same rate

as for MC by (41), but RQMC, which can be viewed as a variance-reduction technique (e.g., see

[19, 21]), typically has a smaller leading coefficient for its rate.

To facilitate comparisons with the other corollaries, we define 𝑐5 (𝛼∗) = 𝑐9 (𝛼∗) = 0, and we take

𝑐 = 0 for 𝑘 ∈ {5, 9}. Also, we let 𝑣5 (𝛼∗) = 𝑣9 (𝛼∗) = 1/2, consistent with (43) and (46). By (54), we

see that lim𝑏→0 𝑐4 (𝛼∗, 𝑏) = 0 = 𝑐5 (𝛼∗), so the allocation condition of Corollary 4 (which assumes

ℎ ∈ L2+𝑏
) reduces to that of Corollary 5 (which assumes ℎ ∈ L2

) as 𝑏 → 0. Similarly, we have

that lim𝑏→0 𝑣4 (𝛼∗, 𝑏) = 1/2 = 𝑣5 (𝛼∗). Thus, the tradeoffs of the conditions of Corollaries 4 and 5

disappear as 𝑏 → 0.

5.8 Summary of Results Under Assumption 1.B
Appendix B (resp., C) analytical (resp., graphical) comparisons of some of the 𝑐𝑘 (𝛼∗) and 𝑣𝑘 (𝛼∗)
values for the various Corollaries 𝑘 .

Table 2 summarizes the most important assumptions and conclusions of Corollaries 1–9 under

Assumption 1.B, which enables sharper results compared to those in Table 1 under Assumption 1.A.

The table shows that strengthening the assumptions ensures that RQMC’s RMSE shrinks at a faster

rate.
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6 CONCLUSIONS
RQMC methods provide powerful simulation tools accelerating the convergence rate with respect

to MC. A standard way to estimate the RQMC error in practice exploits an assumed CLT over 𝑟 ≥ 2

i.i.d. randomizations, but typically restricting the size of 𝑟 so that more weight can be put on the

low-discrepancy size𝑚 to gain from the superior convergence rate of QMC. A common rule of

thumb suggests a CLT roughly holds for fixed 𝑟 ≈ 30; however, this heuristic has lacked rigorous

theoretical support for most RQMC methods. The only existing CLT results that the authors are

aware of as 𝑚 increases and fixed 𝑟 < ∞ [2, 13, 28] are for scrambled digital nets with nested

uniform scrambling, but this RQMC technique is computationally expensive, which has limited its

adoption in the past, although this may be less of an issue with today’s more powerful computers.

In contrast, [23] proves that increasing𝑚 for any fixed number of randomizations can lead to a

non-normal limiting distribution. To our knowledge, no theoretical result covering a broad class

of RQMC methods has ever been published in the literature guaranteeing a CLT for𝑚 →∞. Our
paper provides sufficient conditions on (𝑚, 𝑟 ) and their relative increase under the framework

of Lindeberg’s condition for triangular arrays. The conditions depend on the properties of the

integrand and the convergence speed of the RQMC standard deviation from a single randomization

(at least along a specified subsequence). We have also given conditions for AVCI, when the standard

deviation is estimated. We have presented several properties of the conditions and the convergence

speed of the resulting estimators.

Many of our corollaries in Sections 3.1 and 4.1 specify that an allocation (𝑚,𝑛) = (𝑚𝑛, 𝑟𝑛) has that
𝑚𝑛 does not grow too quickly relative to 𝑟𝑛 as the computing budget 𝑛 →∞. For these results, if the
variance of an RQMC estimator from a single randomization decreases too quickly, we may not be

able to ensure that an RQMC estimator from 𝑟𝑛 randomizations obeys a CLT with a Gaussian limit

nor yields an AVCI; see Appendix D.2 for numerical results studying this. But an exception to this

is Corollary 1 (resp., 6), which secures a CLT (resp., AVCI) for 𝑟𝑛 →∞ at any arbitrarily slow rate

as 𝑛 →∞ when condition (22) holds for some 𝑑 > 0 (resp., 𝑑 = 2). We are currently investigating

alternatives to condition (22) that similarly allow 𝑟𝑛 →∞ at any rate (possibly sub-polynomial, e.g.,

𝑟𝑛 = ⌊ln𝑛⌋). As directions for other future research, we also plan to provide a guide for practitioners

on how to choose under Assumption 1.B a value of 𝑐 as large as possible to satisfy a CLT. As this

may entail estimating 𝛼∗ in (35), which is the exponent defining the rate at which the standard

deviation decreases for a single randomization, we would need to account for the statistical error

in our estimate of 𝛼∗. Given that we provide sufficient conditions for a CLT or AVCI, we also aim

to see if they can be weakened. More numerical investigations can also be worthwhile towards

this goal. Moreover, rather than build a CI for 𝜇 based on a CLT, we are additionally investigating

instead employing resampling methods, such as the bootstrap 𝑡 [37, Chapter 17 end notes].
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A PROOFS
Proof of Proposition 2.1. As shown in [33], functions of bounded Hardy-Krause variation are

Riemann integrable, and therefore bounded, which [32] also uses. Thus, Assumption 3.A (integrand

ℎ ∈ BVHK) is stronger than Assumption 3.B (ℎ ∈ L∞). To show that the relation is strict, for any

dimension 𝑠 ≥ 2, consider ℎ to be an indicator function (so 𝜇 is a probability) with discontinuities
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not lining up with the axes: it is bounded but has 𝑉HK (ℎ) = ∞. An explicit example [33] is

ℎ(𝑢) = I(∑𝑠
𝑖=1
𝑢𝑖 ≤ 1), for 𝑢 = (𝑢1, . . . , 𝑢𝑠 ) ∈ [0, 1]𝑠 , with I(·) the indicator function.

We next verify that Assumption 3.B is stronger than Assumption 3.C (ℎ ∈ L2+𝑏
for some 𝑏 > 0).

For ℎ ∈ L∞, there exists 𝑡0 < ∞ such that |ℎ(𝑢) − 𝜇 | ≤ 2𝑡0 for almost every 𝑢 ∈ [0, 1]𝑠 . It follows
thatE[|ℎ(𝑈 ) − 𝜇 |𝑞] ≤ (2𝑡0)𝑞 for all 𝑞 > 0, so ℎ ∈ L𝑞 for all 𝑞 > 0. To show the converse is not true,

consider ℎ(𝑢) = Φ← (𝑢) for 𝑠 = 1 (recall Φ is the N(0, 1) CDF), where 𝐹← (𝑢) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑢}
is the (generalized) inverse of a CDF 𝐹 , so ℎ ∉ L∞ but ℎ ∈ L𝑞 for all 𝑞 ≥ 1.

Assumption 3.C implies Assumption 3.D (ℎ ∈ L2
) by Lyapounov’s inequality [3, pp. 81 and

277]. To show that the relation is strict, we modify an example of [9, p. 366]. For 𝑠 = 1, let

ℎ(𝑢) = 𝐹← (𝑢), where 𝐹 is the CDF of the density function 𝑓 (𝑥) = 𝑘0I(𝑥 ≥ 𝑒)/[𝑥3 (ln𝑥)2] with
𝑘0 = (

∫ ∞
𝑒

d𝑥/[𝑥3 (ln𝑥)2])−1 � 26.64. As ℎ(𝑈 ) ∼ 𝐹 , we have that E[ℎ(𝑈 )2] =
∫ ∞
𝑒

𝑘0𝑥
2

𝑥3 (ln𝑥 )2 d𝑥 =∫ ∞
𝑒

𝑘0

𝑥 (ln𝑥 )2 d𝑥 =

[
− 𝑘0

ln𝑥

]∞
𝑥=𝑒

= 𝑘0, so Var[ℎ(𝑈 )] < ∞. But for any fixed 𝑏 > 0, we get E[ℎ(𝑈 )2+𝑏] =∫ ∞
𝑒

𝑘0𝑥
2+𝑏

𝑥3 (ln𝑥 )2 d𝑥 = 𝑘0

∫ ∞
𝑒

1

𝑥1−𝑏 (ln𝑥 )2 d𝑥 ≥ (𝑘0/𝑘𝑏)
∫ ∞
𝑒

1

𝑥1−𝑏/2 d𝑥 = ∞ for 𝑘𝑏 = [4/(𝑏𝑒)]2 because

(ln𝑥)2 ≤ 𝑘𝑏𝑥𝑏/2 for all 𝑥 ≥ 𝑒 . ■

Proof of Lemma 2.3. As seen by (10), 𝑋𝑛,1 averages𝑚𝑛 dependent terms, which we will handle

through Minkowski’s inequality [3, eq. (5.40)]:

𝜂𝑛,𝑞 = E

[��� 𝑚𝑛∑︁
𝑖=1

ℎ(𝑈 ′𝑖,1) − 𝜇
𝑚𝑛

���𝑞] ≤ [
𝑚𝑛∑︁
𝑖=1

(
E

[���ℎ(𝑈 ′𝑖,1) − 𝜇
𝑚𝑛

���𝑞] )1/𝑞]𝑞
=

[
𝑚𝑛

(
E

[���ℎ(𝑈 ) − 𝜇
𝑚𝑛

���𝑞] )1/𝑞
]𝑞

= E [|ℎ(𝑈 ) − 𝜇 |𝑞] ,

where the third step holds because each𝑈 ′𝑖,1 𝑖 = 1, 2, . . . ,𝑚𝑛 , is distributed as𝑈 ∼ U[0, 1]𝑠 . ■

Proof of Theorem 3.2. Fix any 𝑡 > 0 for 𝜏2

𝑛 (𝑡) in (18), and we will bound 𝜏2

𝑛 (𝑡) as in the proof of

the Lyapounov CLT in [3, Theorem 27.3]. Specifically, the condition |𝑦 | > 𝑡𝑠𝑛 in (18) implies that

|𝑦 |𝑑/(𝑡𝑑𝑠𝑑𝑛 ) > 1, so

𝜏2

𝑛 (𝑡) ≤
1

𝑡𝑑𝑠𝑑𝑛

∫
|𝑦 |>𝑡𝑠𝑛

𝑦2 |𝑦 |𝑑 d𝐺𝑛 (𝑦) ≤
1

𝑡𝑑𝑠𝑑𝑛
E

[
|𝑌𝑛,1 |2+𝑑

]
=

1

𝑡𝑑𝑟
𝑑/2
𝑛 𝜎𝑑𝑚𝑛

E

[
|𝑋𝑛,1 − 𝜇 |2+𝑑

]
(60)

by (17), with E
[
|𝑋𝑛,1 − 𝜇 |2+𝑑

]
< ∞ by assumption, which ensures 𝜎2

𝑚𝑛
< ∞. Thus, as in (19),

dividing throughout eq. (60) by 𝜎2

𝑚𝑛
, which is strictly positive for all 𝑛 large enough (Assumption 4),

shows that (21) guarantees (19) because 𝑡 > 0 is fixed and arbitrary, so CLT (20) holds by Theorem 3.1.

■

Proof of Corollary 1. The moments of 𝑋𝑛,1 in (21) are the same as the moments of 𝐴𝑚𝑛
in (22)

with𝑚 =𝑚𝑛 . As a consequence, because𝑚𝑛 →∞ as 𝑛 →∞, (22) yields

E

[��𝑋𝑛,1 − 𝜇��2+𝑑 ]
𝜎2+𝑑
𝑚𝑛

≤ 𝑘1, for all 𝑛 sufficiently large. (61)

For all 𝑛 satisfying eq. (61) and Assumption 4, the left side of (21) is bounded above by 𝑘1/𝑟𝑑/2𝑛 ,

which vanishes as 𝑛 →∞ because 𝑑 > 0 and 𝑟𝑛 →∞ as 𝑛 →∞ under Assumption 1.A. Thus, (21)

holds, so CLT (20) follows from Theorem 3.2. Under (23), we have E
[
|𝑋𝑛,1 − 𝜇 |2+𝑑

]
≤ 𝑘2+𝑑

2
𝜎2+𝑑
𝑚𝑛

for

all 𝑛 sufficiently large because𝑚𝑛 →∞, securing (22) with 𝑘1 = 𝑘
2+𝑑
2

. ■
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Proof of Corollary 2. We will verify the conditions of Theorem 3.2 for 𝑑 = 2(1 − 𝜆)/𝜆 > 0. By

assumption, we have that𝑚𝑛 > 1 for all 𝑛 sufficiently large, and consider any such 𝑛 for which

Assumption 4 also holds. Because ℎ ∈ BVHK, Lemma 2.2 guarantees that E[|𝑋𝑛,1 − 𝜇 |2+𝑑 ] < ∞ by

(12) with 𝑞 = 2 + 𝑑 , so 0 < 𝜎2

𝑚𝑛
< ∞. Also, applying (12) of Lemma 2.2 ensures that the left side of

(21) satisfies

E

[��𝑋𝑛,1 − 𝜇��2+𝑑 ]
𝑟
𝑑/2
𝑛 𝜎2+𝑑

𝑚𝑛

≤ 1

𝑟
𝑑/2
𝑛

(
𝑤 ′

0
𝑉HK (ℎ) (ln𝑚𝑛)𝑠

𝑚𝑛𝜎𝑚𝑛

)
2+𝑑

. (62)

Raising the right side of eq. (62) to the 2/(2 + 𝑑) power shows that it vanishes as 𝑛 → ∞ if and

only if

𝑟
𝑑/(2+𝑑 )
𝑛

(
𝑚𝑛𝜎𝑚𝑛

(ln𝑚𝑛)𝑠

)
2

→∞, as 𝑛 →∞. (63)

But 𝑑/(2 + 𝑑) = 1 − 𝜆, so (24) and (63) imply (21), and (19) and (20) follow from Theorem 3.2. ■

Proof of Corollary 3. As ℎ ∈ L∞ (Assumption 3.B), there exists a constant 𝑡0 ∈ (0,∞) such
that P( |𝑌𝑛,𝑗 | ≤ 2𝑡0) = 1 for all 𝑛 and 𝑗 . Hence, (18) ensures 𝜏2

𝑛 (𝑡) = 0 whenever 𝑡𝑠𝑛 > 2𝑡0, which

holds, given any 𝑡 > 0, for all 𝑛 > 𝑛0 for some 𝑛0 by (25). Thus, the numerator of (19) is zero for all

𝑛 > 𝑛0, so (20) follows from Theorem 3.1. ■

Proof of Corollary 4. Because 𝑏 > 0, raising (26), which has nonnegative left side, to the

(2 + 𝑏)/2 power is equivalent to

𝑟
𝑏/2
𝑛 𝜎2+𝑏

𝑚𝑛
→∞, as 𝑛 →∞. (64)

By (11), Lemma 2.3 with 𝑞 = 2 + 𝑏 then implies that the left side of (21) satisfies

E

[��𝑋𝑛,1 − 𝜇��2+𝑏 ]
𝑟
𝑏/2
𝑛 𝜎2+𝑏

𝑚𝑛

≤
E

[
|ℎ(𝑈 ) − 𝜇 |2+𝑏

]
𝑟
𝑏/2
𝑛 𝜎2+𝑏

𝑚𝑛

→ 0, as 𝑛 →∞

by eq. (64), so (21) holds. Hence, (19) and (20) follow from Theorem 3.2. ■

Proof of Corollary 5. For 𝑛 ≥ 𝑚0, we have by (27) that 𝑋𝑛,𝑗 = 𝑋 𝑗 for 𝑗 = 1, 2, . . . , 𝑟𝑛 , with

𝑋 𝑗 = (1/𝑚0)
∑𝑚0

𝑖=1
ℎ(𝑈 ′𝑖, 𝑗 ) not depending on 𝑛 because𝑚𝑛 = 𝑚0 is fixed. Thus, 𝑋1, 𝑋2, . . . form a

single i.i.d. sequence with mean 𝜇 and variance 𝜎2

𝑚0

= Var[𝑋1] = Var[𝑋𝑛,1], which Lemma 2.3

with 𝑞 = 2 ensures is finite by Assumption 3.D. For 𝐺 as the distribution of 𝑋1 − 𝜇, (19) reduces
to lim𝑛→∞

1

𝜎2

𝑚
0

∫
|𝑦 |>𝑡𝜎𝑚

0

√
𝑟𝑛
𝑦2

d𝐺 (𝑦) → 0 as 𝑛 → ∞ for each 𝑡 > 0, which holds because {|𝑦 | >
𝑡𝜎𝑚0

√
𝑟𝑛} → ∅ as 𝑛 →∞ since 0 < 𝜎𝑚0

< ∞ and 𝑟𝑛 = ⌊𝑛/𝑚0⌋ → ∞ as 𝑛 →∞. Hence, Theorem 3.1

yields (20). ■

Proof of Proposition 3.3. We first compare the restrictions on (𝑚𝑛, 𝑟𝑛) in Corollaries 4 and 5.

If (27) holds, then the left side of (26) becomes 𝑟
𝑏/(2+𝑏 )
𝑛 𝜎2

𝑚𝑛
= (⌊𝑛/𝑚0⌋)𝑏/(2+𝑏 )𝜎2

𝑚0

→∞ as 𝑛 →∞
because 𝜎2

𝑚0

> 0, so (27) implies (26).

We next analyze the requirements on (𝑚𝑛, 𝑟𝑛) in Corollaries 3 and 4. Expressing the left side of

(25) as 𝑟𝑛𝜎
2

𝑚𝑛
= 𝑟

2/(2+𝑏 )
𝑛 𝑟

𝑏/(2+𝑏 )
𝑛 𝜎2

𝑚𝑛
shows that (26) implies (25) since 𝑟

2/(2+𝑏 )
𝑛 → ∞ as 𝑛 → ∞ by

Assumption 1.A.

We finally compare condition (24) of Corollary 2 with condition (25) of Corollary 3. Writing the

left side of (24) as

𝑟 1−𝜆
𝑛

(
𝑚𝑛𝜎𝑚𝑛

(ln𝑚𝑛)𝑠

)
2

=
[
𝑟𝑛𝜎

2

𝑚𝑛

] [
1

𝑟𝜆𝑛

(
𝑚𝑛

(ln𝑚𝑛)𝑠

)
2

]
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makes clear that choosing (𝑚𝑛, 𝑟𝑛) to satisfy (25) ensures that (24) is satisfied when (28) holds. To

verify (28) under Assumption 1.B, observe that (𝑚𝑛, 𝑟𝑛) = (𝑛𝑐 , 𝑛1−𝑐 ) for 𝑐 ∈ (0, 1) leads to the left
side of (28) becoming

1

𝑛𝜆 (1−𝑐 )

(
𝑛𝑐

(ln𝑛𝑐 )𝑠
)

2

= 𝑛2𝑐−𝜆 (1−𝑐 )/(𝑐 ln𝑛)2𝑠 , which grows to∞ as 𝑛 →∞ for any

𝜆 ∈ (0, 𝜆0), where 𝜆0 = min(2𝑐/(1− 𝑐), 1) > 0. (Corollary 2 allows taking 𝜆 > 0 arbitrarily small.) ■

Proof of Theorem 4.1. Note that (30) implies that 𝜎𝑚𝑛
/𝜎𝑚𝑛,𝑟𝑛 ⇒ 1 as 𝑛 →∞ by the continuous-

mapping theorem (e.g., [3, Theorem 25.7]). Thus, (20) ensures that

𝜇̂
RQ

𝑚𝑛,𝑟𝑛 − 𝜇
𝜎𝑚𝑛,𝑟𝑛/

√
𝑟𝑛

=

(
𝜎𝑚𝑛

𝜎𝑚𝑛,𝑟𝑛

)
𝜇̂
RQ

𝑚𝑛,𝑟𝑛 − 𝜇
𝜎𝑚𝑛
/√𝑟𝑛

⇒ N(0, 1), as 𝑛 →∞,

by Slutsky’s theorem [38, Theorem 1.5.4]. Hence,

P(𝜇 ∈ 𝐼RQ𝑚𝑛,𝑟𝑛,𝛾 ) = P
(
−𝑧𝛾 ≤

𝜇̂
RQ

𝑚𝑛,𝑟𝑛 − 𝜇
𝜎𝑚𝑛,𝑟𝑛/

√
𝑟𝑛
≤ 𝑧𝛾

)
→ 𝛾, as 𝑛 →∞,

by the portmanteau theorem [3, Theorem 25.8], establishing (31). ■

Proof of Theorem 4.2. As (32) is equivalent to (21) for 𝑑 = 2, Theorem 3.2 guarantees CLT (20)

because we assumed that E
[
(𝑋𝑛,1 − 𝜇)4

]
< ∞. Thus, if (30) holds, then Theorem 4.1 will imply

(31).

We will prove (30) by establishing that 𝑝𝑛 ≡ P
(���𝜎2

𝑚𝑛,𝑟𝑛

𝜎2

𝑚𝑛

− 1

��� > 𝑣) → 0 as 𝑛 →∞ for each fixed

𝑣 > 0. Assume that𝑛 is large enough so that 𝑟𝑛 ≥ 2 (see Assumption 1.A). By Chebyshev’s inequality

[3, eq. (21.13)] and because E[𝜎2

𝑚𝑛,𝑟𝑛
] = 𝜎2

𝑚𝑛
[38, p. 173], we get

𝑝𝑛 ≤
1

𝑣2
E


(
𝜎2

𝑚𝑛,𝑟𝑛

𝜎2

𝑚𝑛

− 1

)
2 =

1

𝑣2𝜎4

𝑚𝑛

E

[ (
𝜎2

𝑚𝑛,𝑟𝑛
− 𝜎2

𝑚𝑛

)
2

]
=

1

𝑣2𝜎4

𝑚𝑛

Var

[
𝜎2

𝑚𝑛,𝑟𝑛

]
=

1

𝑣2𝑟𝑛𝜎
4

𝑚𝑛

(
E

[ (
𝑋𝑛,1 − 𝜇

)
4

]
− 𝑟𝑛 − 3

𝑟𝑛 − 1

𝜎4

𝑚𝑛

)
, (65)

where eq. (65) follows from [38, p. 184], withE
[
(𝑋𝑛,1 − 𝜇)4

]
< ∞ by assumption. Because 𝑟𝑛 →∞

as 𝑛 →∞ by Assumption 1.A, eq. (65) vanishes as 𝑛 →∞ by (32) since 𝑣 > 0 is fixed, thus verifying

(30). ■

Proof of Corollary 6. As shown in eq. (61), because𝑚𝑛 →∞, (22) with 𝑑 = 2 implies that for

all 𝑛 sufficiently large, the left side of (32) is bounded above by 𝑘1/𝑟𝑛 , which vanishes as 𝑛 →∞
because 𝑟𝑛 → ∞ as 𝑛 → ∞ under Assumption 1.A. Thus, (32) holds, so CLT (20), (30), and AVCI

(31) follow from Theorem 4.2. Under (23), we have E
[
|𝑋𝑛,1 − 𝜇 |4

]
≤ 𝑘4

2
𝜎4

𝑚𝑛
for all 𝑛 sufficiently

large because𝑚𝑛 →∞, securing (61) for 𝑑 = 2 with 𝑘1 = 𝑘
4

2
. ■

Proof of Corollary 7. As the left side of (33) is nonnegative, taking the square-root of (33)

shows that it is equivalent to (24) with 𝜆 = 1/2, so (33) guarantees CLT (20) by Corollary 2. We

will next establish (30) and (31) by verifying the conditions of Theorem 4.2. By assumption, we

have that𝑚𝑛 > 1 for all 𝑛 sufficiently large, and consider any such 𝑛 for which Assumption 4 also

holds. Because ℎ ∈ BVHK from Assumption 3.A, Lemma 2.2 implies that E

[ (
𝑋𝑛,1 − 𝜇

)
4

]
< ∞ by

(12) with 𝑞 = 4. Also, (12) ensures that the left side of (32) satisfies

E

[ (
𝑋𝑛,1 − 𝜇

)
4

]
𝑟𝑛𝜎

4

𝑚𝑛

≤ 1

𝑟𝑛

(
𝑤 ′

0
𝑉HK (ℎ) (ln𝑚𝑛)𝑠

𝑚𝑛𝜎𝑚𝑛

)
4

. (66)

Using (33) in eq. (66) verifies (32), so (30) and (31) follow from Theorem 4.2. ■
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Proof of Corollary 8. As the left side of (34) is nonnegative, taking the square-root of (34)

shows it is equivalent to (26) with 𝑏 = 2, so (34) ensures CLT (20) by Corollary 4 because we

further assumed that (11) holds for 𝑏 = 2. We will next establish (30) and (31) by verifying the

conditions of Theorem 4.2. By Lemma 2.3 with 𝑞 = 4, we see that the numerator in (32) is bounded

by E[(ℎ(𝑈 ) − 𝜇)4], which does not depend on 𝑛 and is finite under the assumed validity of (11) for

𝑏 = 2. Thus, (34) implies (32), so Theorem 4.2 yields (30) and (31). ■

Proof of Corollary 9. Corollary 5 ensures the CLT (20) is true. Also, as each 𝑋𝑛,𝑗 = 𝑋 𝑗 in

(14) does not depend on 𝑛, the triangular array reduces to a single i.i.d. sequence. Consequently,

standard arguments (e.g., [38, Theorem 2.2.3A]) show that (30) holds, so Theorem 4.1 implies (31).

■

Proof of Proposition 4.3. If (27) holds, then 𝑟𝑛𝜎
4

𝑚𝑛
= ⌊𝑛/𝑚0⌋𝜎4

𝑚0

→∞ as𝑛 →∞ because𝜎4

𝑚0

>

0, so (27) implies (34). To compare (33) and (34), write the left side of the former as 𝑟𝑛

(
𝑚𝑛𝜎𝑚𝑛

(ln𝑚𝑛 )𝑠
)

4

=

𝑟𝑛𝜎
4

𝑚𝑛

(
𝑚𝑛

(ln𝑚𝑛 )𝑠
)

4

, so (33) is weaker than (34). ■

B ANALYTICAL COMPARISONS OF THE 𝑐𝑘 (𝛼∗) AND THE 𝑣𝑘 (𝛼∗) FROM SECTION 5
For the various Corollaries 𝑘 from Sections 3.1 and 4.1, we now compare their corresponding values

of the upper bounds 𝑐𝑘 (𝛼∗) in (42) for 𝑐 ∈ (0, 1) in Assumption 1.B and the optimal approximate rates

𝑣𝑘 (𝛼∗) in (43) from Sections 5.1–5.6. While many of the corollaries involve conditions that depend on

the interaction of the integrand and the RQMCmethod through only 𝜎𝑚 =

(
Var[ 1

𝑚

∑𝑚
𝑖=1
ℎ(𝑈 ′𝑖,1)]

)
1/2

,

the cases 𝑘 = 1 and 6 instead impose other requirements, (22) or (23), that involve higher-order

absolute central moment or almost-sure behavior, which may be difficult to verify in practice. The

different forms of the conditions for 𝑘 = 1 and 6 complicate their comparisons with the other

corollaries, so we mostly omit 𝑘 = 1 and 6 from the following comparisons. Note nevertheless that

𝑐1 (𝛼∗) = 𝑐6 (𝛼∗) = 1 ≥ 𝑐𝑘 (𝛼∗) and 𝑣1 (𝛼∗) = 𝑣6 (𝛼∗) = 𝛼∗ ≥ 𝑣𝑘 (𝛼∗) for all 𝑘 ∉ {1, 6} when 𝛼∗ ≥ 1.

As shown before in Propositions 2.1 and 3.3 under Assumption 1.A, we will see trade-offs in the

conditions that ensure CLT (20) under Assumption 1.B: stronger conditions on the integrand ℎ

(through Assumptions 3.A–3.C) lead to looser constraints on 𝑐 from larger 𝑐𝑘 (𝛼∗) in (42). A similar

situation will also hold for guaranteeing AVCI (31), as we saw before in Proposition 4.3 under

Assumption 1.A. Also, when imposing comparable conditions on ℎ, the value of 𝑐𝑘 (𝛼∗) is always
no larger (and often strictly smaller) to ensure AVCI than for the CLT, so making sure AVCI holds

typically requires restricting 𝑐 more than for a CLT.

B.1 𝑘 = 2 vs. 𝑘 = 3 and 𝑘 = 4

Comparing 𝑐2 (𝛼∗) in (50) of Corollary 2 with 𝑐3 (𝛼∗) from (52) for Corollary 3 shows that 𝑐2 (𝛼∗) >
𝑐3 (𝛼∗); also see Proposition 3.3. This then implies that 𝑣2 (𝛼∗) > 𝑣3 (𝛼∗) by (47). But recall that

Corollary 2 required that ℎ ∈ BVHK (Assumption 3.A), which is stronger (Proposition 2.1) than

restricting to ℎ ∈ L∞ (Assumption 3.B), as Corollary 3 imposed.

We now compare 𝑐2 (𝛼∗) in (50) from Corollary 2 to 𝑐4 (𝛼∗, 𝑏) from (54) of Corollary 4 when

ℎ ∈ BVHK (Assumption 3.A), as required by Corollary 2 but not by Corollary 4. We have that

𝑐2 (𝛼∗) > 𝑐4 (𝛼∗, 𝑏) for all 𝑏 > 0. Thus, condition (50) is (substantially) less restrictive on our choices

for 𝑐 than (54) for each 𝑏 > 0. This further implies that 𝑣2 (𝛼∗) > 𝑣4 (𝛼∗, 𝑏) by (47).

B.2 𝑘 = 3 vs. 𝑘 = 4

Observe that 𝑐3 (𝛼∗) > 𝑐4 (𝛼∗, 𝑏) for each 𝑏 > 0 by (52) and (54), so the condition (54) for Corollary 4

restricts our choices for 𝑐 more than condition (52) from Corollary 3, but (52) was obtained under a
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stronger assumption (ℎ ∈ L∞, i.e., Assumption 3.B) than requiring that ℎ ∈ L2+𝑏
for some 𝑏 > 0

(Assumption 3.C), used to get (54) for Corollary 4. Because 𝑐4 (𝛼∗, 𝑏) is strictly increasing in 𝑏, the

constraint on 𝑐 from condition (54) loosens as𝑏 grows. As the condition (11) of Corollary 4 stipulates

that the order-(2 + 𝑏) absolute central moment of ℎ(𝑈 ) is finite, we see that the more absolute

central moments that ℎ(𝑈 ) has, the faster the length𝑚 = 𝑛𝑐 of the low-discrepancy sequence can

grow with 𝑛, according to (54). Similarly, by (47), the exponent 𝑣4 (𝛼∗, 𝑏) from (55) governing the

optimal rate at which RMSE[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] decreases as 𝑛 →∞ under Corollary 4 is strictly worse than

the exponent 𝑣3 (𝛼∗) from (53) under Corollary 3.

Section 5.4 previously noted that lim𝑏→∞ 𝑐4 (𝛼∗, 𝑏) = 𝑐3 (𝛼∗) and lim𝑏→∞ 𝑣4 (𝛼∗, 𝑏) = 𝑣3 (𝛼∗). Thus,
the tradeoffs of the conditions of Corollaries 3 and 4 (i.e., ℎ ∈ L∞ vs. ℎ ∈ L2+𝑏

) disappear as 𝑏 →∞.
While this did not necessarily have to happen (e.g., as in the proof of Proposition 2.1, consider

ℎ(𝑢) = Φ← (𝑢), which is unbounded but ℎ(𝑈 ) has finite moments of all orders, where we recall that

Φ← denotes the quantile function of Φ), it is reasonable: we can think of bounded ℎ as being an

extreme special case as 𝑏 →∞ of the order-(2 + 𝑏) absolute central moment of ℎ(𝑈 ) being finite.

B.3 𝑘 = 7 vs. 𝑘 = 2 and 𝑘 = 8

We first compare 𝑐7 (𝛼∗) from (56) and 𝑐8 (𝛼∗) in (58), each of which is an upper bound for 𝑐 to

ensure AVCI (31). It is clear that 𝑐7 (𝛼∗) > 𝑐8 (𝛼∗), so condition (56), obtained under ℎ ∈ BVHK

(Assumption 3.A), is a strictly weaker restriction on the choice of 𝑐 than the condition (58), derived

under ℎ ∈ L2+𝑏
(Assumption 3.C) but without requiring ℎ ∈ BVHK; also see Proposition 4.3. Thus,

assuming the stricter condition ℎ ∈ BVHK (see Proposition 2.1) allows us to expand the values of 𝑐

that ensure AVCI. Moreover, we have that 𝑣7 (𝛼∗) > 𝑣8 (𝛼∗) by (47), so when ℎ ∈ BVHK, the rate at

which Var[𝜇̂RQ𝑚𝑛,𝑟𝑛 ] converges is faster by choosing 𝑐 to optimally satisfy Corollary 7 rather than

Corollary 8.

We now want to see if the upper bound 𝑐7 (𝛼∗) in AVCI condition (56) is more restrictive than the

upper bound 𝑐2 (𝛼∗) from CLT condition (50), where both were obtained under the assumption that

ℎ ∈ BVHK. When 𝛼∗ = 1, we have 𝑐7 (𝛼∗) = 𝑐2 (𝛼∗) = 1. For 𝛼∗ > 1, we get 𝑐7 (𝛼∗) < 𝑐2 (𝛼∗), Thus,
when 𝛼∗ = 1, the same values of 𝑐 guarantee both CLT (20) and AVCI (31). But for 𝛼∗ > 1, ensuring

AVCI (31) requires restricting 𝑐 more than what is needed to make sure CLT (20) holds.

B.4 𝑘 = 8 vs. 𝑘 = 3 and 𝑘 = 4

Note that 𝑐8 (𝛼∗) < 𝑐3 (𝛼∗) for all 𝛼∗ > 0 by (52) and (58), so AVCI condition (58) obtained from

Corollary 8 restricts our choices for 𝑐 more than the CLT condition (52) under Corollary 3. Hence,

ensuring AVCI (31) under Corollary 8 (ℎ ∈ L4
) requires further constraining 𝑐 compared to obtaining

CLT (20) under Corollary 3 (ℎ ∈ L∞). Moreover, by (47), it follows that 𝑣8 (𝛼∗) < 𝑣3 (𝛼∗).
By Corollary 4, CLT (20) also is secured when (54) and (11) hold for some 𝑏 > 0, as discussed in

Section 5.4. To compare the AVCI upper bound 𝑐8 (𝛼∗) in (58) to CLT bound 𝑐4 (𝛼∗) in (54), which

has 𝑐4 (𝛼∗, 𝑏) = 1/[1 + 2𝛼∗ (1 + 2

𝑏
)], note that 𝑐4 (𝛼∗, 𝑏) ≤ 𝑐8 (𝛼∗) if and only if 𝑏 ≤ 2. Thus, if we

select 𝑐 < 𝑐4 (𝛼∗, 𝑏) for some 𝑏 ≤ 2 to ensure the CLT (20) under Corollary 4, then the same 𝑐 also

yields AVCI (31).

B.5 Comparisons with Loh’s CLT
For a smooth function with Lipschitz continuous mixed partial of order 𝑠 , Loh [28, Theorem 1]

shows that for a (0, 𝑘∗, 𝑠)-net in base 𝑏0, the variance 𝜎
2

𝑚 from a single randomization of𝑚 = 𝑏
𝑘∗
0

points satisfies 𝜎2

𝑚 = Θ(𝑘𝑠−1

∗ 𝑏
−3𝑘∗
0
) = Θ((ln𝑚/ln𝑏0)𝑠−1𝑚−3) as 𝑘∗ →∞, so the standard deviation

from a single randomization of𝑚 = 𝑏
𝑘∗
0

points satisfies 𝜎𝑚 = Θ((ln𝑚/ln𝑏0) (𝑠−1)/2𝑚−3/2) along the
subsequence𝑚 = 𝑏

𝑘∗
0

with 𝑘∗ →∞. (Here, we simplify notation by denoting the subsequence as𝑚
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5
) 𝑐∗ = 1

𝑐2 (𝛼∗) : CLT, ℎ ∈ BVHK

𝑐3 (𝛼∗) : CLT, ℎ ∈ L∞

𝑐4 (𝛼∗, 𝑏) : CLT, ℎ ∈ L2+𝑏

𝑐7 (𝛼∗) : AVCI, ℎ ∈ BVHK

𝑐8 (𝛼∗) : AVCI, ℎ ∈ L4

Fig. 1. Plots of the upper bounds 𝑐𝑘 (𝛼∗) in (42) of 𝑐 in Assumption 1.B for different Corollaries 𝑘 . The plots
display the 𝑐𝑘 (𝛼∗) as functions of 𝑏 from Assumption 3.C for different fixed values of 𝛼∗. The upper left panel
does not include 𝑐2 (𝛼∗) and 𝑐7 (𝛼∗) because these require ℎ ∈ BVHK, which then implies 𝛼∗ ≥ 1 by (37). The
plots show that stronger restrictions on the integrand ℎ lead to larger 𝑐𝑘 (𝛼∗).

rather than𝑚∗, as in the discussion in the paragraph after (38).) Thus, taking the limit in (35) along

the subsequence𝑚 = 𝑏
𝑘∗
0
with 𝑘∗ →∞, we get

𝛼∗ = − lim

𝑘∗→∞

ln(𝜎
𝑏
𝑘∗
0

)

ln(𝑏𝑘∗
0
)
= 3/2.

Now take the total computing budget as 𝑛 = 𝑏
𝑘∗
0
letting 𝑘∗ →∞, and use an allocation (𝑚𝑛, 𝑟𝑛) with

the number 𝑟𝑛 of randomizations growing very slowly to∞, e.g., 𝑟𝑛 = 𝑛1−𝑐
for 𝑐�1 or 𝑟𝑛 = ln𝑛, or

even fixed 𝑟𝑛 = 𝑟0. Then under the conditions of [28, Theorem 1], the RMSE decreases at about rate

𝑛−𝛼∗ = 𝑛−3/2
. This rate is better than the rate of about 𝑛−1

when ℎ ∈ BVHK from (51) through the

CLT of Corollary 2, or the rate of about 𝑛−5/6
from (57) through the AVCI of Corollary 7. But if we

instead assume condition (22), our Corollaries 1 and 6 lead to the RMSE decreasing at about rate

𝑛−3/2
by (48), the same as for [28, Theorem 1].

C GRAPHICAL COMPARISONS OF THE 𝑐𝑘 (𝛼∗) AND THE 𝑣𝑘 (𝛼∗) FROM SECTION 5
Figure 1 shows the upper bounds 𝑐𝑘 (𝛼∗) in (42) for 𝑐 in Assumption 1.B, where 𝑐𝑘 (𝛼∗) is given by

𝑐2 (𝛼∗) in (50) for Corollary 2, 𝑐3 (𝛼∗) in (52) for Corollary 3, 𝑐4 (𝛼∗, 𝑏) in (54) for Corollary 4, 𝑐7 (𝛼∗)
in (56) for Corollary 7, and 𝑐8 (𝛼∗) in (58) for Corollary 8, where we recall that Table 2 of Section 5.8

provides a short summary of the corollaries. The plots display, for various fixed values of 𝛼∗, the
upper bounds as functions of 𝑏 > 0 from Assumption 3.C (ℎ ∈ L2+𝑏

). We further plot the upper

bound 𝑐∗ = 1 for reference because Assumption 1.B requires 𝑐 ∈ (0, 1), which is also seen through

(50), (52), (54), (56), and (58). Note that 𝑐∗ = 1 also corresponds to 𝑐1 (𝛼∗) = 𝑐6 (𝛼∗) = 1 in (48). We

do not include 𝑣1 (𝛼∗) = 𝑣6 (𝛼∗) = 𝛼∗ from (48) in the graphs to better see the differences among the

other corollaries.
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𝑣2 (𝛼∗) : CLT, ℎ ∈ BVHK

𝑣3 (𝛼∗) : CLT, ℎ ∈ L∞

𝑣4 (𝛼∗, 𝑏) : CLT, ℎ ∈ L2+𝑏

𝑣7 (𝛼∗) : AVCI, ℎ ∈ BVHK

𝑣8 (𝛼∗) : AVCI, ℎ ∈ L4

𝑣MC = 1/2

Fig. 2. Plots of the negative exponent 𝑣𝑘 (𝛼∗) of the optimal rate at which the estimator RMSE decreases
as functions of 𝑏 for different values of 𝛼∗. The upper left panel does not include 𝑣2 (𝛼∗) and 𝑣7 (𝛼∗) because
these require ℎ ∈ BVHK, which then implies 𝛼∗ ≥ 1 by (37). The plots show that stronger restrictions on the
integrand ℎ lead to larger 𝑣𝑘 (𝛼∗).

Figure 1 corroborates the results obtained in Section B and summarized in Table 2. We can readily

check the following:

• 𝑐4 (𝛼∗, 𝑏) < 𝑐3 (𝛼∗) < 𝑐2 (𝛼∗) (𝑐2 (𝛼∗) being valid only when 𝛼∗ ≥ 1), illustrating that the stricter

the condition of the integrand ℎ (see Proposition 2.1), the larger the possible value of 𝑐 to

ensure CLT (20) (Proposition 3.3).

• 𝑐8 (𝛼∗) < 𝑐7 (𝛼∗), so we similarly see that a stronger condition on ℎ leads to larger range of

values of 𝑐 that ensure AVCI (31); also see Proposition 4.3.

• 𝑐4 (𝛼∗, 𝑏) approaches 𝑐3 (𝛼∗) as 𝑏 grows large in Assumption 3.C, which agrees with the

principle that having ℎ ∈ L2+𝑏
as 𝑏 → ∞ is “close” to meaning ℎ ∈ L∞; see the related

discussion at the end of Section B.2. Similarly, as 𝑏 → 0, 𝑐4 (𝛼∗, 𝑏) approaches 0 = 𝑐5 (𝛼∗) for
Corollary 5, which assumes Assumption 3.D (ℎ ∈ L2

).

• As 𝑏 increases in Assumption 3.C (i.e., more finite absolute central moments), the upper

bound 𝑐4 (𝛼∗, 𝑏) grows, so more effort can be put on the QMC part (i.e.,𝑚𝑛 = 𝑛𝑐 can be larger)

when establishing a CLT through the moment conditions of Corollary 4.

• Ensuring AVCI (31) often (but not always) entails restricting 𝑐 more than what guarantees a

CLT, which can be seen from 𝑐8 (𝛼∗) < 𝑐3 (𝛼∗) and 𝑐7 (𝛼∗) ≤ 𝑐2 (𝛼∗).
Figure 2 plots, as functions of 𝑏 > 0 from Assumption 3.C, the (negative) exponent 𝑣𝑘 (𝛼∗) from

(43) of the optimal ral rate at which the RQMC estimator’s RMSE decreases, given by 𝑣2 (𝛼∗) in
(51) for Corollary 2, 𝑣3 (𝛼∗) in (53) for Corollary 3, 𝑣4 (𝛼∗, 𝑏) in (55) for Corollary 4, 𝑣7 (𝛼∗) in (57) for

Corollary 7, and 𝑣8 (𝛼∗) in (59) for Corollary 8. Each of these exponents is at most 𝑣∗ = 1, which is

also plotted for reference. The figure further includes 𝑣MC = 1/2 from (41) for comparison, and all

of these 𝑣𝑘 (𝛼∗) are strictly greater than 𝑣MC, so RQMC with 𝑐 > 0 always has that the optimal rate
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Fig. 4. Plots of the negative exponent 𝑣𝑘 (𝛼∗) of the optimal rate at which the estimator RMSE decreases as
functions of 𝛼∗. Functions 𝑣2 (𝛼∗) and 𝑣7 (𝛼∗) require ℎ ∈ BVHK, so they are shown for only 𝛼∗ ≥ 1 because
of (37).

at which its RMSE decreases is better than for MC. By (47), the comparisons and ordering of RMSE

rate exponents 𝑣𝑘 (𝛼∗) are the same as the ones obtained before for the 𝑐𝑘 (𝛼∗).
Comparing across the different panels in Figure 1, we see that each upper bound 𝑐𝑘 (𝛼∗) in (42)

on 𝑐 decreases as 𝛼∗ increases. To investigate this further, Figures 3 and 4 plot the 𝑐𝑘 (𝛼∗) and 𝑣𝑘 (𝛼∗),
respectively, as functions of 𝛼∗. We can then see the differences between the various corollaries

and assumptions as the QMC method improves (i.e., 𝛼∗ increases).
Figure 3 more clearly illustrates that as 𝛼∗ grows, each upper bound 𝑐𝑘 (𝛼∗) in (42) on 𝑐 decreases,

so guaranteeing a CLT (20) or AVCI (31) requires putting more effort on the MC part (i.e., for fixed

𝑛 > 0, 𝑟𝑛 = 𝑛1−𝑐
grows as 𝑐 decreases) and correspondingly less on the QMC (i.e.,𝑚𝑛 = 𝑛𝑐 shrinks
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as 𝑐 gets smaller). The tradeoff could potentially harm RQMC’s optimal RMSE convergence rate

because of the diminished benefits (decreasing 𝑐𝑘 (𝛼∗)) of QMC’s improved convergence rates from

larger 𝛼∗. However, Figure 4 shows that this is not the case for all CLT and most AVCI conditions:

the RMSE optimal convergence speed determined by 𝑣𝑘 (𝛼∗), as in (43), is generally increasing in

𝛼∗. The one exception is 𝑣7 (𝛼∗), which determines the optimal RMSE convergence rate to ensure

AVCI when ℎ ∈ BVHK. In this case, Figure 3 shows that as 𝛼∗ increases, 𝑐7 (𝛼∗) drops off quickly, so

the number of randomizations must grow rapidly as 𝛼∗ increases to ensure AVCI when ℎ ∈ BVHK.

But even so, we still have 𝑣7 (𝛼∗) > 𝑣8 (𝛼∗) for all 𝛼∗, where 𝑣8 (𝛼∗) in (59) is the optimal RMSE rate

exponent for AVCI obtained under the moment condition (ℎ ∈ L4
) of Corollary 8.

D NUMERICAL RESULTS
The goal of this section is to study numerically the asymptotic results in our paper. We aim to

see for various values of 𝑐 ∈ (0, 1) from Assumption 1.B if a CLT or AVCI seem to actually hold

as 𝑛 → ∞, where 𝑛 is the total number of integrand evaluations. As with any empirical study

of asymptotic behavior, our analysis encounters inherent limitations because we can check for

approximate normality or close to nominal coverage for only finitely many values of 𝑛. But in spite

of this, looking at a range of 𝑐 in (0, 1) can help to see how tight our conditions are to guarantee

convergence to a normal distribution or a valid CI. Indeed, our corollaries provide only sufficient
conditions, and it may be possible that values of 𝑐 larger than a particular 𝑐𝑘 (𝛼∗) from Section 5

still lead to a CLT or AVCI. We will investigate this point.

We implemented our experiments in python, with the RQMC sequences generated using the

QMCPy library [6]. We consider three different randomized sequences: Sobol’ sequences with digital

shift (DS) [19], scrambled Sobol’ sequence with linear matrix scrambling (LMS) [16, 29], and Lattice

rules with random shift (RS) [7, 21, 40]. In comparing the three RQMC methods, we take𝑚𝑛 to be

various powers of 2 as the lengths of the RQMC sequence to benefit from the digital net structure

of Sobol’ sequences.

Recall that Proposition 2.1 established a strict ordering of the restrictions in Assumption 3 on the

integrand ℎ. We now consider various functions associated with three of the cases of Assumption 3.

(1) For 𝑢 = (𝑢1, . . . , 𝑢𝑠 ) ∈ [0, 1]𝑠 , function

ℎv (𝑢) =
𝑠∏
𝑙=1

(
𝑢𝑙 −

1

2

)
2

(67)

is of bounded Hardy-Krause variation (as ℎv is a product of functions of bounded variation

[4, Section 9.3]), so Assumption 3.A holds.

(2) Consider the unidimensional function 𝑔b (𝑢1) = sin(1/𝑢1) for 𝑢1 ∈ (0, 1] and 𝑔b (0) = 0. This

function is known to have 𝑉HK (𝑔b) = ∞ (e.g., see [4, Example 2.1.9]) and to be bounded. The

product function for 𝑢 = (𝑢1, . . . , 𝑢𝑠 ) ∈ [0, 1]𝑠 is

ℎb (𝑢) =
𝑠∏
𝑙=1

𝑔b (𝑢𝑙 ), (68)

which also has𝑉HK (ℎb) = ∞ but is bounded, so Assumption 3.B holds but not Assumption 3.A.

(3) For any fixed 𝜃 > 0, consider now 𝑔ub,𝜃 (𝑢1) = 𝑢−𝜃
1

for 𝑢1 ∈ (0, 1] and 𝑔ub,𝜃 (0) = 0. Define

ℎub,𝜃 (𝑢) =
𝑠∏
𝑙=1

𝑔ub,𝜃 (𝑢𝑙 ) (69)
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for 𝑢 ∈ [0, 1]𝑠 . Function ℎub,𝜃 is unbounded and the moment of order 2 + 𝑏 of ℎub,𝜃 (𝑈 )
for 𝑈 ∼ 𝑈 [0, 1]𝑠 is E[(ℎub,𝜃 (𝑈 ))2+𝑏] =

[∫
1

0
(𝑢1)−𝜃 (2+𝑏 ) d𝑢1

]𝑠
, which is finite if and only if

𝜃 (2+𝑏) < 1. (Our experiments used 𝜃 = 0.35, so the 2+𝑏 moment does not exist for 𝑏 > 0.858.)

In this case, Assumption 3.C holds but not Assumption 3.B.

(4) For 𝑢 = (𝑢1, . . . , 𝑢𝑠 ) ∈ [0, 1]𝑠 , function

ℎsum (𝑢) = −𝑠 +
𝑠∑︁
𝑙=1

𝑢𝑙 exp(𝑢𝑙 ) (70)

is smooth and additive, making it very easy for RQMC methods to integrate, as explained in

Section 17.2 of [37]. This function is of bounded Hardy-Krause variation. In contrast to the

other three integrands, ℎsum does not have a product form.

To test whether a CLT or AVCI roughly holds for a given allocation (𝑚𝑛, 𝑟𝑛), we generated 200

independent values of 𝜇̂
RQ

𝑚𝑛,𝑟𝑛 from (10) and the nominal 95% confidence interval 𝐼
RQ

𝑚𝑛,𝑟𝑛,𝛾 from (29).

We then investigated the proportion of the 200 times the true value 𝜇 of the integral was included

in 𝐼
RQ

𝑚𝑛,𝑟𝑛,𝛾 as an estimate of the CI’s true coverage P(𝜇 ∈ 𝐼RQ𝑚𝑛,𝑟𝑛,𝛾 ). When the CLT (20) and AVCI

(31) hold, we expect the observed coverage to be close to 0.95, with coverage error approximately

±
√︁

0.95(1 − 0.95)/200 ≈ 0.03 based on a 95% confidence interval for the coverage.

D.1 Estimation of 𝛼∗
For checking if the values 𝑐𝑘 (𝛼∗) from Section 5 provide appropriate thresholds on values of 𝑐 under

Assumption 1.B to secure a CLT or AVCI, we need to estimate 𝛼∗ in (35). A standard procedure for

convergence rate estimation of QMC and RQMC methods applies log-log regression. Assuming

𝜎𝑚 ≈ 𝛽𝑚−𝛼∗ is equivalent to ln(𝜎𝑚) ≈ ln(𝛽) − 𝛼∗ ln(𝑚). To estimate the unknowns 𝛽 and 𝛼∗, we
generated data for 𝐾 values𝑚 (𝑖 ) , 1 ≤ 𝑖 ≤ 𝐾 , of𝑚. For each 𝑖 , we estimate 𝜎𝑚 (𝑖 ) through the sample

standard deviation of 𝑅0 independent estimates of 𝜇 from single randomizations of𝑚 (𝑖 ) points.
Then, using the simplifying notation ℓ𝑖 = ln(𝑚 (𝑖 ) ) and 𝜈𝑖 = ln(𝜎𝑚 (𝑖 ) ) for each 1 ≤ 𝑖 ≤ 𝐾 , standard
linear regression yields an estimator of 𝛼∗ as

𝛼∗ = −
∑𝐾
𝑖=1
(𝜈𝑖 − 𝜈𝐾 ) (ℓ𝑖 − ℓ̄𝐾 )∑𝐾
𝑖=1
(ℓ𝑖 − ℓ̄𝐾 )2

, where 𝜈𝐾 =
1

𝐾

𝐾∑︁
𝑖=1

𝜈𝑖 and ℓ̄𝐾 =
1

𝐾

𝐾∑︁
𝑖=1

ℓ𝑖 .

For our estimations, we used 𝑅0 = 100, 𝐾 = 17, and𝑚 (𝑖 ) = 2
𝑖+5

for 𝑖 ∈ {1, 2, . . . , 17}.
Table 3 gives the estimated 𝛼∗ for the three considered RQMC methods (Sobol’ sequence with

DS, Sobol’ sequence with LMS, and Lattice with RS) and the four integrands (ℎv, ℎb, ℎub,0.35, and

ℎsum) in dimensions 𝑠 = 3 and 𝑠 = 4. For the function ℎv ∈ BVHK, the estimated values of 𝛼∗ are
larger than or equal to 1, agreeing with (37). The estimated 𝛼∗ is very close to 1 for the additive

ℎsum ∈ BVHK for Sobol’ with DS and Lattice with RS; thus, the bound in (37) appears to be tight.

For ℎsum using Sobol’ with LMS, the regression provides a bigger estimated 𝛼∗ but also a much

larger constant 𝛽 : 𝛽 = 16585 for LMS in dimension 3 as opposed to 𝛽 = 1.33 for Sobol’ with DS and

Lattice with RS. Figure 7 (also see [24, Section 4.2]) shows extremely spiky histograms for ℎsum with

Sobol’ and LMS, indicating very low variance, which has been similarly observed in [20] in other

contexts; but in general, the numerical values should be considered with caution. For functions ℎb
and ℎub,0.35, which have infinite Hardy-Krause variation, estimated values of 𝛼∗ are smaller than 1

but larger than 1/2 (see (38)), the exponential rate when using MC methods.

ACM Trans. Model. Comput. Simul., Vol. 00, No. 0, Article 0. Publication date: January 2023.



0:32 Nakayama and Tuffin

Estimated 𝛼∗
Integrand Dimension 𝑠 Sobol’ DS Sobol’ LMS Lattice RS

ℎv 3 1.3420 1.3040 1.4218

ℎb 3 0.6843 0.6735 0.6173

ℎub,0.35 3 0.6103 0.6217 0.5612

ℎsum 3 1.0022 2.7554 0.9983

ℎv 4 1.2620 1.1282 1.1528

ℎb 4 0.6856 0.6412 0.6035

ℎub,0.35 4 0.6115 0.5624 0.5437

ℎsum 4 1.0035 2.7675 1.0009

Table 3. Estimated values of 𝛼∗ in (35) from log-log regressions for different integrands, dimensions, and
RQMC methods.

D.2 Analysis of the impact of the allocation on coverage
In this subsection, we set the dimension as 𝑠 = 3. Recall that 𝑛 is the total number of integrand

evaluations, which is distributed among 𝑟𝑛 = 𝑛1−𝑐
independent randomizations of𝑚𝑛 = 𝑛𝑐 points

from a low-discrepancy sequence. We proceed as follows: we fix 𝑛 = 2
14 = 16384, and choose

(𝑚𝑛, 𝑟𝑛) = (2𝑡 , 214−𝑡 ) for 𝑡 ∈ {2, . . . , 12} to study a wide range of values of 𝑐 = 𝑡/14. Figure 5 displays,

as 𝑐 increases, the estimated coverage values of the produced nominal 95% confidence intervals

𝐼
RQ

𝑚𝑛,𝑟𝑛,𝛾 from (29) for the integrands ℎv, ℎb, ℎub,0.35, and ℎsum and the three types of randomization

considered in Table 3. For the sake of readability, we do not draw the 95% confidence intervals on

the coverages generated from the 200 independent experiments, but recall that for a true coverage

value 0.95 (resp., 0.85), the resulting error of the coverage is ±0.03 (resp., ±0.05) (based on a 95%

confidence interval for the coverage).

• For all integrands and randomizations, coverage is close to the expected 0.95 when 𝑐 is small.

Then it drops significantly when 𝑐 is larger than 0.8 for all functions. Note though that, as

expected, the stricter the assumption on the integrand, the larger the threshold value 𝑐𝑘 (𝛼∗)
above which coverage is statistically significantly below 0.95.

• For function ℎv in (67), up to value 𝑐 = 0.786, we do not detect any suspect coverage values,

but when 𝑐 = 0.857, the estimated coverage levels drop to 0.815, 0.87 and 0.90 for the various

randomizations, which lead to rejecting the null hypothesis of 95% coverage (at 95% level of

confidence). Theoretically, as ℎv satisfies Assumption 3.A, Corollaries 2 and 7 apply; thus,

taking 𝛼∗ = 1.35 as an approximation from Table 3 for (35), we get 𝑐2 (𝛼∗) ≈ 0.588 by (50) and

𝑐7 (𝛼∗) ≈ 0.417 by (56), smaller than the 0.8 from the numerical experiments. This perhaps

indicates that the sufficient condition (24) (resp., (33)) of Corollary 2 (resp., 7) is stronger than

necessary to ensure a CLT (resp., AVCI).

• For function ℎb in (68), which is bounded (so Assumption 3.B holds) but has infinite Hardy-

Krause variation, an under-coverage is statistically detected at smaller values of 𝑐 than for

ℎv, i.e., at 𝑐 = 0.786 for Sobol’ sequence with DS or LMS, while lattices with random shift has

(statistically) acceptable value for this 𝑐 but not anymore when 𝑐 = 0.857. Theoretically, as

Assumption 3.B holds, Corollaries 3 and 8 apply, and taking 𝛼∗ = 0.65 (approximately what

Table 3 shows) results in 𝑐3 (𝛼∗) ≈ 0.435 and 𝑐8 (𝛼∗) ≈ 0.278 by (52) and (58). This may again

indicate that the sufficient condition (25) (resp., (34)) of Corollary 3 (resp., 8) is stronger than

necessary to ensure a CLT (resp., AVCI). Using a larger value of 𝑛 would be of interest, but

the computations already take hours for 𝑛 = 2
14
.
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Fig. 5. Coverage values from 200 independent estimations for various values of 𝑐 = 𝑡/14 for 2 ≤ 𝑡 ≤ 12 and
for three RQMC techniques with 𝑛 = 2

14 and (𝑚𝑛, 𝑟𝑛) = (𝑛𝑡 , 𝑛14−𝑡 ). The considered integrand is ℎv (top left),
ℎb (top right) , ℎub,0.35

(middle left) and ℎsum (middle right), each for dimension 𝑠 = 3.

• For functionℎub,0.35 in (69), coverage is generally below the nominal 0.95 as soon as 𝑐 > 0.22; it

seems difficult to numerically determine a threshold value, but coverage is below those for ℎv
and ℎb, and becomes as low as 0.75 when 𝑐 = 0.857 for Sobol’ sequence and LMS. The function

ℎub,0.35 is unbounded but ℎub,0.35 ∈ L2+𝑏
for 𝑏 < 1/0.35 − 2 ≈ 0.857, so Assumption 3.C holds

for these values of 𝑏. Corollary 4 then applies, and using, say, 𝛼∗ = 0.5612 from Table 3

(for Lattice with RS but using other values do not significantly change the results) gives

𝑐4 (0.5612, 1/0.35 − 2) ≈ 0.211 from (54). This seems corroborated by the observed coverage

values for most values of 𝑐 . (As Assumption 3.C does not hold for 𝑏 = 2, Corollary 8 is not

applicable.)

ACM Trans. Model. Comput. Simul., Vol. 00, No. 0, Article 0. Publication date: January 2023.



0:34 Nakayama and Tuffin

0 5 10 15

0

500

1,000

1,500

𝑘 = 3

0 0.2 0.4

0

200

400

600

800

𝑘 = 9

0 2 4 6

·10
−2

0

200

400

600

800

𝑘 = 14

Fig. 6. Histograms of 2000 centered RQMC values 𝐴𝑚 − 𝜇 for the different𝑚 = 2
𝑘 Sobol’ points with LMS on

function ℎub,0.35

• For function ℎsum in (70), no suspect coverage is detected until 𝑐 = 0.857, the coverage

dropping then to values below 0.86. Taking 𝛼∗ = 1 (resp., 2.75) for Sobol’ with DS and for

Lattice with RS (resp., Sobol’ with LMS) from Table 3, we get 𝑐2 (𝛼∗) = 1 (resp., 0.221) from

(50) and 𝑐7 (𝛼∗) = 1 (resp., 0.124) from (57). Thus, for Sobol’ with LMS, our sufficient condition

seems to be stronger than necessary. For Sobol’ with DS and Lattice with RS for which 𝑟𝑛 can

increase polynomially as slowly as we wish to infinity with 𝑛 to get a CLT, it may indicate

that the number 𝑟 of randomizations has to be large enough to obtain a reasonable variance

estimate, which may not occur when 𝑟 is too small (we indeed have 𝑟 = 4 for 𝑐 = 0.857 here).

Remember that for 𝑟 fixed, the centered and scaled RQMC estimator may not converge (weakly)

in general to a normal random variable as𝑚 → ∞; e.g., [23] prove a non-Gaussian limit for the

random shift with lattices for a single randomization 𝑟 = 1, so the same is true for any fixed 𝑟 ≥ 1.

To further study the unsatisfactory coverage when 𝑟 = 𝑟𝑛 is small in Figure 5, we also constructed

histograms of 2000 values of 𝐴𝑚 (defined before Corollary 1 in Section 3.1) for different values of

𝑚 = 2
𝑘
for functions ℎub,0.35 and ℎsum, which are the ones in Figure 5 for which the coverage suffers

the most for small 𝑟𝑛 , and our three types of randomization considered in Table 3. Figures 6, 7 and 8

show a representative subset of the results. Although the plots within each figure often share similar

shapes, the ranges on the horizontal axes become much smaller as 𝑘 increases, demonstrating

RQMC’s greatly increased precision for larger 𝑘 . But Figures 6 and 7 exhibit extreme skewness

or kurtosis, which, as seen through Edgeworth expansions [12, Example 2.1], can lead to a CLT

providing a poor normal approximation and sizable CI coverage error when the sample size is not

large; this coincides with the substandard behavior for small 𝑟𝑛 in Figure 5.

For example, Figure 6 presents histograms for the integrand ℎub,0.35 when using Sobol’ with

LMS; the plots for the other randomization methods with ℎub,0.35 are similar so are not shown. The

graphs illustrate that 𝐴𝑚 has a non-normal and highly skewed distribution for function ℎub,0.35

whatever the randomization type, even for large𝑚. This aligns with the degrading coverage as 𝑟𝑛
shrinks in the middle left panel of Figure 5.

Figures 7 and 8 display histograms for ℎsum when applying Sobol’ with LMS and DS, respectively;

the plots for ℎsum when applying Lattice with RS are similar to those in Figure 8, so are omitted.

Figure 7 shows increasing spikiness (growing kurtosis) as𝑚 = 2
𝑘
increases, with extreme skewness

for the largest𝑚. (Additional omitted plots with other values of 𝑘 reveal that the skewness becomes

apparent starting around 𝑘 = 11 and gets more pronounced as 𝑘 grows.) Correspondingly, the

middle right panel of Figure 5 indicates that the coverage for Sobol’-LMS suffers greatly when 𝑟𝑛 is

small (so𝑚𝑛 is large). In contrast, the histograms for Sobol’ with DS (Figure 8) and Lattice with RS
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𝑘 Sobol’ points with DS on

function ℎsum

are symmetric and have somewhat of a Gaussian appearance (although for large 𝑘 , the tails seem

to end more abruptly than for a normal and perhaps more akin to a triangular distribution). The

minimal skewness and kurtosis in Figure 8 is consistent with the middle right panel of Figure 5,

where coverage with small 𝑟𝑛 does not suffer as much for these RQMC methods as for Sobol’ with

LMS.

D.3 Analysis in terms of the dimension
We aim here at investigating the coverage in terms of the dimension 𝑠 for two integrands, ℎub,0.35

and ℎsum, respectively a product and a sum of functions of individual coordinates. RQMC efficiency

is expected to deteriorate as the dimension increases for ℎub,0.35 and to be independent of the

dimension for ℎsum because the effective dimension [19, 37] increases for the former and not for the

latter. The effective dimension measures the contribution to the variance from low-dimensional

subsets of coordinates, but it is not clear if the metric can be used to say anything about the quality

of a normal approximation or a CI having close to nominal coverage.

Figure 9 displays the evolution of the coverage in terms of the dimension 𝑠 when we fix 𝑟 = 2
5

and𝑚 = 2
9
, so that 𝑐 ≈ 0.643 and to consider 𝑛 = 2

14 = 16384 as in Section D.2. We again consider

200 independent experiments for the estimation of the coverage. Coverage seems independent of

the dimension for ℎsum but to decrease with it for ℎub,0.35. It suggests that a low-effective dimension

might have some connections with asymptotic coverage properties, but further theoretical study is

needed.
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Fig. 9. Evolution of the coverage in terms of the dimension 𝑠 for the three randomization types and the two
integrands ℎub,0.35

(left panel) and ℎsum (right panel). The estimation is based on 𝑟 = 2
5 and𝑚 = 2

9.

D.4 On the validity of Condition (22)
If the conditions of Corollary 1 are satisfied, then a CLT holds for 𝑟𝑛 growing arbitrarily slowly to

infinity. Unfortunately, it appears difficult to prove rigorously that Conditions (22) or (23) holds for

specific functions, including those described in Section D. Instead, our goal here is to investigate

numerically whether (22) appears to hold or not. For integrands ℎub,0.35 and ℎsum in respectively

(69) and (70), we plot estimates of

E[ |𝐴𝑚−𝜇 |3]
𝜎3

𝑚
(i.e., with 𝑑 = 1 in (22)) as 𝑚 increases to see if

it seems to be bounded in𝑚. Both E
[
|𝐴𝑚 − 𝜇 |3

]
and 𝜎2

𝑚 are estimated by considering 𝑟0 = 2
12

independent replications of𝐴𝑚 used for both the numerator and the denominator, using the known

expected value 𝜇. Figure 10 displays the results, which provide suggestive, but by no means definitive,

evidence. It is not so easy to discern trends in the plots for ℎub,0.35 in the left panel of Figure 10

because they exhibit somewhat chaotic behavior, which perhaps can be explained as follows. The

variance of an estimate of the 𝑞th-order moment depends on the 2𝑞th moment, which can make

estimating higher-order moments difficult. As we are considering the 3rd absolute central moment

in the numerator, this leads to noisy estimates of the ratio E
[
|𝐴𝑚 − 𝜇 |3

]
/𝜎3

𝑚 , even though the

sample size 𝑟0 = 4096 is reasonably large.

The plots for ℎsum in the right panel of Figure 10 possess some features that are easier to interpret.

First, the curves for Sobol’ DS and Lattice RS are roughly constant, suggesting that (22) holds. But

for the Sobol’ LMS randomization, we see that the estimation smoothly increases up to a certain

value of 𝑚, at which point it suddenly drops. This type of behavior often occurs in rare-event

simulation for plots of estimated relative errors of estimators without bounded relative error; see

[10, Section 4.1.1]. Specifically, when showing a curve of the empirical relative error in terms of a

rarity parameter for a fixed sample size, we are able to obtain observations of the rare event for

non-extreme values of the rarity parameter, and the curve increases smoothly for those values. But

then at some threshold, the rare event is no longer observed in a sample, leading to an estimator

that is orders of magnitude off from the true value of the estimand. It is in our context characteristic

ACM Trans. Model. Comput. Simul., Vol. 00, No. 0, Article 0. Publication date: January 2023.



Central Limit Theorems and Confidence Intervals for RQMC 0:37

10
1

10
2

10
3

10
4

10
5

0

10

20

𝑚

E
[| 𝐴

𝑚
−𝜇
|3 ]

𝜎
3 𝑚

f
o
r
ℎ
u
b
,0
.3

5

Sobol’ LMS

Sobol’ DS

Lattice RS

10
1

10
2

10
3

10
4

10
5

0

20

40

60

𝑚

E
[| 𝐴

𝑚
−𝜇
|3 ]

𝜎
3 𝑚

f
o
r
ℎ
s
u
m

Sobol’ LMS

Sobol’ DS

Lattice RS

Fig. 10. Estimates of
E

[
|𝐴𝑚−𝜇 |3

]
𝜎3

𝑚
for various𝑚 for the three considered randomization types and the two

integrands ℎub,0.35
(left panel) and ℎsum (right panel). Each estimate is based on 𝑟0 = 2

12 independent
observations of 𝐴𝑚 .

of an unbounded

E[ |𝐴𝑚−𝜇 |3]
𝜎3

𝑚
, as also suggested by the extreme spikiness and skewness of the

histogram for large𝑚 = 2
𝑘
in Figure 7, so that (22)) does not appear to be satisfied for Sobol’ with

LMS. This is in line with our discussion after Corollary 1 that according to [37, Chapter 17 end

notes], skewness and kurtosis could diverge as𝑚 →∞.
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