
 

Bessel equation of order m:   2 2 2( ) 0zz zz f z f z m f z     

 
 
 

Solution:       1 2 m mf z C J z C Y z  

 

Jm  -- Bessel function of the first kind of order m 

Ym -- Bessel function of the second kind of order m 

 
 
 

Small-z asymptotic behavior is found by neglecting the non-equidimensional term  2z f z : 
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Large-z asymptotic behavior is found by analogy with a damped oscillator, or by substituting 

    /f z g z z  into the Bessel equation: 
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Note: all constant pre-factors above are arbitrary, so they are a matter of normalization convention. The widely 
adopted convention for Bessel functions of the 1st kind is that the unweighted integral over the semi-infinite line 
equals one. 
 
 
 
Taylor series of the Bessel function of 1st kind of order m: 
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Random fact: for the special value of m=1/2, it is easy to check by direct differentiation that the long-range 
asymptotics yield exact representation of the Bessel functions in terms of trigonometric functions: 
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