Math 331-001 * Final Examination * December 14, 2010 This is a closed-book test: notes and calculators are not permitted.

1. (25pts) Solve the following Laplace's equation in a rectangle. Determine all coefficients and simplify the solution as much as possible.

$$
\left\{\begin{array}{l}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<1,0<y<2) \\
\frac{\partial u}{\partial x}(0, y)=\frac{\partial u}{\partial x}(1, y)=0 \\
u(x, 0)=x, u(x, 2)=0
\end{array}\right.
$$

2. (30pts) Solve the wave equation for a drum shaped as a circular sector, with free side edges and fixed outer edge. Simplify the final answer as much as possible

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u=c^{2}\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right\} \quad\left(0<r<1,0<\theta<\frac{\pi}{4}, t>0\right) \\
\frac{\partial u}{\partial \theta}(r, 0, t)=\frac{\partial u}{\partial \theta}\left(r, \frac{\pi}{4}, t\right)=0 \\
u(0, \theta, t) \text { is bounded; } u(1, \theta, t)=0 \\
u(r, \theta, 0)=0, \frac{\partial u}{\partial t}(r, \theta, 0)=\sin (\pi r) \cos (8 \theta)
\end{array}\right.
$$

3. $(20 \mathrm{pts})$ Consider the following boundary value problem:

$$
\left\{\begin{array}{l}
\frac{d}{d x}\left(x \frac{d \phi}{d x}\right)-2 \phi(x)+\lambda \phi(x)=0, \quad 0<x<\pi \\
\frac{d \phi}{d x}(0)=\frac{d \phi}{d x}(\pi)=0
\end{array}\right.
$$

a) Find the Rayleigh quotient for this problem
b) Use the Rayleigh quotient to determine whether any eigenvalue can be less than or equal to zero.
c) Use the simplest test function to find an upper bound on the lowest λ (using Raleigh quotient)

Choose between problems 4 and 4 ,

4. (15pts) Find the first two non-zero terms in the Taylor series for $f(z)$ (hint: plug in a power series for $f(z)$, and find its coefficients by equating two sides of the equation). Make a rough sketch of $f(z)$

$$
\left\{\begin{array}{l}
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-1\right) f=0 \\
f(0)=0, \frac{d f}{d z}(0)=1
\end{array}\right.
$$

4’ (15pts) Solve the following boundary value problem (consider $\lambda<0$ and $\lambda>0$); sketch the first two eigenfunctions.

$$
\left\{\begin{array}{l}
\frac{d^{2} f}{d x^{2}}+\lambda f(x)=0 \quad(0<x<2) \\
\frac{d f}{d x}(0)=0, \quad \frac{d f}{d x}(2)=-f(2)
\end{array}\right.
$$

5. (10pts) Which of the following surfaces represents the solution to the following equation:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\sin \pi x \quad(0<x<1, t>0) \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=0 \\
u(x, 0)=1-\cos (2 \pi x)
\end{array}\right.
$$

(a)

(c)

(e)

(b)

(d)

(f)

Some facts you may (or may not) find useful:

Bessel equation: $z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0$
Large-z asymptotics: $\quad J_{m}(z) \sim \frac{1}{\sqrt{z}} \cos \left(z-\frac{\pi}{4}-m \frac{\pi}{2}\right), \quad Y_{m}(z) \sim \frac{1}{\sqrt{z}} \sin \left(z-\frac{\pi}{4}-m \frac{\pi}{2}\right)$

