Math 331-001• Midterm Examination • Victor Matveev • Fall 2017

Please read the assignment carefully, and show all work. No notes or electronic devices allowed.

1. (20pts, 20 min$)$ Consider a function defined as $f(x)=\left\{\begin{array}{ll}0, & 0<x<\frac{1}{2} \\ 1, & \frac{1}{2}<x<1\end{array}\right.$ on the interval $0<x<1$.
a) Graph the even periodic extension of this function to the interval $[-3,3]$ (assume $\mathbf{L = 1}$), and the sum of $1^{\text {st }}$ two non-zero terms in the cosine series. Use the plot to guess the sign of coefficient A_{1}.
b) Find the cosine series of this function, and write down the sum of first three non-zero terms.
2. (20pts, 15 min) Consider a rod/cable of length $L=1$ with constant thermal properties:

$$
\left\{\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t)+\frac{3}{\sqrt{x}}(0<x<1, t>0) \\
u_{x}(0, t)-u(0, t)=0 \\
u_{x}(1, t)=1
\end{array}\right.
$$

a) Find the equilibrium solution. Make sure to check your answer.
b) Make a rough plot of two functions: the source term and the equilibrium.
c) Calculate the heat flux at the endpoints (at equilibrium); you may set $K_{0}=1$.
d) Explain the equilibrium: where does the energy enter the rod, and where does it leave the rod?
3. (16pts, 10 min) Separate variables in the following differential equation (plug in $u(x, y)=g(x) h(y)$), and write down the two equations you obtain. Do not solve!

$$
y \frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial x}\right)+x \frac{\partial u}{\partial y}+\frac{x}{y} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

4. (28pts, 25min) Solve the following partial differential equation inside a rectangle ($0<x<L, 0<y<H$). Make sure to explain all steps. When solving the homogeneous boundary value problem, sketch any two solutions (e.g. ϕ_{1} and ϕ_{2}). Check your solution, in particular the boundary conditions.

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \quad(0<x<L, \quad 0<y<H) \\
u(0, y)=g(y) ; u_{x}(L, y)=0 \\
u_{y}(x, 0)=0 ; u(x, H)=0
\end{array}\right.
$$

5. (16pts, 10min) Consider (but do not solve) the wave equation for $u(x, t):\left\{\begin{array}{l}u_{t t}=c^{2} u_{x x}\binom{0<x<1}{t>0} \\ u_{x}(0, t)=u_{x}(1, t)=0 \\ u(x, 0)=0 \\ u_{t}(x, 0)=2\end{array}\right.$

For each of the following functions, check whether they satisfy the boundary conditions, initial conditions, and the partial differential equation in the problem above.
(a) $u(x, t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin (n \pi x) \sin (c n \pi t)$
(b) $u(x, t)=2 t$
(c) $u(x, t)=2 \cos (\pi x) \sinh (c \pi t)$
(d) $u(x, t)=2 \cos (\pi x) \cos (c \pi t)$

