Read carefully. Please show all work. This is a closed-book test: no notes or electronic devices allowed.

1. (16pts) Consider the function $f(x)=\cos (x / 2)$ defined on the interval $0<x<\pi$ (note that $L=\pi$)
a) Use the identity $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$ to find the cosine series for $f(x)$ (assume $\boldsymbol{L}=\boldsymbol{\pi}$)
b) Write down the sum of first three non-zero terms in the cosine series.
c) Plot the even periodic extension of $f(x)$ and the first terms in the cosine series, $A_{0}+A_{1} \cos \frac{n \pi x}{L}$, on the interval $-3 \pi<x<3 \pi$ (you don't have to know the answer to make a rough plot).
d) Use your graph to check whether A_{1} is positive or negative.
2. (16pts) Consider the following heat equation for a rod of length $L=1$ with constant thermal properties (assume $k=1$):

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)-x e^{x} \quad(0<x<1, t>0) \\
\frac{\partial u}{\partial x}(0, t)=0 \\
u(1, t)=1
\end{array}\right.
$$

a) Determine the equilibrium temperature distribution, and plot it on the interval $[0,1]$
b) Where does the energy enter, and where does it leave the rod? Explain your answers.
3. (20pts) Solve the following equation of a vibrating string of length $\boldsymbol{L}=\boldsymbol{\pi}$. Explain each step in your solution, but you don't have to consider negative eigenvalues in the boundary value problem:

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\pi, t>0) \\
\frac{\partial u}{\partial x}(0, t)=u(\boldsymbol{\pi}, t)=0 \\
u(x, 0)=0 ; \quad \frac{\partial u}{\partial t}(x, 0)=4 \cos \frac{5 x}{2}
\end{array}\right. \\
& \text { 4. (16pts) Consider the following Sturm-Liouville problem: }\left\{\begin{array}{l}
\frac{d}{d x}\left(\sqrt{x} \frac{d \phi}{d x}\right)+\lambda \phi=0 \quad(0<x<1) \\
\frac{d \phi}{d x}(0)=0 \\
\frac{d \phi}{d x}(1)+2 \phi(1)=0
\end{array}\right.
\end{aligned}
$$

a) Make a rough plot of the first two eigenfunctions
b) Derive the Rayleigh Quotient for this problem. Can one rule out $\lambda<0$?
c) Find the value of constant p so that the test function $u_{\mathrm{T}}(x)=1-p x^{2}$ satisfies given boundary conditions. Use this test function to find an upper bound on the lowest eigenvalue
5. (12pts) Consider the following finite difference approximation of the derivative of a smooth function $u(x)$:

$$
\frac{d u}{d x}\left(x_{n}\right) \approx \frac{u_{n+1}-u_{n-1}}{2 \Delta x} \text { where } u_{n} \equiv u\left(x_{n}\right) ; \Delta x \equiv x_{n+1}-x_{n}
$$

a) Derive the expression for the error of this approximation (hint: expand u_{n+1} and u_{n-1} in a Taylor series around point x_{n})
b) Apply the given approximation to the special case $u(x)=x^{3}$, and show that the error in your result agrees with your answer to part "a".

Choose one out of the remaining two problems:

6. (20pts) Solve the following heat equation in a disk with rotationally-symmetric (angle-independent) boundary conditions. What is the dominant approximation of the solution for $t>0$? Hint: Bessel equation will appear in some form after you separate variables: $z^{2} f_{z z}+z f_{z}+\left(z^{2}-m^{2}\right) f(z)=0$

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right) \quad(0 \leq r<R, t>0) \\
u(R, t)=0 \\
u(r, 0)=f(r)
\end{array}\right.
$$

7. (20pts) Consider the Sturm-Liouville problem with type-III (Robin) boundary conditions at the right end:

$$
\left\{\begin{array}{l}
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0 \quad(0<x<1) \\
\phi(0)=0 ; \quad \frac{d \phi}{d x}(1)=2 \phi(1)
\end{array}\right.
$$

a) Use geometric methods to determine all solutions. Carefully consider all signs of λ.
b) Make a rough plot of the first two eigenfunctions ϕ_{1} and ϕ_{2}, on the interval [0, 1].
c) Use your graphs (and simple trigonometry) to give an approximate value for the eigenvalue λ_{4}
d) Obtain an estimate of the lowest eigenvalue λ_{1} by plugging a simple algebraic test function of your choice into the Rayleigh Quotient of this problem.

