Math 331 • Midterm Examination • Victor Matveev • Spring 2018

Please read the assignment carefully, and show all work. No notes or electronic devices allowed.

1. (20pts, 14min) Consider the function $f(x)=\left\{\begin{array}{ll}x, & 0<x<\frac{1}{2} \\ 0, & \frac{1}{2}<x<1\end{array}\right.$ defined on the interval $0<x<1$
a) Write down the partial sum of first 4 non-zero terms in the sine series of $f(x)$ (given $L=1$). To avoid mistakes, calculate even and odd terms separately.
b) Graph the odd periodic extension of $f(x)$ and the first non-zero term in the sine series for $-3<x<3$
2. ($\mathbf{2} \times \mathbf{3 0}$ pts, $\mathbf{2 \times 2 5 m i n}$) Solve the following two partial differential equations, explaining all steps in the solution. When solving the homogeneous boundary value problem, make sure to consider all signs of λ, and sketch any two solutions (e.g. ϕ_{1} and ϕ_{2}). Check your solution if in doubt.
(A) $\left\{\begin{array}{l}\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1 ; t>0) \\ u(0, t)=0 ; \quad \frac{\partial u}{\partial x}(1, t)=0 \\ u(x, 0)=1 ; \quad \frac{\partial u}{\partial t}(x, 0)=0\end{array}\right.$
(B) $\begin{cases}\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 & (0<x<L, \quad 0<y<H) \\ \frac{\partial u}{\partial x}(0, y)=0 ; & \frac{\partial u}{\partial x}(L, y)=g(y) \\ \frac{\partial u}{\partial y}(x, 0)=0 ; & u(x, H)=0\end{cases}$
3. (10pts, 8 min) Find the equilibrium solution of the following heat equation in a 4-dimensional symmetric region enclosed between concentric hyperspheres with inner radius of 1 and outer radius of $R>1$. Where does the energy enter, and where does it leave this region? Assume $T_{0}>0$.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(r, t)=\frac{1}{r^{3}} \frac{\partial}{\partial r}\left[r^{3} \frac{\partial u}{\partial r}\right](1<r<R, t>0) \\
u(1, t)=0 ; \quad u(R, t)=T_{o} \\
u(r, 0)=T_{o} \ln (r / R)
\end{array}\right.
$$

4. (10pts, 8 min) Solve these ordinary differential equations (note: boundary conditions are not homogeneous):
(a) $\left\{\begin{array}{l}\frac{d^{2} g}{d x^{2}}=9 g(x)(0<x<1) \\ g(0)=1 \\ g(1)=0\end{array}\right.$
(b) $\left\{\begin{array}{l}x^{2} \frac{d^{2} g}{d x^{2}}=g(x)(x>0) \\ g(0)=0 \\ \frac{d g}{d x}(0)=1\end{array}\right.$
