
Math 331 •  Midterm Examination  •  Victor Matveev  •  Spring 2018 

Please read the assignment carefully, and show all work. No notes or electronic devices allowed. 

1. (20pts, 14min) Consider the function
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a) Write down the partial sum of first 4 non-zero terms in the sine series of ( )f x  (given L=1). To avoid 
mistakes, calculate even and odd terms separately. 

b) Graph the odd periodic extension of f(x) and the first non-zero term in the sine series for 3 < x < 3 

2. (230pts, 225min)  Solve the following two partial differential equations, explaining all steps in the 
solution. When solving the homogeneous boundary value problem, make sure to consider all signs of 
, and sketch any two solutions (e.g. 

1
 and 

2
). Check your solution if in doubt. 
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3. (10pts, 8min) Find the equilibrium solution of the following heat equation in a 4-dimensional 
symmetric region enclosed between concentric hyperspheres with inner radius of 1 and outer radius of 
R>1. Where does the energy enter, and where does it leave this region? Assume To>0. 
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4. (10pts, 8min) Solve these ordinary differential equations (note: boundary conditions are not 

homogeneous): 
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